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Abstract. We consider a type I, solvable Lie group G , of the form

R × Rd . We show that every irreducible unitary representation π of G is
characterized by its generalized moment set.

1. Introduction

Let G be a real Lie group with Lie algebra g , (π,Hπ) a unitary irreducible
representation of G and H∞

π the space of C∞ vectors for π . Let g∗ be the dual
space of g . In [7], Wildberger defined the moment map Ψπ of π . For all ξ in
H∞

π \ {0} , the element Ψπ(ξ) in g∗ is defined by:

Ψπ(ξ)(X) :=
1
i

〈dπ(X)ξ, ξ〉
〈ξ, ξ〉

, X ∈ g.

The moment set Iπ of the representation π is by definition the closure
in g∗ of the image of the moment map:

Ψπ : H∞
π \ {0} −→ g∗.

Wildberger gave an explicit description of the moment set Iπ when G
is a connected, simply connected nilpotent Lie group. More precisely, he showed
(Theorem 4.2 in [7]) that Iπ is the closure of the convex hull of the coadjoint
orbit Oπ associated to π via the Kirillov theory, i.e.

Iπ = Conv(Ωπ).

This result has been generalized by Arnal and Ludwig [2] for solvable Lie groups.
Nevertheless, as shown in [7], the moment set does not characterize the repre-
sentation even for nilpotent Lie groups.

A. Baklouti, J. Ludwig and M. Selmi extended the moment map to the
dual of the complex universal envelopping algebra U(g) of the complexification
gC of g , as follows:
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For all A in U(gC) and ξ in H∞
π \ {0} ,

Ψ̃π(ξ)(A) := Re

(
1
i

〈dπ(A)ξ, ξ〉
〈ξ, ξ〉

)
,

and considered the convex hull J(π) of the image of this generalized moment
map Ψ̃π :

J(π) := Conv(Ψ̃π(H∞
π \ {0})).

Let Un be the subspace of U(g) consisting of elements of degree less or equal to
n . By restriction to Un , we define :

Jn(π) = J(π)|Un
=
{

F |Un
, F ∈ J(π)

}
.

In [5], A. Baklouti, J. Ludwig and M. Selmi shown that for all nilpotent Lie group,
there exists an integer n such that, for any unitary irreducible representations
π and ρ of G , we have

Jn(π) = Jn(ρ) if and only if π ' ρ.

Later on, they generalized this result for an exponential Lie group and, in [4],
they shown with D. Arnal, the following result:

Theorem 0. (Separation of unitary representations of exponential Lie groups)
Let G = exp(g) be an exponential Lie group. Let π and ρ be two unitary
irreducible representations of G . Then:

π ' ρ if and only if J(π) = J(ρ).

For exponential groups, there is a bijection between coadjoint orbits and
classes of unitary irreducible representations. Thus this result means it is possible
to find the coadjoint orbit of a representation π , just by looking at the image of
the generalized moment map of π .

Since quantizing a symplectic manifold like a coadjoint orbit is building
a Hilbert space and a representation of the algebra of observables, theorem 0 can
be viewed as a dequantization of the representation π : we refind directly the
coadjoint orbit from the representation and its moment map.

In this paper, we study the simplest solvable, non exponential example:
the case of a type I solvable connected and simply connected Lie group of the
form G = R × Rd . We show that the set J(π), characterizes the irreducible
unitary representations of G and we prove the following:

Theorem 1. Let G be a semi-direct product of R by Rd , G = R × Rd .
Suppose G is type I, let π and ρ be two unitary irreducible representations of
G . Then:

π ' ρ if and only if J(π) = J(ρ).

For type I groups, even for our simple example, we have not only to find
the coadjoint orbit associated to a representation π , but also the extension of
the inducing character to the non simply connected inducing “small group”.
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Thus, we can say that, for non exponential Lie groups, the dequantization
procedure is not injective, there is many different “quantum” models for the
coadjoint orbit and we have to separate them.

In this article, we get this separation thanks to a case-by-case analysis
which is not directly generalizable to a general type I, solvable Lie group. How-
ever, we conjecture that theorem 1 holds for any type I, solvable Lie group and
we hope that our present proof is the first step in proving a more general result.

2. Preliminaries

The unitary representations of our group are very easy to describe, by using
unitary induction.

Let g be the Lie algebra of G , n its abelian ideal Rd and H an element
in g not belonging to n . Each irreducible unitary representation π is associated
to a coadjoint orbit in g∗ , the dual of g .

Let f be in g∗ . Its coadjoint orbit is either {f} and the associated
representation is the character χf : exp X 7→ eif(X) , or a two dimensional
manifold: denote f0 the restriction of f to n , the coadjoint action of exp(RH)
on f0 is a one-dimensional submanifold of n∗ ' Rd , which is diffeomorphic to a
circle or to a line.

The coadjoint orbit of f is thus the cylinder:

G.f = {` ∈ g∗ such that `|n ∈ exp(RH).f0}.

Note G(f) the stabilizer of f in G , h = n is a real polarization in the point
f , stable under the G(f)-adjoint action. Let us put D = G(f) exp(h), this is a
closed, normal subgroup of G and the representations associated to f are:

π = π(f, χf , h, G),

where χf is any character of D , with differential if .
Let us remark that the space Hπ of the representation π is isomorphic

to L2(G/D), which is either L2(R) or L2(R/Z).
Auslander and Kostant shown in [1] that the representation π does not

depend on the choice of the polarization and each unitary representation of G
can be obtained in this way.

Since H belongs to g \ n , each element g of G can be written in an
unique way as:

g = exp tH n (t ∈ R, n ∈ N).

We complexify the space Rd = n and we put the matrix of adH restricted
to nC in its Jordan form. There is four possible types of Jordan blocks:

those associated to the eigenvalue 0, the corresponding subspaces Ej(0) are real;

those associated to a real, non zero eigenvalue a , the corresponding subspaces
Ej(a) are real;
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those associated to a non real, non purely imaginary eigenvalue a + ib , the
corresponding subspaces Ej(a+ ib) are not real, but a− ib is another eigenvalue
and we choose Ej(a− ib) = Ej(a + ib);

those associated to an eigenvalue ib 6= 0, the corresponding subspaces Ej(ib) are
not real, but −ib is another eigenvalue and we choose Ej(−ib) = Ej(ib). In this
last case, the real number b will called a period of the group G .

Note pj(λ) the dimensionality of Ej(λ) and fix a Jordan basis for adH :
Zjk(0) = Xjk(0)
Zjk(a) = Xjk(a)
Zjk(a + ib) = Xjk(a + ib) + iYjk(a + ib),

Zjk(a− ib) = Zjk(a + ib)
Zjk(ib) = Xjk(ib) + iYjk(ib),

Zjk(−ib) = Zjk(ib)

(1 ≤ k ≤ pj(0)),
(1 ≤ k ≤ pj(a)),
(1 ≤ k ≤ pj(a + ib), b > 0),

(1 ≤ k ≤ pj(ib), b > 0).

Then:

adH (Zjk(λ)) = λZjk(λ) + Zj(k+1)(λ), (k < pj(λ))

and
adH

(
Zjpj(λ)(λ)

)
= λZjpj(λ)(λ).

Now, for the dual basis Zjk(λ)∗ , we have:

ad∗−H (Zjk(λ)∗) = λZjk(λ)∗ + Zj(k−1)(λ)∗, (k > 1),

and
ad∗−H (Zj1(λ)∗) = λZj1(λ)∗.

Let f0 be a point in the dual n∗ of n ,

f0 =
∑

λ, j, k

ζjk(λ)Zjk(λ)∗ (f0 = f0),

then:
Coad (exp(−tH)) f0 =

∑
λ, j, k

zjk(λ)(t)Zjk(λ)∗,

with

zjk(λ)(t) = etλ

(
ζjk(λ) + tζj(k+1)(λ) + ... +

tpj(λ)−k

(pj(λ)− k)!
ζjpj(λ)

)
.

Now G is supposed to be of type I. Let us call period group of G the
subgroup of R generated by the periods b of G . The following is well known.

Proposition 2.1. (Characterization of G -type [6]) The type of G is I if and
only if G has a discrete period group.
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3. The coadjoints orbits

We have already seen that the coadjoints orbits are:

either points, if and only if H is in the Lie algebra g(f), then, since H is
arbitrary, if and only if g(f) 6⊂ n , or if and only if:

f0 =
∑

j

ζ1j(0)Z1j(0)∗, f = hH∗ +
∑

j

ζ1j(0)Z1j(0)∗,

or diffeomorphic to the cylinder RH∗ × O , if O is the orbit of f0 , O is diffeo-
morphic to R or to a circle S1 .

In order to give a parametrization of the orbits, we choose an ordering
on the subspaces Ejk(λ). Let us be more precise, we class these spaces as follow:

first the spaces Ej(0), then the spaces Ej(a) (a real, a 6= 0), then the spaces
Ej(a + ib) (a and b reals, a 6= 0 and b 6= 0), finally the spaces Ej(ib). This
induced a natural ordering on the basis (Zkj(λ)∗) of n∗C .

Each non trivial orbit meets the orthogonal of H . We choose a point f
of the orbit in this orthogonal.

First case: there exists a non null component ζjk(0), k > 1. Let j0 be the
smallest j , k0 the largest k possible such that ζjk(0) 6= 0. Then:

zj0k0(0)(t) = ζj0k0(0), zj0(k0−1)(0)(t) = ζj0(k0−1)(0) + tζj0k0(0).

We choose, as a base point of the orbit, the only point ` orthogonal to H and
to Zj0(k0−1)(0). We deduce that the invariant functions which characterize all
the orbits of this category having the same j0 and k0 are the coordinates of ` ,
i.e. the functions:

f 7→ zjk(λ)
(
−

f(Zj0(k0−1)(0))
f(Zj0k0(0))

) (
(j, k, λ) > (j0, k0, 0)

)
.

For these orbits, O is diffeomorphic to R and G(`) is a subgroup of N .

Second case: all the components ζjk(0), k > 1 vanish, but there exists a non
vanishing component ζjk(a) (a 6= 0). Let a0 be the first a , j0 the smallest j ,
k0 the largest k such that ζjk(a) is non null. Then:

zj0k0(a0)(t) = ea0tζj0k0(a0).

We choose, as a base point of the orbit, the only point ` orthogonal to H and
such that |` (Zj0k0(a0))| = 1. Then the invariant functions which characterize all
the orbits of this category, having the same a0 , j0 and k0 are the coordinates
of ` , i.e. the functions:

f 7→ zjk(λ)
(
− 1

a0
Log |f(Zj0k0(a0)|

) (
(j, k, λ) > (j0, k0, a0)

)
.
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For these orbits, O is diffeomorphic to R and G(`) is a subgroup of N .

Third case: all the components ζjk(0), k > 1, are vanishing, as well as all
the components ζjk(a) (a 6= 0), but there exists a non vanishing component
ζjk(a + ib) (a and b real and non zero). Let a0 + ib0 the first a + ib (by
convention, we take b0 > 0), j0 the smallest j and k0 the largest k such that
ζjk(a + ib) 6= 0. Then:

zj0k0(a0 + ib0)(t) = ea0teib0tζj0k0(a0).

We choose, as a base point of the orbit, the only point ` orthogonal to H and
such that |` (Zj0k0(a0))| = 1. Then the invariant functions which characterize
all the orbits of this category, having the same a0 + ib0 , j0 and k0 are the
coordinates of ` , i.e. the functions:

f 7→ zjk(λ)
(
− 1

2a0
Log |f(Zj0k0(a0 + ib0)|2

) (
(j, k, λ) > (j0, k0, a0 + ib0)

)
.

For these orbits, O is diffeomorphic to R and G(`) is a subgroup of N .

Fourth case: all the components ζjk(0), with k > 1, are vanishing, as well as all
the components ζjk(a) (a 6= 0) and all the components ζjk(a+ ib) (a and b real
and non zero), but there exists a non vanishing component ζjk(ib) with k > 1.
Let ib0 be the the first ib ( by convention, we take b0 > 0), j0 the smallest j ,
k0 the largest k > 1 such that ζjk(ib) 6= 0. Then:

zj0k0(ib0)(t) = eib0tζj0k0(ib0),

zj0(k0−1)(ib0)(t) = eib0t
(
ζj0(k0−1)(ib0) + tζj0k0(ib0)

)
.

We choose, as a base point of the orbit, the only point ` orthogonal to H and
such the quantity t 7→ |zj0(k0−1)(ib0)(t)|2 is minimal. Then if we replace f by
` , this quantity becomes:

t2|ζj0k0(ib0)|2 + |ζj0(k0−1)(ib0)|2

else, the coordinates of ` verify:

ζj0k0(ib0)ζj0(k0−1)(ib0) + ζj0k0(ib0)ζj0(k0−1)(ib0) = 0.

The invariants functions which characterize the orbits of this category having the
same b0 , j0 and k0 are the coordinats of ` , i.e. the functions

f 7→ −zjk(λ)
f(Zj0k0(ib0))f(Zj0(k0−1)(ib0)) + f(Zj0(k0−1)(ib0))f(Zj0k0(ib0))

2 |f(Zj0k0(ib0))|2

for (j, k, λ) > (j0, k0, ib0). For these orbits, O is diffeomorphic to R and G(`)
is a subgroup of N .

Fifth case: all the components ζjk(0), with k > 1, are vanishing, as well as all
the components ζjk(a) (a 6= 0) and all the components ζjk(a + ib) (a 6= 0 and
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b 6= 0, a and b real) and all the components ζjk(ib) (k > 1), but there exists a
non vanishing component ζj1(ib). Then, we have:

f =
∑

j

ζj1(0)Zj1(0)∗ +
∑
ib

∑
j

ζj1(ib)Zj1(ib)∗.

We call period group of f , the subgroup of R generated by the numbers b such
that there exists j for which ζj1(ib) 6= 0. For each b , let j0 be the first j such
that ζj1(ib) 6= 0, by construction, we have:

ζj01(−ib) = ζj01(ib).

The period group of f can be written as βZ with β > 0. This implies that
Coad(exp(tH))f = f if and only if t = 2nπ

β for some integral number n . We
choose integral numbers q(b) such that β =

∑
b q(b)b . Putting q(−b) = −q(b)

and q(b)b = q(−b)(−b), we can suppose q(b) ≥ 0 for any b . Then:∏
b

(zj01(b)(t))
q(b) = eiβt

∏
b

(ζj01(b))
q(b)

.

As a base point in the orbit, we choose the only point ` of O for which this
quantity is real positive. For orbits in this category, with the same family of b
and j0 , we identify each orbit with the coordinates of ` , i.e. the functions:

f 7→ zjk(λ)

(
− 1

β
Arg

(∏
b

(f(Zj01(b)))
q(b)

))
.

For these orbits, O is diffeomorphic to S1 and G(`) is the non connected
subgroup exp

(
2π
β ZH

)
exp (g(`)).

Proposition 3.1. (The orbit description) There exist six classes of coadjoints
orbits in g∗ : the family of trivial orbits and the five classes of non trivial orbits.
Each class is the union of the subclasses C(λ, j0, k0) constituted by the orbits with
the same λ , j0 and k0 .

Each subclass is characterized by the value of polynomial functions, con-
stant on the orbits.

The class of trivial orbits is characterized by the nullity of all the functions
f 7→ f(Zjk(λ)) with λ 6= 0 or k > 1 ,

a subclass C(0, j0, k0) of the first type is characterized by the vanishing of the
functions f 7→ f(Zjk(0)) if j < j0 or j = j0 and k > k0 and the non vanishing
of the function f 7→ f(Zj0k0(0)) ,

a subclass C(a0, j0, k0) of the second type is characterized by the vanishing of
the functions f 7→ f(Zjk(0)) and f 7→ f(Zjk(a)) for a < a0 or a = a0 and
j < j0 or a = a0 , j = j0 and k > k0 and the non vanishing of the function
f 7→ f(Zj0k0(a0)) ,
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a subclass C(a0 + ib0, j0, k0) of the third type is characterized by the vanishing of
the functions f 7→ f(Zjk(0)) , f 7→ f(Zjk(a)) and f 7→ f(Zjk(a+ib)) for a+ib <
a0 + ib0 or a+ ib = a0 + ib0 and j < j0 or a+ ib = a0 + ib0 , j = j0 and k > k0

and the non vanishing of the function f 7→ f(Zj0k0(a0 + ib0))f(Zj0k0(a0 − ib0)) ,

a subclass C(ib0, j0, k0) of the fourth type is characterized by the vanishing of
the functions f 7→ f(Zjk(0)) , f 7→ f(Zjk(a)) , f 7→ f(Zjk(a + ib)) and f 7→
f(Zjk(ib)) for ib < ib0 and k > 1 or ib = ib0 and j < j0 and k > 1 or
ib = ib0 , j = j0 and k > k0 and the non vanishing of the function f 7→
f(Zj0k0(ib0))f(Zj0k0(−ib0)) ,

a subclass C(ib0, j0, 1) of the fifth type is characterized by the vanishing of the
functions f 7→ f(Zjk(0)) , f 7→ f(Zjk(a)) , f 7→ f(Zjk(a + ib)) and f 7→
f(Zjk(ib)) for k > 1 or ib < ib0 or ib = ib0 and j < j0 or ib = ib0 , j = j0 and
the non vanishing of the function f 7→ f(Zj01(ib0))f(Zj01(−ib0)) .

4. Separation of generic representations

We built in paragraph 2 the unitary irreducible representations π of G . Let ` be
in g and π be the representation associated to ` . The space of this representation
is L2(O), where the restriction of the orbit O of ` to n∗ is parametrized by the
map t 7→ f(t) = Coad(exp tH)` .

Thus π is a character if the orbit of ` is trivial, or realized in the space
L2(R), if the orbit is in the one of the first four type of subclasses, or realized in
the space L2

(
R/ 2π

β Z

)
, if the orbit is in a fifth type subclass.

By construction, if Z is an element of n , the operator dπ(Z) is the
multiplication operator by if(t)(Z).

Especially, if π1 and π2 are two unitary irreducible representations with
the same moment set and if for example, for π1 , the function

t 7→ f1(t)(Zjk(λ)) = z
(1)
jk (λ)(t)

is constant, then the same holds for

t 7→ f2(t)(Zjk(λ)) = z
(2)
jk (λ)(t)

and these two functions coincide. As a consequence, the subclass of the orbit
associated to π1 coincides with the subclass of the orbit associated to π2 .

Moreover the representations πi (i = 1, 2) are induced from characters
defined by the form `i such that, for each Jordan bloc Ej(λ) of ad(H),

k0 = sup
{
k such that `1(Zjk(λ)) 6= 0

}
= sup

{
k such that `2(Zjk(λ)) 6= 0

}
.

For the separation of two representations which are both in one of the
four first type of subclasses, we use the method of [4]. In fact, if π is not in the
fifth class, we have π = IndG

N χ` , where:

χ` : N −→ C, χ`(exp X) = ei`(X), ∀X ∈ n.
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Lemma 4.1. Let π1 and π2 be two unitary irreducible representations of G
which are both in one of the first four classes. Suppose J(π1) = J(π2) . Then we
can choose the point `i such that there exists a strictly increasing C∞ function
h , such that h(0) > 0 and an element u in U(n) such that, for each C∞ -vector
φi for πi (i = 1, 2),

(dπ1(u)φ1) (t) = h(t)φ1(t), (dπ2(u)φ2) (t) = h(t)φ2(t), ∀t.

Proof. We prove the lemma case by case.
If the representations πi = IndG

N χ`i
are both in a first type subclass,

with our notations, there exists j0 and k0 > 1 such that:

ζ
(1)
j0k0

(0) = `1(Zj0k0(0)) = ζ
(2)
j0k0

(0) = `2(Zj0k0(0)) 6= 0.

Then
1
i

(dπi(Zj0k0(0))φi) (t) = ζ
(i)
j0k0

(0)φi(t),

1
i

(
dπi(Zj0(k0−1)(0))φi

)
(t) =

(
ζ
(i)
j0(k0−1)(0) + tζ

(i)
j0k0

(0)
)

φi(t).

Replacing `i by

`′i = Coad

exp −
ζ
(i)
j0(k0−1)(0)

ζ
(i)
j0k0

(0)
H

 `i,

this relation becomes:

1
i

(
dπi(Zj0(k0−1)(0))φi

)
(t) = tζ

(i)
j0k0

(0)φi(t).

The lemma holds for

h(t) = t
∣∣∣ζ(i)

j0k0
(0)
∣∣∣+ 1 and u =

ζ
(i)
j0k0

(0)

i
∣∣∣ζ(i)

j0k0
(0)
∣∣∣Zj(k0−1)(0) + 1.

If the representations πi = IndG
N χ`i are both in a second type class, with

our notations, there exists a0 , j0 and k0 such that:

ζ
(1)
j0k0

(a0) = `1(Zj0k0(a0)) 6= 0, ζ
(2)
j0k0

(a0) = `2(Zj0k0(a0)) 6= 0.

Then
1
i

(dπi(Zj0k0(a0))φi) (t) = ζ
(i)
j0k0

(a0)ea0tφi(t).

Comparing the signs of 〈dπi(Zj0k0(a0))φi, φi〉 , we see that the numbers ζ
(i)
j0k0

(a0)
have the same sign ε = ±1. Replacing `i by

`′i = Coad
(

exp − 1
a0

Log |ζ(i)
j0(k0−1)(a0)|H

)
`i,
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we get:
1
i

(dπi(Zj0k0(a0))φi) (t) = εea0tφi(t).

The lemma holds for h(t) = a0
|a0|e

a0t and u = εa0
i|a0|Zj0k0(a0).

If the representations πi = IndG
N χ`i

are both in a third type class, there
exists a0 + ib0 , j0 and k0 such that:

ζ
(1)
j0k0

(a0+ib0) = `1(Zj0k0(a0+ib0)) 6= 0, ζ
(2)
j0k0

(a0+ib0) = `2(Zj0k0(a0+ib0)) 6= 0.

Put
Zj0k0(a0 + ib0) = Xj0k0(a0 + ib0) + iYj0k0(a0 + ib0)

and
ζ
(i)
j0k0

(a0 + ib0) = ξ
(i)
j0k0

+ iη
(i)
j0k0

,

we get:

1
i

(dπi(Zj0k0(a0 + ib0))φi) (t) = ζ
(i)
j0k0

(a0 + ib0)e(a0+ib0)tφi(t).

Or:

1
i

(dπi(Xj0k0(a0 + ib0))φi) (t) = ea0t
(
ξ
(i)
j0k0

cos b0t− η
(i)
j0k0

sin b0t
)

φi(t)

1
i

(dπi(Yj0k0(a0 + ib0))φi) (t) = ea0t
(
ξ
(i)
j0k0

sin b0t + η
(i)
j0k0

cos b0t
)

φi(t).

Replacing `i by

`′i = Coad
(

exp − 1
a0

Log
(
ξ
(i) 2
j0(k0−1) + η

(i) 2
j0(k0−1)

)
H

)
`i

and putting ζ
(i)
j0k0

(a0 + ib0) = eiθ(i)
, these relations become:

1
i

(dπi(Xj0k0(a0 + ib0))φi) (t) = ea0t cos(b0t + θ(i))φi(t)

1
i

(dπi(Yj0k0(a0 + ib0))φi) (t) = ea0t sin(b0t + θ(i))φi(t).

Thus:

−
(
dπi(Xj0k0(a0 + ib0)2 + Yj0k0(a0 + ib0)2)φi

)
(t) = e2a0tφi(t).

The lemma holds for h(t) = a0
|a0|e

2a0t and

u = − a0

|a0|
(
Xj0k0(a0 + ib0)2 − Yj0k0(a0 + ib0)2

)
.

If the representations πi = IndG
N χ`i

are both in a fourth type subclass,
there exists ib0 , j0 and k0 > 1 such that:

ζ
(1)
j0k0

(ib0) = `1(Zj0k0(ib0)) = ζ
(2)
j0k0

(ib0) = `2(Zj0k0(ib)) 6= 0.
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Then
1
i

(dπi(Zj0k0(ib0))φi) (t) = ζ
(i)
j0k0

(ib0)eib0tφi(t)

and

1
i

(
dπi(Zj0(k0−1)(ib0))φi

)
(t) = eib0t

(
ζ
(i)
j0(k0−1)(ib0) + tζ

(i)
j0k0

(ib0)
)

φi(t).

From these relations, we see:

−〈dπi(Zj0k0(ib0)Zj0k0(ib0))φi, φi〉 = |ζ(i)
j0k0

|2〈φi, φi〉

so |ζ(1)
j0k0

|2 = |ζ(2)
j0k0

|2 .
On the other hand, we have

−
(
dπi(Zj0(k0−1)(ib0)Zj0k0(ib0) + Zj0k0(ib0)Zj0(k0−1)(ib0))φi

)
(t) =

=
(
2t|ζ(i)

j0k0
(ib0)|2 + ζ

(i)
j(k0−1)(ib0)ζ

(i)
j0k0

(ib0) + ζ
(i)
j0k0

(ib0)ζ
(i)
j0(k0−1)(ib0)

)
φi(t).

Replace `i by

`′i = Coad

exp −
ζ
(i)
j0(k0−1)(ib0)ζ

(i)
j0k0

(ib0) + ζ
(i)
j0k0

(ib0)ζ
(i)
j0(k0−1)(ib0)

2|ζ(i)
j0k0

(ib0)|2
H

 `i,

this relation becomes:

−
(
dπi(Zj0(k0−1)(ib0)Zj0k0(ib0) + Zj0k0(ib0)Zj0(k0−1)(ib0))φi

)
(t) =

= 2t|ζ(i)
j0k0

(ib0)|2φi(t).

The lemma holds for h(t) = 2t|ζ(i)
j0k0

(ib0)|2 + 1 and

u = −Zj0(k0−1)(ib0)Zj0k0(ib0)− Zj0k0(ib0)Zj0(k0−1)(ib0) + 1.

Corollary 4.2. (Case of the fourth first type of classes) Let π1 and π2 be
two unitary irreducible representations of G such that J(π1) = J(π2) . Suppose
π1 is not in a fifth type class, then π2 is in the same subclass as π1 and:

π1 ' π2.

Proof. Indeed, we can now apply lemma 3.1 of [4].
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5. The fifth type classes

In the only remaining case, the two representations π1 and π2 are in a fifth type
class, the only non vanishing quantities 〈dπi(Zjk(λ))φi, φi〉 with λ 6= 0 are such
that λ = ib and k = 1. For them:

|ζ(1)
j1 (ib)|2 = −〈dπ1(Zj1(ib)Zj1(ib)φ1, φ1〉

= −〈dπ2(Zj1(ib)Zj1(ib)φ2, φ2〉 = |ζ(2)
j1 (ib)|2.

The coadjoint orbits associated to πi are both diffeomorphic to a cylinder with
a circular basis.

Moreover, the period groups of `1 and `2 coincide since:

period group(`1) =
∑

b,ζ
(1)
j1 (ib) 6=0

bZ =
∑

b,ζ
(2)
j1 (ib) 6=0

bZ = period group(`2).

Let β > 0 be the generator of this period group, the stabilizer G(`i)
contains exp( 2π

β ZH), there is two characters of G(`1)N = G(`2)N defined by:

χ`i,µi

(
exp(

2π

β
nH) exp(X)

)
= e2iπµinei`i(X),

where µi belongs to [0, 1[, such that:

πi = IndG
G(`i)N χ`i,µi

.

Lemma 5.1. (Separation of the µi ) With our notations, if J(π1) = J(π2) ,
then µ1 = µ2 .

Proof. First, we identify the space Hπi to L2(S1) by identifying each function
Φ : G −→ C of Hπi

, with the function φ : S1 −→ C defined by:

φ(t) = eiµitΦ(exp
t

β
H).

Then we have: (
dπi(

H

β
)φ
)

(t) = −
(

d

dt
φ(t) + iµiφ(t)

)
(dπi(Zj1(ib))φ) (t) = e−i b

β tζ
(i)
j1 (ib)φ(t).

Now, let us suppose for instance that 0 ≤ µ2 < µ1 < 1. We can find
δ > 0 such that:

δ < µ1 − µ2 < 1− δ.
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Let φ2 be a C∞ vector for π2 . In the space L2(S1), φ2 is the sum of its Fourier
series:

φ2 =
∑
n∈Z

cnθn.

where θn(t) = eint .
Let A be the element −i(H

β + iµ1)2 in U(g). We get:

1
i
〈dπ2(A)ϕ2, ϕ2〉 = 〈−

∑
n

cn (i(−µ2 − n) + iµ1)
2
θn,
∑
m

cmθm〉

=
∑

n

|cn|2(µ1 − µ2 − n)2.

But: |µ1 − µ2 − n| > δ thus:

1
i
〈dπ2(A)ϕ2, ϕ2 >≥ δ2〈φ2, φ2〉,

for all φ2 , in H∞
π2

. The same inequality holds for any convex combination∑
r νrΨπ2(φ

(r)
2 ) of points in the moment set of π2 , i.e.(∑

r

νrΨπ2(φ
(r)
2 )

)
(A) =

∑
r

νr
1
i
〈dπ2(A)ϕ(r)

2 , ϕ
(r)
2 〉 ≥ δ2

∑
r

νr = δ2.

On the other hand, θ0 is a C∞ vector of the representation π1 and we
have:

(Ψπ1(θ0)) (A) =
1
i
〈dπ1(A)θ0, θ0〉 = 0.

Then, our hypothesis µ1 6= µ2 does not hold.
Moreover, we remark that:

〈dπ1(u)θ0, θ0〉 = 〈dπ2(u)θ0, θ0〉

for all u in U(g). Indeeed, since the moment sets of π1 and π2 coincide, then
Ψπ1(θ0) is a convex combination:

Ψπ1(θ0) =
∑

r

νrΨπ2(φ
(r)
2 )

of points in J(π2), the only possibility is φ
(r)
2 = cr0θ0 for all r , or

Ψπ1(θ0) = Ψπ2(θ0).

Lemma 5.2. (The fifth type classes) Let π1 and π2 be two unitary irreducible
representations of G in a fifth type class. Suppose that J(π1) = J(π2) , then:
π1 ' π2 .
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Proof. As in section three, choose the positif integers q(b) such that:

β =
∑

b,ζ
(i)
j1 (ib) 6=0

q(b)b.

Define now:
B =

1∏
b |ζ

(i)
j1 (ib)|q(b)

∏
b

Zj1(b)q(b).

If ζ
(i)
j1 (b) = |ζ(i)

j1 (b)|eiα
(i)
j

(b) we get:(
dπi(Zj1(b)q(b))φi

)
(t) = |ζ(i)

j1 (b)|q(b)eiq(b)(α
(i)
j

(b)− 1
β tb)φi(t).

Thus:
(dπi(B)φi) (t) = ei

∑
b

q(b)α
(i)
j

(b)e−itφi(t)

and we get two orthogonal basis of L2(S1):

ω
(i)
0 = θ0, ω(i)

n = dπi(Bn)θ0 (n > 0), ω(i)
n = dπi(B−n)θ0 (n < 0).

This defines an intertwining operator for π1 and π2 , for instance, if n is positive,
then, for all u in U(g),

〈dπ1(u)ω(1)
n , ω(1)

n 〉 = 〈dπ1(u)dπ1(Bn)θ0, dπ1(Bn)θ0〉
= 〈dπ1(BnuBn)θ0, θ0〉
= 〈dπ2(BnuBn)θ0, θ0〉
= 〈dπ2(u)ω(2)

n , ω(2)
n 〉.

Replacing B by B , we get the same result for negative n . By polarization, for
all n , m ,

〈dπ1(u)ω(1)
n , ω(1)

m 〉 = 〈dπ2(u)ω(2)
n , ω(2)

m 〉.

Now, let U be the unitary operator of L2(S1), defined by Uω
(1)
n = ω

(2)
n , we have

〈dπ2(u)ω(2)
n , ω(2)

m 〉 = 〈dπ2(u)Uω(1)
n , Uω(1)

m 〉
= 〈(U−1 ◦ dπ2(u) ◦ U)ω(1)

n , ω(1)
m 〉

= 〈dπ1(u)ω(1)
n , ω(1)

m 〉

or U−1 ◦dπ2(u)◦U = dπ1(u), this shows that π1 and π2 are unitary equivalent.
The corollary 4.2 and the lemma 5.2 prove our theorem 1.
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groupe de Lie, Journal of Funct. Analysis 105 (1992), 256–300.

[3] Arnal, D., and J.C. Cortet, Star representation of E(2), Letters in Math-
ematical Physics, 20 (1990), 141–149.

[4] Arnal, D., A. Baklouti, J. Ludwig et M. Selmi, Separation of unitary
representations of exponential Lie groups, Journal of Lie Theory, 10
(2000), 399–410.

[5] Baklouti, A., J. Ludwig et M. Selmi, Séparation des représentations uni-
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