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Abstract. Let G be the adjoint group of the simple real Lie algebra g , and
let K

C
→ Aut(p

C
) be the complexified isotropy representation at the identity

coset of the corresponding symmetric space. We classify the spherical nilpotent
K

C
orbits in p

C
.

1. Introduction

When L is a complex simple Lie group, the spherical nilpotent orbits for the
adjoint action of L on its Lie algebra have been determined by Panyushev [22]
and McGovern [15]. These orbits are significant in the study of the completely
prime primitive ideals in the enveloping algebra of L . For example, McGovern
has shown how to associate Dixmier algebras to spherical nilpotent orbits (and
their covers) [15]. The Dixmier algebra associated to a spherical orbit has a nice
structure owing to the fact that the co-ordinate ring of the orbit is multiplicity
free as an L module, i.e., each irreducible finite dimensional representation of L
occurs with multiplicity 0 or 1.

The goal of this paper is to classify completely the spherical nilpotent
K

C
-orbits in p

C
, the complexified tangent space at the identity coset of the

symmetric space formed by a simple group G (of adjoint type) and its maximal
compact subgroup K . Here K

C
is the complexification of K . This classification is

contained in Theorems 6.1 (section 6.) and 9.1 (section 9.). Panyushev presented
a partial classification of spherical nilpotent K

C
-orbits in [21]. The classification

presented here is especially significant since each spherical nilpotent K
C

-orbit is
diffeomorphic to a nilpotent G-orbit in the Lie algebra of G that is multiplicity
free as a Hamiltonian K -space [11].

Many specific spherical nilpotent orbits have been investigated. If G is
simple, the number of non-zero minimal nilpotent K

C
-orbits in p

C
is either 1 or 2.

These orbits are spherical and have been studied extensively by representation
theorists, notably [25]. Other spherical nilpotent K

C
-orbits are studied in [1] and

[16]. One expects spherical nilpotent orbits to play an increasingly prominent role
in the representation theory of real simple Lie groups.
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2. Basic Notation

Throughout this article, we assume that g is a real simple Lie algebra with Cartan
decomposition g = k ⊕ p . θ is the associated Cartan involution. Let g

C
, k

C
and

p
C

denote the complexifications of g , k and p respectively. θ extends to a complex
linear involution on g

C
. Let σ denote conjugation on g

C
relative to the real form

g . G
C

is the adjoint group of g
C

. G , K , and K
C

are the connected subgroups
of G

C
corresponding to the Lie algebras g , k , and k

C
, respectively. Gθ

C
is the

subgroup of G
C

which is fixed by θ .

3. Kostant-Sekiguchi correspondence

In order to define the Kostant Sekiguchi correspondence, we consider the adjoint
actions of G

C
on g

C
, G on g and K

C
on p

C
.

Definition 3.1. Let N [g] , N [g
C
] , and N [p

C
] denote the set of nilpotent el-

ements of g , g
C

and p
C

respectively. N [g]/G , N [g
C
]/G

C
, and N [p

C
]/K

C
will

denote the orbits (conjugacy classes) in N [g] , N [g
C
] , and N [p

C
] under G , G

C

and K
C

respectively.

The Kostant-Sekiguchi correspondence is a special bijection between N [g]/
G and N [p

C
] / K

C
. It is defined by means of sl(2)-triples.

Definition 3.2. An ordered triple {Z1, Z2, Z3} of elements in g
C

is said to be
an sl(2)-triple if the following commutation relations are satisfied:

[Z1, Z2] = 2Z2, [Z1, Z3] = −2Z3, and [Z2, Z3] = Z1.

Two sl(2)-triples {Z1, Z2, Z3} and {Z ′
1, Z

′
2, Z

′
3} are said to be conjugate under a

subgroup W of G
C

if there exists an element w ∈W such that Zi = w · Z ′
i for

i = 1, 2, 3. (“·” denotes the adjoint action.)

Using the Jacobson-Morosov Theorem, one can prove the following charac-
terization of N [g]/G .

Theorem 3.3. [3] There is a bijection between each of the following sets.

(1) G conjugacy classes of sl(2)-triples of g

(2) N [g]/G.

The sl(2)-triple {Z1, Z2, Z3} is said to be normal if Z1 ∈ k
C

, and Z2, Z3 ∈
p

C
. Normal sl(2)-triples are at the heart of the Kostant-Rallis description of

N [p
C
] / K

C
.

Theorem 3.4. [13] There is a bijection between each of the following sets.

(1) K
C

conjugacy classes of normal sl(2)-triples of g
C

(2) N [p
C
]/K

C
.

We need to define two notable classes of sl(2)-triples.
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Definition 3.5. (Kostant-Sekiguchi triples) An sl(2)-triple {H, E, F} in g

is said to be a KS-triple in g if θ(E) = −F , and hence θ(H) = −H . A normal
sl(2)-triple {x, e, f} in g

C
is said to be a KS-triple in g

C
if f = σ(e).

Sekiguchi established the following facts about KS-triples.

Theorem 3.6. [23] (1) Every sl(2)-triple {H ′, E ′, F ′} in g is conjugate under
G to a KS-triple in g. Two KS-triples in g are conjugate under G to the same
sl(2)-triple in g if and only if the KS-triples are conjugate under K .

(2) Every normal sl(2)-triple {x′, e′, f ′} in g
C

is conjugate under K
C

to
a KS-triple in g

C
. Two KS-triples in g

C
are conjugate under K

C
to the same

normal sl(2)-triple in g
C

if and only if the KS-triples are conjugate under K .

Definition 3.7. Let KS(g) denote the set of KS-triples in g and KS(g
C
)

denote the set of KS-triples in g
C

. KS(g)/K and KS(g
C
)/K will denote the set

of K conjugacy classes in KS(g) and KS(g
C
) respectively.

Combining Theorems 3.4, 3.3 and 3.6 we have:

Theorem 3.8. There are bijections:

N [g]/G←→ KS(g)/K and N [p
C
]/K

C
←→ KS(g

C
)/K.

The Kostant-Sekiguchi correspondence is a consequence of Theorem 3.8 and the
following observation.

Proposition 3.9. There is a bijection: KS(g)/K ←→ KS(g
C
)/K defined as

follows: {H, E, F} ∈ KS(g) is mapped to the {x, e, f} ∈ KS(g
C
), where

x = i(E − F ), e =
E + F + iH

2
, f =

E + F − iH
2

. (1)

The map just defined is K -equivariant.

Let Ω be a conjugacy class in N [g]/G . Let {H, E, F} = {HΩ, EΩ, FΩ}
be a representative of the conjugacy class in KS(g) that is associated to Ω by
Theorem 3.8. Then set

S(Ω)
def
= K

C
· E + F + iH

2
. (2)

We obtain our main result.

Theorem 3.10. (The Kostant-Sekiguchi Correspondence [23]) The mapping

S : N [g]/G −→ N [p
C
]/K

C
, given by Ω 7→ S(Ω)

def
= OΩ (see formula (2)) is a

bijection.

Proof. Combine Theorem 3.8 and Proposition 3.9.
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4. Results about spherical nilpotents in p
C

We need several results (mostly due to Panyushev) in order to state necessary and
sufficient conditions for O to be KC spherical. Fix a KS-triple {x, e, f} in g

C

with e ∈ O . Thus x ∈ ik , σ(e) = f . It follows that the complex subalgebra
a

C
= Cx+ Ce+ Cf has a θ -stable real form a ⊂ g . Let g

C
(j), k

C
(j), and p

C
(j)

denote the j -eigenspace of ad(x) on g
C

, k
C

, and p
C

respectively.

Since σ(x) = −x , and k
C

and p
C

are preserved by σ , for all j we have

dimC k
C
(j) = dimC k

C
(−j); dimC p

C
(j) = dimC p

C
(−j).

Definition 4.1. We define k
C

-height(e) (resp., p
C

-height(e)) to be the largest
non-negative integer j such that k

C
(j) 6= (0) (resp., p

C
(j) 6= (0)). height(e) is

the largest non-negative integer j such that g
C
(j) 6= (0).

Definition 4.2. Let u denote the sum of the positive eigenspaces of ad(x) on
g

C
. Set Z = u ∩ kC/(u ∩ kC)e .

Lemma 4.3. (1) For each i ≥ 0, as a K
{x, e, f}
C module, kC(i)/(kC(i))e is

isomorphic to [f, pC(i+ 2)]; and

(2) As K
{x, e, f}
C modules, Z and

∑
i≥1 pC(i+2) =

∑
i≥3 pC(i) are isomor-

phic.

Proof. For (1) apply the representation theory of sl(2, C). (2) follows from
(1).

Let u = k+ ip . Then u is a compact real form of g
C

. τ = σ ◦ θ is the conjugation
on g

C
with respect to u . Let U be the connected subgroup of G

C
with Lie

algebra u .

Definition 4.4. Let B denote the Killing form of g
C

and Bg denote the
restriction of B to g . Set 〈z, w〉 = −Bg

C
(z, τ(w)). Then 〈·, ·〉 is a U invariant,

positive definite Hermitian inner product on g
C

. If z ∈ g
C

, set ‖z‖2 = 〈z, z〉 .
Note that if z, w ∈ g , then 〈z, w〉 = −Bg(z, θ(w)).

Let m be the orthogonal complement of k
{x, e, f}
C (relative to 〈·, ·〉) inside

kx
C . m is a K

{x, e, f}
C module. Note that m and p

C
(2) are isomorphic as K

{x, e, f}
C

modules.

Recall from [20] the notion of a stabilizer in general position (s.g.p.) for the
action of an algebraic group on an irreducible variety.

Definition 4.5. We fix S to be an s.g.p. for the representation of K
{x, e, f}
C

on m .

That is S is the stabilizer in K{x, e, f}
C

of a point whose orbit under K{x, e, f}
C

has maximal dimension. Such a point lies in an open subset of m such that
the stabilizers of any two points in this subset are conjugate under K

{x, e, f}
C .

Since K
{x, e, f}
C is reductive, a generic K

{x, e, f}
C orbit on m is closed, so that S is

reductive. Also,

dimK
{x, e, f}
C − dimS = dim orbit of maximal dimension of K

{x, e, f}
C on m .
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Let s
C

denote the Lie algebra of S . Since s
C

is stable under σ and τ , it is the
complexification of a Lie subalgebra sR which is contained in k{x, e, f} . Let SR

denote the corresponding connected compact subgroup of K{x, e, f} . S0 denotes
the identity component of S . B(S) will denote a Borel subgroup of S .

Suppose that X is a variety with K
C

action and Bk is a Borel subgroup
of K

C
.

Definition 4.6. The complex codimension of a generic Bk orbit is called the
complexity of X , denoted cK

C
(X) or c(X) (when the reductive group K

C
is

understood).

Remark 4.7. c(X) is also the transcendence degree (over C) of the Bk invari-
ant functions in the field of rational functions (with complex coefficients) on X .

Definition 4.8. If X is irreducible, we say that X is spherical for K
C

if
c(X) = 0. That is, some (and hence any) Borel subgroup of K

C
has a dense

orbit on X .

Remark 4.9. If X is the Zariski closure of X , then c(X) = c(X).

Corollary 4.10. If e ∈ N [p
C
], then K

C
· e is spherical ⇐⇒ K

C
· e is

spherical.

Proposition 4.11. If e ∈ N [p
C
] and K

C
· e is spherical so is each K

C
orbit

in K
C
· e.

Proof. This follows from Corollaire 3.5 in [2].

Proposition 4.12.

cK
C
(K

C
· e) = cKx

C
(Kx

C
/K

C

{x, e, f}) + cS(Z).

Proof. This is Theorem 1.2(a) of [22]. (See also Theorem 2.3(a) of [22].)

Corollary 4.13. O is spherical if and only if Kx
C
/K

C

{x, e, f} is spherical and
a Borel subgroup of S has an open orbit on Z .

Proof. This is Corollary 1.4 of [22].

Lemma 4.14. Suppose k
C
-height(e)≤ 3. Then k

{x, e, f}
C is a symmetric subal-

gebra of kx
C .

Proof. This is proved like Proposition 3.3 in [22].

Corollary 4.15. Let {x, e, f} be a normal triple such that height(e)= 2.
Then O is spherical for KC .
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Proof. Since height(e)= 2 and Z = (0), apply Lemma 4.14 and Corollary
4.13.

Since all spherical nilpotent G
C

-orbits for gC of type An or Cn have height 2 (see
[22]), we have the following result.

Corollary 4.16. Suppose that g
C

is of type An or Cn . If Θ is a spherical
nilpotent orbit for GC , and O is a K

C
orbit in Θ ∩ p

C
, then O is spherical for

KC .

Panyushev has shown that for a nilpotent e in g
C

, height(e)≥ 4 implies
that G

C
· e is not spherical. In addition he has shown that:

Proposition 4.17. If p
C
-height(e) > 3, or k

C
-height(e) > 4, then K

C
· e is

not spherical.

Proof. This is equivalent to Theorem 5.6 in [21].

Remark 4.18. If O is spherical for K
C

, then dimCO ≤ dimCB(K
C
), where

B(K
C
) denotes any Borel subgroup of K

C
.

Remark 4.19. If e, e′ ∈ N [p
C
] are conjugate under Gθ

C
, then K

C
· e is

spherical ⇐⇒ K
C
· e′ is spherical.

5. Parametrizing nilpotent K
C
-orbits in p

C

Suppose that g is a simple classical real Lie algebra. Because of the Kostant-
Sekiguchi correspondence, we will generally use the signed partition description of
nilpotent conjugacy classes in N [g]/G (see [3]) to describe the conjugacy classes
in N [p

C
]/K

C
. The signed partition description is equivalent to the description in

terms of “ab− diagrams” given by Ohta ([19]) and others.

Throughout this section and the next {x, e, f} is a KS-triple in g
C

. We
assume that x ∈ it , where t is a fixed maximal torus of k . a

C
is the sl(2, C)

algebra spanned by triple {x, e, f} . For each g , we will give a recipe for computing
x from the signed partition description of K

C
· e . The idea behind the various

recipes is as follows. For each g there is a finite dimensional complex vector space
V = V (g) carrying the ‘natural’ or ‘basic’ representation of g . (If g is not sl(s, R)
or su∗(2n), V is the complex vector space carrying the corresponding g-invariant
bilinear form.) V is a completely reducible a

C
-module. An ‘ab ’-diagram for

the conjugacy class of the nilpotent e ∈ p
C

describes a basis for V consisting of
eigenvectors of the neutral element x . The eigenvalues of x on this basis determine
the values taken by a system of simple roots of k

C
on the element x . This gives

the weighted Dynkin diagram of x which determines the orbit K
C
· e . In each

case, x is dominant with respect to the system of simple roots of k
C

. The recipes
below are undoubtedly known to many experts but, to the author’s knowledge,
have not been published before. Proofs will be given only for g = su(p, q) and
g = sp(n, R).
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5.1. sl(s, R).

Let s = 2n or 2n+ 1. k = so(s). Let Ei, j denote the s× s matrix whose (i, j)
entry is 1 and whose other entries are 0. We define a torus t of k to be the real
span of the matrices Zi = E2i−1, 2i − E2i, 2i−1 , i = 1, . . . , n . Then the linear
functional ej , j = 1, . . . , n is defined by ej(Zi) = −

√
−1δij (Kronecker delta).

If s = 2n+ 1, we label the following set of simple roots for k :

e1 − e2, e2 − e3, . . . , en−1 − en, en.

For s = 2n , k = so(2n). We label the following set of simple roots for k :

e1 − e2, e2 − e3, . . . , en−2 − en−1, en−1 − en, en−1 + en.

Proposition 5.1. (g = sl(2n + 1,R), or sl(n. R)) Here is the algorithm for
determining the weighted Dynkin diagram of x. Let Λ = m1 +m2 +m3 + . . .mr

be the partition of 2n + 1 or 2n determined by e, with m1 ≥ m2 ≥ . . . ≥ mr .
Each occurrence of mj corresponds to an mj ×mj Jordan block, that is an mj -
dimensional a

C
-module with basis: v, e · v, e2 · v, . . . , emj−1 · v for some v ∈ V .

The eigenvalues of x in this basis are the integers: (mj − 1), . . . ,−(mj − 1).

Case (1) Assume that not all the mj are even. Form the multiset AΛ =
AΛ(K

C
· e) by “joining” all such sequences (mj − 1), . . . ,−(mj − 1) for a given

partition of 2n + 1 or 2n. Assume that the elements of AΛ are arranged in
descending order. Take the first n non-negative integers from AΛ . These are
(respectively) the values e1(x), . . . , en(x), which give the weighted Dynkin diagram
of x.

Case (2) Assume that all the mj are even. This is possible only for g =
sl(2n, R). Λ corresponds to two distinct K

C
nilpotent orbits that are conjugate

under Gθ
C
. To record this fact we label one copy of the partition Λ with a roman

numeral “I” and a second copy of Λ with roman numeral “II” (Theorem 9.3.3
in [3]) to distinguish the orbits. Applying the procedure in Case (1) we obtain a
weighted Dynkin diagram in which en(x) = 1. We associate this weighted diagram
to the orbit ΛI . We then use the values e1(x), . . . en−1(x), en(x) = −1 to form a
second weighted Dynkin diagram. This diagram is assigned to orbit ΛII .

Example 5.2. (a) Λ = 4 + 3 + 2 for sl(9, R). The sequences corresponding
to the parts 4, 3, and 2 respectively {3, 1,−1,−3} ; {2, 0,−2} ;and {1,−1} . Thus
AΛ = {3, 2, 1, 0, −1, −2, −3} . So e1(x) = 3, e2(x) = 2, e3(x) = 1 and
e4(x) = 0. Hence, we obtain the following labels on the simple roots of k = so(7):
e1 − e2 = 1, e2 − e3 = 1, e3 − e4 = 1, e4 = 0.

(b) Λ = 4 + 2 + 2 + 2 for sl(10, R). The sequences corresponding to the
parts 4 and 2 are respectively {3, 1,−1,−3} and {1,−1} . Thus,

AΛ = {3, 1, 1, 1, 1, −1, −1, −1, −1, −3}.

So the orbit ΛI has e1(x) = 3, e2(x) = 1, e3(x) = 1, e4(x) = 1, and e5(x) = 1.
The orbit ΛII has e1(x) = 3, e2(x) = 1, e3(x) = 1, e4(x) = 1, and e5(x) = −1.

5.2. su∗(2n). We use the notation of Helgason [10], chapter 10 , section 2 for

g and k . That is, g is the space of 2n × 2n matrices of the form

(
Z1 Z2

−Z̄2 Z̄1

)



346 King

where Z1 and Z2 are n × n complex matrices and Tr(Z1) + Tr(Z̄1) = 0. (‘Z̄ ’
denotes complex conjugation.) k is the subspace of skew Hermitian matrices in g .
k is isomorphic to sp(n). The space of diagonal matrices in k is a maximal torus
t of k . The linear functional ei (1 ≤ i ≤ n) on t is defined so that its value on
the diagonal matrix diag(

√
−1y1, . . . ,

√
−1yn,−

√
−1y1, . . . ,−

√
−1yn) is

√
−1yi .

Then we have the following set π of simple roots for k :

e1 − e2, e2 − e3, . . . , en−1 − en, 2en

Nilpotent conjugacy classes are parametrized by partitions of n .

Proposition 5.3. Suppose Λ = m1 + m2 + m3 + . . . + mr is a partition of n
(m1 ≥ m2 ≥ . . . ≥ mr ). ”Double” Λ to obtain a partition Λ′ of 2n. That is

Λ′ = m1 +m1 +m2 +m2 +m3 + +m3 + . . .+mr +mr

Form the multiset AΛ′ by joining the integer strings corresponding to each of the
integers m1, m1, . . . , mr, mr . Arrange the integers in AΛ′ in descending order
and choose the first n non-negative integers in this list. These integers are the
values e1(x), e2(x), . . . , en(x).

5.3. su(p, q). Let n = p + q and V = Cn . Let z = (z1, . . . , zn) and
w = (w1, . . . , wn) be n-tuples in V . Consider the Hermitian form

〈z, w〉p, q = z1w̄1 + . . .+ zpw̄p − zp+1w̄p+1 − . . .− zp+qw̄p+q.

(‘ z̄ ’ denotes the complex conjugate of z .) su(p, q) consists of all the trace zero
n × n complex matrices which leave the form 〈·, ·〉 invariant. Let Ip, q be the
block diagonal matrix diag(Ip, −Iq) where Ip (resp., Iq ) is the p×p (resp., q×q )
identity matrix. Let V + (resp. V − ) be the +1 (resp. −1) eigenspace of Ip, q .
k = su(p)⊕su(q)⊕T1 . Since the restriction of 〈·, ·〉 is positive definite on V + and
negative definite on V − , k can be viewed as trace zero matrices which preserve
V + and V − , which we denote s(u(V +)⊕ u(V −)).

Let Ei, j denote the n × n matrix defined in subsection 5.. We define a
torus t of k to be the real span of the matrices Hi =

√
−1(Ei, i − Ei+1, i+1),

i = 1, . . . , n − 1. Then the linear functional ej , for j = 1, . . . , n , is defined by
ej(
√
−1Ei, i) = δij .

The neutral element of a nilpotent conjugacy class will be described by
giving its values at the following compact simple roots of k and at the noncompact
root −ψ = −(e1 − ep+q):

{e1 − e2, e2 − e3, . . . , ep−1 − ep} ∪ {ep+1 − ep+2, . . . , ep+q−1 − ep+q} (3)

Nilpotent conjugacy classes are parametrized by signed partitions of signa-
ture (p, q). See [3].

Proposition 5.4. Let Λ be a signed partition of signature (p, q). See [3]. Let
m1, . . . , md be the distinct part sizes of Λ arranged in descending order. Let r+

j

(resp., r−j ) be the number of times mj occurs labelled with a ‘+’ (resp., ‘-’) sign.
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That is, r+
j (resp., r−j ) denotes the number of rows of length mj in Λ which begin

with ‘+’ (resp., ‘−’). We can write

Λ = (+m1)
r+
1 (−m1)

r−1 . . . (+md)
r+
d (−md)

r−d .

We form two multisets: Ap
Λ and Bq

Λ , by performing the following procedure on
each row of Λ. Suppose λ is a row of Λ of length mj . Label the first sign in
λ with the integer mj − 1, the next sign with the integer mj − 3, etc. The last
sign in λ is labelled with the integer −(mj − 1). Each integer labelling a plus sign
in λ is placed in Ap

Λ and each integer labelling a minus sign in λ is placed in
Bq

Λ . By arranging the elements of Ap
Λ in descending order, we obtain the integers

e1(x), . . . , ep(x). By arranging the elements of Bq
Λ in descending order, we obtain

the integers ep+1(x), . . . , ep+q(x).

Proof. (Sketch) Each row of type (+mj) in Λ corrresponds to an a
C

-module
W+

j (of dimension mj ) with basis: v, e · v, e2 · v, . . . , emj−1 · v for some v ∈ V
with emj−1 · v ∈ V + . (And emj−2 · v ∈ V − , emj−3 · v ∈ V + , etc.) Each row of
type (−mj) corrresponds to a basis of an mj -dimensional a

C
-module W−

j with
basis: v, e · v, e2 · v, . . . , emj−1 · v for some v ∈ V with emj−1 · v ∈ V − . (And
emj−2 · v ∈ V + , emj−3 · v ∈ V − , etc.) The bases corresponding to different rows
of Λ may be taken to be orthogonal with respect to 〈·, ·〉 . Since x ∈ ik has real
eigenvalues and 〈·, ·〉 is conjugate linear in the second variable, eigenvectors in
V + (resp. V − ) for x with distinct eigenvalues are mutually orthogonal relative to
the restriction of 〈·, ·〉 to V + (respectively V − ). Thus by suitable normalization
of the vectors in the bases for each row of Λ, we can create an orthonormal basis
of each eigenspace in V + (using the form 〈·, ·〉) and an orthonormal basis of each
eigenspace of V − (using the form -〈·, ·〉). In this way we obtain orthonormal
bases of V + and V − . The integers in Ap

Λ (resp., Bq
Λ ) give the eigenvalues of x

in an orthonormal basis of V + (resp., V − ). We can find an element of K which
transforms these orthonormal bases into the standard orthonormal bases of V +

and V − . k · x is a diagonal matrix with respect to the new bases. The integers
in Ap

Λ occupy the first p entries along the main diagonal and those in Bq
Λ occupy

the last q positions. Using the Weyl group of K we can rearrange these entries
so that k ·x becomes dominant with respect to the simple system in equation (3).
This establishes the proposition.

Example 5.5. (a) g = su(3, 1) and Λ = + − +
+ = (+3)(+1)

This is the principal nilpotent. The weighted Dynkin diagram is obtained
by evaluating the neutral element at the compact simple roots e1 − e2 , e2 − e3
and at −ψ = e4 − e1 . The integers for the first row of Λ are 2, 0, −2. So 2
and −2 are labeled with +, and 0 is labelled with − . The 0 in the second row
of Λ is labelled ‘+’. Therefore, AΛ = {2, −2} and BΛ = {0, 0} . This gives
e1(x) = 2, e2(x) = 0, e3(x) = −2, and e4(x) = 0. The weighted Dynkin diagram
of x is given by e1 − e2 = 2, e2 − e3 = 2, and e4 − e1 = −2.

(b)(i) g = su(2, 2) and Λ = + − + − = (+4)

This is one of the principal nilpotents for g . AΛ = {3, −1} and BΛ =
{1, −3}. Therefore, e1(x) = 3, e2(x) = −1, e3(x) = 1, and e4(x) = −3. The
weighted Dynkin diagram of x is given by e1−e2 = 4, e3−e4 = 4, and e4−e1 = −6.
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(b)(ii) g = su(2, 2) and Λ = − + − + = (−4)

This is the other principal nilpotent for g . AΛ = {1, −3} and BΛ =
{3, −1}. Therefore, e1(x) = 1, e2(x) = −3, e3(x) = 3, and e4(x) = −1. The
weighted Dynkin diagram of x is given by e1−e2 = 4, e3−e4 = 4, and e4−e1 = −2.

5.4. so(p, q). so(p, q) is the Lie subalgebra of sl(p+q, R) which leaves invariant
the quadratic form:

((x1, . . . , xp+q), (x1, . . . , xp+q))p, q = x2
1 + . . . x2

p − x2
p+1 − . . .− x2

p+q.

Thus g is the space of real matrices of the form

(
A B
B> D

)
where A is p× p skew

symmetric, D is q× q skew symmetric, B is p× q and B> denotes the transpose

of B . k is the subspace of matrices of the form

(
A 0
0 D

)
where A is p× p skew

symmetric and D is q × q skew symmetric. So k is isomorphic to so(p)⊕ so(q).
Let Ip, q , V + and V − be defined in as subsection 5.. Let s = [p

2
] and

t = [ q
2
] . Let Ei, j denote the (p+ q)× (p+ q) matrix defined in subsection 5.. Let

t1 be the real span of the matrices Yi = E2i−1, 2i−E2i, 2i−1 , i = 1, . . . , s , and t2 be
the real span of the matrices Y ′

i = Ep+2i−1, p+2i−Ep+2i, p+2i−1 , i = 1, . . . , t . Then
t = t1 ⊕ t2 is a maximal torus of k . Define linear functionals ej , j = 1, . . . , s + t
on t , as follows.

ej(Yi) = −
√
−1δij, ej(t2) = 0, for 1 ≤ i ≤ s, 1 ≤ j ≤ s;

ej(Y
′
i ) = −

√
−1δi, j−s, ej(t1) = 0 for 1 ≤ i ≤ t, s+ 1 ≤ j ≤ s+ t.

We specify π , the following system of simple of roots, for k depending on
the parity of p and q .

π = {e1 − e2, . . . , es−2 − es−1} ∪ {es+1 − es+2, . . . , es+t−2 − es+t−1} ∪ π′

where π′ equals

{es−1 − es, es−1 + es} ∪ {es+t−1 − es+t, es+t−1 + es+t} (p, q even);

{es−1 − es, es−1 + es} ∪ {es+t−1 − es+t, es+t} (p even, q odd);

{es−1 − es, es} ∪ {es+t−1 − es+t, es+t−1 + es+t} (p odd, q even);

{es−1 − es, es} ∪ {es+t−1 − es+t, es+t} (p, q odd).

The nilpotent orbits of so(p, q). are parametrized by signed Young dia-
grams of signature (p, q) such that rows of even length occur with even multiplicity
and have their leftmost boxes labeled ‘+’. Some of these diagrams get roman nu-
merals attached to them as follows. If Λ is such a diagram and all the rows have
even length, then Λ corresponds to two K

C
orbits which are conjugate under Gθ

C
.

ΛI and ΛII will denote the two K
C

orbits. (This situation is possible only if
both p and q are even.) The distinction between ΛI and ΛII is given below in
Proposition 5.6. If at least one row of Λ has odd length and all odd rows have an
even number of boxes labeled ‘+’, or all odd rows have an even number of boxes
labeled ‘-’, then again ΛI and ΛII denote the corresponding K

C
orbits, which are

conjugate under Gθ
C

(This situation is possible only if at leas! t one of the integers
p , q is even.) The distinction between ΛI and ΛII is given below in Proposition
5.6. Thus if p and q are both odd, no numerals are attached to any signed Young
diagram.
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Proposition 5.6. Let Λ be a signed partition of signature (p, q). Represent
Λ using the notation of Proposition 5.4.

(A) Assume that Λ does not have a numeral. We define two multisets: As
Λ

and Bt
Λ by following the rules below. By arranging the elements of As

Λ in descend-
ing order, we obtain the integers e1(x), . . . , es(x). By arranging the elements of
Bt

Λ in descending order, we obtain the integers es+1(x), . . . , es+t(x).

1. Suppose λ is an odd row (of length m+ 1) of Λ with integer labelling:

m, m− 2, . . . , 2, 0, −2, . . .−m

In this case, the first integer m is even. Set |λ| equal to the number of integers in
the string, |λ|+ (resp. |λ|− ) is the number of integers labelled with a “+” (resp.
“-”) sign.

case(a) Assume that m is labelled by a plus sign. Then, |λ|+ = [m+1
2

] + 1
and |λ|− = [m−1

2
] + 1.

Let c+m denote the number of rows identical to λ in Λ, i.e., the number of
rows of length |λ| that begin with a ‘+’ sign. Arrange the c+m|λ|+ integers from
these rows which are labelled with a ‘+’ sign in descending order, and assign the

first [ c+m|λ|+
2

] of these integers to As
Λ . Likewise, arrange the cm|λ|− integers from

these rows that are labelled with a ‘-’ sign in descending order, and assign the first

[ c+m|λ|−
2

] to Bt
Λ .

case(b) Assume that m is labelled by a minus sign. Then, |λ|+ = [m−1
2

] + 1
and |λ|− = [m+1

2
] + 1. Let c−m denote the number of rows identical to λ in Λ, i.e.,

the number of rows of length |λ| which begin with a ‘-’ sign. Arrange the c−m|λ|+
integers from these rows which are labelled with a ‘+’ sign in descending order,

and assign the first [ c−m|λ|+
2

] of these integers to As
Λ . Likewise, arrange the c−m|λ|−

integers from these rows that are labelled with a ‘-’ sign in descending order, and

assign the first [ c−m|λ|−
2

] of them to Bt
Λ .

2. Now suppose that λ is an even row with integer labelling m, m − 2,
. . .,−m. Then m is odd. Suppose that there are 2c copies of λ in Λ.

Place c copies of the string: m, m− 2, . . . , 3, 1 in As
Λ and place c copies

of the same string in Bt
Λ . For example, if c = 1, then assign the string

m, m− 2, m− 4, . . . , 3, 1.

to As
Λ , and the string

m, m− 2, m− 4, . . . , 3, 1.

to Bt
Λ .

3. If after performing the procedures in (1) and (2) on all rows, As
Λ has

less that s elements (counted with multiplicity) place enough extra zeroes in As
Λ

so that As
Λ has cardinality s. And if Bt

Λ has less that t elements (counted with
multiplicity) place enough extra zeroes in Bt

Λ so that Bt
Λ has cardinality t.

We must now take into account the assignment of numerals to some of the
signed partitions.

(B) Assume that Λ is a signed partition with roman numeral “I” or “II”.
Then there are two possibilities.
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1. If all rows of Λ are even then both p and q are even. If we apply the
rules for forming As

Λ and Bt
Λ in part (A) of the proposition, we find that es = 1

and es+t = 1. We stipulate that the numeral “I” assigned to Λ will correspond to
the unique neutral element coming from the integers e1, . . . , es+t . We stipulate
that the numeral “II” assigned to Λ will correspond to the unique neutral element
coming from the integers e1, . . . , es−1, −es, es+1, . . . , es+t−1, −es+t .

2. case(a) Suppose Λ has some odd rows, and all odd rows contain an even
number of plus signs. Then p must be even. Apply the rules for forming As

Λ and
Bt

Λ in part (A). These rules imply that es ∈ {1, 2} and es+t = 0. Label Λ with
roman numeral “I”. Consider the neutral element x′ defined by ei(x

′) = ei for
i 6= s and es(x

′) = −es . It will correspond to ΛII .

2. case (b) Suppose Λ has some odd rows, and all odd rows contain an even
number of minus signs. Then q must be even. Apply the rules for forming As

Λ

and Bt
Λ in part (A). These rules imply that es = 0 and es+t ∈ {1, 2}. Label Λ

with roman numeral “I”. Consider the neutral element x′ defined by e′i(x) = ei for
i 6= s+ t and e′s+t(x) = −es+t . It will correspond to ΛII .

The proof of Proposition 5.6 uses ideas similar to those in the proof of
Proposition 5.4 and will be omitted.

5.5. so∗(2n). We use the notation of Helgason [10]. g is the space of

2n × 2n complex matrices of the form

(
Z1 Z2

−Z̄2 Z̄1

)
where Z1 and Z2 are com-

plex n × n-matrices, Z1 is skew symmetric and Z2 is Hermitian. (‘ ’ denotes
complex conjugation.) k is the subspace of matrices in g where Z1 and Z2 are
real. (Thus Z2 is symmetric.) The real linear map from k to the complex

n×n matrices given by

(
Z1 Z2

−Z̄2 Z̄1

)
7→ Z1 +

√
−1Z2 is a Lie algebra isomorphism

onto the space of n× n skew Hermitian matrices. Thus k is isomorphic to u(n).

The subspace of matrices in k of the form

(
0 B
−B 0

)
, where B is diagonal, is a

maximal torus t of k . If B = diag(y1, . . . , yn), the linear functional ei (1 ≤ i ≤ n)

on t is defined so that its value on the

(
0 B
−B 0

)
is
√
−1yi .

k can also be realized as follows. Let (·, ·) be the usual symmetric form on
C2n and let

J =

(
0 In
−In 0

)
(4)

where In is the n× n identity matrix. Set V + (resp., V − ) equal to the i (resp.,
−i) eigenspace of J . Then, the bilinear form 〈v, w〉 = (v, w̄) is a Hermitian inner
product on V + , and k = u(V +).

For g = so∗(2n), the nilpotent orbits are parametrized by signed Young
diagrams of size n and any signature in which rows of odd length have their
left most boxes labeled ‘+’.

The neutral element of a nilpotent conjugacy class will be described by
giving its values at the following simple roots of k = u(n) and at the noncompact
root −ψ of g (where ψ = e1 + e2 ):

e1 − e2, e2 − e3, . . . , en−1 − en, and − ψ = −e1 − e2.
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Proposition 5.7. Let Λ be a signed partition. Represent Λ using the notation
of Proposition 5.4. We form a multiset AΛ . Then, arrange the elements of AΛ in
descending order to obtain the integers: e1(x), . . . , en(x).

To form AΛ , we label the signs in each row of Λ with the appropriate
integers and then proceed as follows.

Suppose λ is an even row of Λ. Then it must begin with a non-negative
odd integer m. Suppose m labels a plus sign, then place two copies of the integer
string

m, m− 4, m− 8, . . . , −(m− 2)

in AΛ . If m labels a minus sign, then place two copies of the integer string

m− 2, m− 6, m− 10, . . . , −m

in AΛ .

Now suppose that λ is an odd row and is labelled by the integers

m, m− 2, . . . , 0, −2, . . . −m

then place this entire string in AΛ .

Proof. The argument is similar to that for Proposition 5.8 below and will be
omitted.

5.6. sp(n, R). Let J be the matrix in (4). sp(n, C) is the space of 2n × 2n
complex matrices X such that X>J + JX = 0. We identify sp(n, R)) with
the isomorphic Lie algebra su(n, n) ∩ sp(n, C), where su(n, n) is defined as in
subsection 5.4. (See Chapter VI, section 10 of [12].). Using this identification,
k = sp(n, R)∩u(2n) which is isomorphic to u(n). Let t be the space of matrices:

{B = diag(
√
−1y1, . . . ,

√
−1yn,−

√
−1y1, . . . ,−

√
−1yn)|yi ∈ R}. (5)

Define the linear functionals ej on t by setting ej(B) =
√
−1yj where B is the

diagonal matrix above.

The neutral element of a nilpotent conjugacy class will be described by
giving its values at the following simple roots of k = u(n) and at −ψ (where
ψ = 2e1 ):

e1 − e2, e2 − e3, . . . , en−1 − en, and − ψ = −2e1.

In addition, let V + (resp. V − ) denote the +i (resp., −i) eigenspace of the
matrix J . If {·, ·} is the skew symmetric form on C2n which defines sp(n, C),
then 〈v, w〉 = −{v, Jw} is the standard positive definite skew Hermitian form
on C2n . We will identify k with u(V +), defined relative to the restriction of 〈·, ·〉
to V + .

Nilpotent orbits are parametrized by signed Young diagrams of size 2n and
any signature in which odd length rows appear with even multiplicity and begin
with a ‘+’. Even length rows may begin with ‘+’ or ‘-’.
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Proposition 5.8. Let Λ be a signed partition. Represent Λ using the notation
of Proposition 5.4. We label the signs in each row of Λ with the appropriate
integers. We form a multiset AΛ as follows.

(1) Suppose λ is an even row of Λ. Then it must begin with a non-negative
odd integer m. Suppose m labels a plus sign, then place the integer string

m, m− 4, m− 8, . . . , −(m− 2)

in AΛ . If m labels a minus sign, then place the integer string

m− 2, m− 6, m− 10, . . . , −m

in AΛ .

(2) Suppose that λ is an odd row with integer labelling

m, m− 2, . . . , 2, 0, −2, . . .−m

In this case, the first integer m is even, and labels a plus sign.

Suppose that there are exactly 2c copies of λ in Λ, then place c copies of
the set {m, m− 2, . . . , 2, 0, −2, . . .−m} in AΛ .

Arrange the elements of AΛ in descending order to obtain the integers:
e1(x), . . . , en(x).

Proof. (Sketch) Suppose that λ is an even length row of type (+mj), then
the theory of ‘ab’-diagrams shows that there is an irreducible mj -dimensional a

C
-

submodule W+
j of V with basis: v, e · v, e2 · v, . . . , emj−1 · v for some v ∈ V

with emj−1 · v ∈ V + . We have v ∈ V − , e · v ∈ V + , etc. In addition,

(1){ea · v, eb · v} = 0 if a+ b 6= mj − 1.

(2){ea · v, emj−1−a · v} = (−1)aαmj
,

where αmj
is a nonzero complex number depending on mj alone.

If λ is an even length row of type (−mj) then there is an irreducible mj -
dimensional a

C
-submodule W−

j of V with basis: v , e · v , e2 · v , . . . , emj−1 · v for
some v ∈ V and emj−1 · v ∈ V − . We have v ∈ V + , e · v ∈ V − , etc. In addition,

(1){ea · v, eb · v} = 0 if a+ b 6= mj − 1.

(2){ea · v, emj−1−a · v} = (−1)aβmj
,

where βmj
is a nonzero complex number depending on mj alone.

Since {v, v̄} 6= 0 and mj is even, W+
j and W−

j are stable under complex
conjugation. See the proof of Proposition 2 in [18].

Clearly ea · v is a multiple of emj−1−a · v . Therefore, 〈ea · v, eb · v〉 = 0
unless a = b . Thus, each (+mj), for mj even, contributes mutually orthogonal
(relative to 〈·, ·〉) eigenvectors

emj−3 · v, emj−7 · v, . . . , v

for x with eigenvalues mj − 3, mj − 7, . . . , −(mj − 1) to an eigenbasis of V + .
Similarly each (−mj), for mj even, contributes mutually orthogonal eigenvectors

emj−1 · v, emj−5 · v, . . . , e · v
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for x with eigenvalues mj − 1, mj − 5, . . . , −(mj − 3) to an eigenbasis of V + .

Suppose that λ is an odd length row of type (+mj) in Λ. Such rows occur
in pairs. The theory of ‘ab’-diagrams shows that for each such pair, V contains
a direct sum of two irreducible mj -dimensional a

C
-modules W ′

j and W ′′
j with

respective bases:

v, e · v, e2 · v, . . . , emj−1 · v
w, e · w, e2 · w, . . . , emj−1 · w

where v ∈ V +, e · v ∈ V −, e2 · v ∈ V +, etc. and w ∈ V −, e ·w ∈ V +, e2 ·w ∈ V − ,
etc. Moreover,

(1) {ea · v, eb · v} = 0 = {ea · w, eb · w} for all a and b.

(2) {ea · v, eb · w} = 0 if a+ b 6= mj − 1.

(3) {ea · v, emj−1−a · w} = (−1)aδmj
.

δmj
is a nonzero complex number depending on mj alone. In this case, W ′′

j is
the complex conjugate of W ′

j . Each pair of odd rows (+mj) contributes mutually
orthogonal eigenvectors (relative to 〈·, ·〉) for x :

v, e · w, e2 · v, . . . , emj−2 · w, emj−1 · v

with eigenvalues −(mj − 1), −(mj − 3), . . . , (mj − 1) to an eigenbasis of V + .

The eigenvectors obtained from distinct even rows and distinct pairs of
odd rows of Λ are mutually orthogonal with respect to 〈·, ·〉 . It is clear that
(after normalizing the vectors) steps (1) and (2) of Proposition 5.8 will yield the
eigenvalues of x on an orthonormal eigenbasis of V + . This determines x as an
element of u(V +). The remaining details are left to the reader.

5.7. sp(p, q). We adopt the notation of Helgason [10] (Chapter X, section 2) for
sp(p, q) inside sp(p+ q, C). {·, ·} is the skew symmetric form on C2p+2q which
defines sp(p+q, C). Let Kp, q be the block diagonal matrix diag(−Ip, Iq, −Ip, Iq)
where Ip (resp., Iq ) is the p×p (resp., q×q ) identity matrix. V + and V − denote
the +1 and −1 eigenspaces of Kp, q . sp(p, q) is the space of 2(p+ q)× 2(p+ q)
complex matrices X such that X>Kp, q +Kp, qX̄ = 0. k = sp(p, q) ∩ u(2p+ 2q)
which is isomorphic to sp(p) ⊕ sp(q). (See Chapter X, section 2, Lemma 2.1 in
[10].) Let t be the space of matrices defined as in (5) with n = p+ q . Define the
linear functionals ej, j = 1, . . . , p+ q on t as in subsection 5.

In this case, we choose the following simple system for k :

{e1 − e2, . . . , ep−1 − ep, 2ep} ∪ {ep+1 − ep+2, . . . , ep+q−1 − ep+q, 2ep+q}.

Nilpotents in sp(p, q) are parametrized by signed Young tableaus of signa-
ture (p, q) in which even rows begin with ‘+’.

Proposition 5.9. Let Λ be a signed partition of signature (p, q). Represent
Λ using the notation of Proposition 5.4. We form two multisets of nonnegative
integers: Ap

Λ and Bq
Λ . By arranging the elements of Ap

Λ in descending order,
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we obtain the integers e1(x), . . . , ep(x). By arranging the elements of Bq
Λ in

descending order, we obtain the integers ep+1(x), . . . , ep+q(x).

To obtain Ap
Λ and Bq

Λ , we first label the signs in each row of Λ with the
appropriate integers.

Suppose λ is an even row of Λ. Then it must begin with a non-negative odd
integer m. In this case m labels a plus sign. Place one copy of the integer string

m, m− 2, m− 4, . . . , 1

in Ap
Λ and one copy of the same string in Bq

Λ .

Next suppose that λ is an odd row. We have the integer string:

m, m− 2, . . . , 2, 0, −2, . . .−m

In this case, the first integer m is even, and the row contains m+ 1 integers.

If m is labelled with a plus sign there are two subcases:

(a) m ≡ 0 (mod 4), so m = 4k . Then the integer string

m, m, m− 4, m− 4, . . . , 4, 4, 0

which contains 2k + 1 integers is assigned to Ap
Λ and the integer string

m− 2, m− 2, m− 6, m− 6, . . . , 2, 2

which contains 2k integers is assigned to Bq
Λ . (Thus, if k = 0, no integers are

assigned to Bq
Λ .)

(b) m ≡ 2 (mod 4), so m = 4k + 2. Then the integer string

m, m, m− 4, m− 4, . . . , 2, 2

which contains 2k + 2 integers is assigned to Ap
Λ and the integer string

m− 2, m− 2, m− 6, m− 6, . . . , 4, 4, 0

which contains 2k + 1 integers is assigned to Bq
Λ .

If m is labelled with a minus sign there are two subcases:

(a) m ≡ 0 (mod 4), so m = 4k . Then the integer string

m− 2, m− 2, m− 6, m− 6, . . . , 2, 2

which contains 2k integers is assigned to Ap
Λ and the integer string

m, m, m− 4, m− 4, . . . , 4, 4, 0

which contains 2k + 1 integers is assigned to Bq
Λ .

(b) m ≡ 2 (mod 4), so m = 4k + 2. Then the integer string

m− 2, m− 2, m− 6, m− 6, . . . , 4, 4, 0

which contains 2k + 1 integers is assigned to Ap
Λ and the integer string

m, m, m− 4, m− 4, . . . , 2, 2

which contains 2k + 2 integers is assigned to Bq
Λ .

Proof. One uses V + and V − in a manner similar to that in the proof of
Proposition 5.4. The details are left to the reader.
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6. The spherical nilpotent K
C
-orbits in p

C
for g classical

We will prove the following result in section 8.

Theorem 6.1. If g is a simple real classical Lie algebra then the spheri-
cal nilpotent K

C
-orbits in p

C
are precisely those corresponding to signed par-

titions Λ in the following list. The notation for Λ is as in Proposition 5.4.
(m, k, k1, k2, r, r1, r2 are non negative integers.)

sl(s, R): No part size of Λ exceeds 2.

su∗(2n): No part size of Λ exceeds 2.

su(p, q): Λ is one the following:

(a) (+3)(+2)k1(−2)k2(+1)r1(−1)r2 ;(−3)(+2)k1(−2)k2(+1)r1(−1)r2

(b) (+3)2(+1)r ; (−3)2(−1)r

(c) (+2)k1(−2)k2(+1)r1(−1)r2 .

so(p, q): Λ (after ignoring numerals) is one of the following:

(a) (+3)m(+1)r ; (−3)m(−1)r (m ≤ 2)

(b) (+3)m(+2)k(+1)r1(−1)r2 ; (−3)m(+2)k(+1)r1(−1)r2 (m ≤ 1, k even).

so∗(2n): Λ is (+3)(+1)r or (+2)k1(−2)k2(+1)r .

sp(n, R): No part size of Λ exceeds 2.

sp(p, q): Λ is one of the following:

(a) (+3)(+1)r1(−1)r2 ; (+3)(+2)(+1)r1(−1)r2

(b) (−3)(+1)r1(−1)r2 ; (−3)(+2)(+1)r1(−1)r2

(c) (+2)k(+1)r1(−1)r2 .

Remark 6.2. The argument is case by case. Each algebra is treated in one of
the subsections of section 8.

The following proposition greatly reduces the task of classifying the spher-
ical nilpotent K

C
-orbits in p

C
for g real, classical and simple.

Proposition 6.3. Assume that g is real, classical and simple, and we retain
the notation of section 5. If K

C
· e is a spherical nilpotent orbit, and Λ is the

corresponding signed partition, then |ei(x)| ≤ 2 for all i. That is, no part size
(i.e., row length) of Λ exceeds 3.

Proof. The proof is case by case and depends on Proposition 4.17 and precise
information about the t

C
-weights of the representation of k

C
on p

C
to restrict the

values of the ei(x). We give details only for g = sl(s, R), su∗(2n), su(p, q), and
sp(n, R) .

1. g = sl(s, R). The weights of t
C

in p
C

are of the form ±(ei ± ej) (and
possibly ±ei ) and ±2ei . By Proposition 5.1 we have ei(x) ≥ 0 for all i . Thus
0 ≤ 2ei(x) ≤ 3 by Proposition 4.17. Hence by integrality each ei(x) ≤ 1. By
Proposition 5.1 this means that no part size exceeds 2.

2. g = su∗(2n). p
C

is the representation of k = sp(n) on the irreducible
submodule of

∧2C2n of dimension 2n2 − n − 1. The non zero t
C

weights on p
C

are of the form ±(ei ± ej), 1 ≤ i < j ≤ n . The non zero t
C

weights on k
C

are of
the form ±(ei ± ej), 1 ≤ i < j ≤ n , and ±2ei , 1 ≤ i ≤ n .
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By Proposition 5.3 we have ei(x) ≥ 0 for all i . By Proposition 4.17, the
k
C

-height cannot exceed 4, therefore 0 ≤ ei(x) ≤ 2 for all i . Since the p
C

height
cannot exceed 3, only one ei(x) may equal 2 and the other ei(x) must be 0 or 1.

3. g = su(p, q). The weights of t
C

in p
C

are of the form ±(ei − ej),
1 ≤ i ≤ p , p + 1 ≤ j ≤ p + q . If for some i , ei(x) > 2, then some row of length
at least 4 must occur in Λ. If a row of length 4 occurs, then Λ contains either
(a)‘+ − +− ’ or (b) ‘− + −+’. The corresponding integers are 3, 1,−1,−3. In
either case, by Proposition 5.4, there exists i, j , 1 ≤ i ≤ p , p ≤ j ≤ p + q such
that |ei(x)− ej(x)| = 6. So p

C
(6) 6= 0, contradicting Proposition 4.17. A similar

argument shows that no part size can exceed 4.

4. g = sp(n, R). p
C

is the sum of the symmetric square of the first
fundamental representation of k = u(n) and the symmetric square of the last
fundamental representation of k = u(n). So the t

C
-weights of p

C
have the form

±(ei ± ej), 1 ≤ i, j ≤ n (where i can equal j ). Since p
C

-height cannot exceed 3,
|2ei(x)| ≤ 3 for all i . Since ei(x) is integral this implies |ei(x)| ≤ 1 for all i .

To classify the spherical nilpotent K
C

-orbits in p
C

for g real, classical and
simple we proceed as follows. First, by Proposition 6.3, we need only consider those
signed partitions Λ where no part size exceeds 3. Second, for the corresponding
orbit O = OΛ we apply the criteria (a) and (b) of Corollary 4.13. To check criterion
(a), i.e., whether Kx

C
/K{x, e, f}

C
is spherical: (1) construct kx and k{x, e, f} ; (2)

determine how k{x, e, f} sits inside kx ; and (3) use the results in [14] to check
whether k{x, e, f} is spherical inside kx . If O satisfies criterion (a), we show that
either: (1) O satisfies criterion (b) of Corollary 4.13; or (2) O lies in the closure
of an orbit we have shown to be spherical; or (3! ) the closure of O contains an
orbit which we know is not spherical. (See Proposition 4.11.) These techniques
handle all the Λ with no part size exceeding 3.

7. Structure of kx and k{x, e, f} for special x

7.1. Notation and conventions. In order to test K
C
· e for sphericality we

need to know the structure of kx , the structure of k{x, e, f} and how k{x, e, f} is
contained in kx when the signed partition corresponding to K

C
· e has no part

sizes greater than 3. The reductive components of kx can be found from the
weighted Dynkin diagram of x that can be found from the recipes in section 5..
The structure of g{x, e, f} , and hence k{x, e, f} can be found by applying results in
[24] and [3].

The ‘ab ’-diagram (signed partition) description of K
C
· e allows one to

determine how k{x, e, f} is embedded in kx . This information is summarized below
for each classical simple real algebra other than sl(s, R) and sp(n, R). We will
only sketch the proofs in case g is su(p, q). We use the following conventions in
stating the results.

First, if q is a reductive Lie algebra, then the containment q ⊂ 2q (resp.,
q ⊂ 3q) always refers to the diagonal embedding X 7→ X ⊕ X (resp., X 7→
X⊕X⊕X ). More generally if we have reductive Lie algebras q0 , q1 , and q2 with
q0 ⊂ qi (i = 1, 2). Then, we say that q0 is diagonally embedded in the direct sum
q1⊕ q2 if we have a Lie algebra homorphism q0 → q1⊕ q2 given by X 7→ X ⊕X .

Suppose g is a classical simple real algebra other than sl(s, R) or su∗(2n).
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Let V = V (g), be the complex vector space associated to g in the corresponding
recipe in section 5. In that section subspaces V + and V − were defined for each g .
The notation q+ (resp., q− ) applied to a subalgebra of g indicates that q consists
of linear transformations which preserve the subspace V + (resp., V − ) associated
to the form on V .(See section 5.) In general, if W is a complex (resp. real) vector
space with a positive definite Hermitian (resp. quadratic) form, then u(W ) (resp.
o(W )) denotes the Lie algebra of the unitary (resp. orthogonal) group preserving
the form.

Finally we need

Definition 7.1. Let g be a classical simple real algebra other than sl(s, R)
or su∗(2n). We set V {j} , (j = 1, 2, 3) equal to the sum of the irreducible j -
dimensional a

C
-submodules of V , V+{j} (resp., V−{j}) equal to the sum of the

irreducible j -dimensional a
C

-submodules of V whose highest weight vector (i.e.,
the kernel of the element e) belongs to V + (resp. V − ). If a = 0, ±1, ±2, or ±3,
then V {j, a} denotes the a-eigenspace of x in V {j} . V+{j, a} and V−{j, a}
have similar meanings.

7.2. su∗(2n). Let Λ = 3p 2q 1r . Then

kx = u(2p)⊕ u(2q)⊕ sp(p+ r); k{x, e, f} = sp(p)⊕ sp(q)⊕ sp(r) (6)

with

sp(p)⊕ sp(r) ⊂ u(2p)⊕ sp(p+ r); sp(q) ⊂ u(2q). (7)

sp(p) is embedded diagonally in u(2p)⊕sp(p+r), and sp(r) is embedded naturally
in sp(p+ r).

Lemma 7.2. The embedding sp(p)⊕ sp(r) ⊂ u(2p)⊕ sp(p+ r) in equation (7)
is spherical if and only if p ≤ 1.

Proof. The proof is left to the reader.

7.3. g = su(p, q).

Let Λ = (+3)m1(−3)m2(+2)n1(−2)n2(+1)r1(−1)r2 . Set k̃ = u(p) ⊕ u(q). It

is more convenient to describe the containment k̃{x, e, f} ⊂ k̃x . This is sufficient
since kx (resp., k{x, e, f} ) consists of the trace zero matrices in k̃x (resp., k̃{x, e, f} ).
We have

k̃x = 2u(m1)
+ ⊕ u(n1)

+ ⊕ u(n2)
+ ⊕ u(r1 +m2)

+

⊕ 2u(m2)
− ⊕ u(n1)

− ⊕ u(n2)
− ⊕ u(r2 +m1)

−

k̃{x, e, f} = u(m1)⊕ u(m2)⊕ u(n1)⊕ u(n2)⊕ u(r1)⊕ u(r2)
(8)

with

u(n1) = D(u(n1)
+ ⊕ u(n1)

−); u(n2) = D(u(n2)
+ ⊕ u(n2)

−);

u(m1)⊕ u(r2) ⊂ ⊕(2u(m1)
+ ⊕ u(m1 + r2)

−);

u(m2)⊕ u(r1) ⊂ (2u(m2)
− ⊕ u(m2 + r1)

+).

(9)
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D denotes the diagonal embedding. Note that u(m1) embeds diagonally in
2u(m1)

+ and sits naturally inside u(m1 + r2)
− , while u(r2) sits naturally in-

side u(m1 + r2)
− . u(m2) embeds diagonally in 2u(m2)

− and sits naturally inside
u(m2 + r1)

− , while u(r1) sits naturally inside u(m2 + r1)
− . If r1 = 0, then u(m1)

embeds diagonally in 3 copies of u(m1). If r2 = 0, then u(m2) embeds diagonally
in 3 copies of u(m2).

We will demonstrate the embeddings u(n1) = D(u(n1)
+ ⊕ u(n1)

−) and
u(m1)⊕ u(r2) ⊂ ⊕(2u(m1)

+ ⊕ u(m1 + r2)
−) in (9).

Proof. The form 〈·, ·〉p, q is non degenerate and either positive definite or

negative definite on each of the complex subspaces V±{i, j} . If ζ ∈ k̃x , ζ preserves
the eigenspaces of x and the restriction of ζ to each of these subspaces preserves
the restriction of the form 〈·, ·〉p, q . Thus, ζ corresponds to an element of the
direct sum of the Lie algebras in lines (10) and (11) below:

u(V+{3, 2}), u(V+{3,−2}), u(V−{3, 0}+ V+{1, 0}), u(V+{2, 1}), u(V+{2,−1})
(10)

u(V−{3, 2}), u(V−{3,−2}), u(V+{3, 0}+ V−{1, 0}), u(V−{2, 1}), u(V−{2,−1}).
(11)

Line (10) gives 2u(m1)
+ ⊕ u(m2 + r1)

+ ⊕ u(n1)
+ ⊕ u(n1)

− and line (11) gives
2u(m2)

− ⊕ u(m1 + r2)
− ⊕ u(n2)

− ⊕ u(n1)
+. So we have the first half of (8).

Suppose that ζ ∈ k{x, e, f} . Clearly, the maps e : V±{3, 0} → V∓{3, 2} ,
e2 : V±{3, −2} → V∓{3, 2} , and e : V±{2, −1} → V∓{2, 1} are isomorphisms.
By redefining the restriction of the form 〈·, ·〉p, q on each of the spaces V∓{3, 2} ,
and V∓{2, 1} , we can assume that the maps defined by e and e2 are isometries.
ζ preserves the following complex subspaces: the m1 (resp., m2 ) dimensional
subspace W1 (resp., W ′

1 ) spanned by the vectors v + (e2 · v) and v ∈ V+{3, −2}
(resp., v ∈ V−{3, −2}); and the n1 (resp., n2 ) dimensional subspace W2 (resp.
W ′

2 ) spanned by w + e · w , w ∈ V+{2, −1} (resp., w ∈ V−{2, −1}). Thus,
u(W1) maps into the diagonal of u(V+{3, 2})⊕ u(V+{3, −2}). u(W2) maps into
the diagonal of u(V+{2, 1})⊕ u(V+{2,−1}). But in addition there is a map from
u(W1) into u(V−{3, 0} ⊕ V+{1, 0}) given as follows: T in u(W1) is mapped to
e ◦ T ◦ e−1 in u(V−{3, 0}). Similar arguments apply to W ′

1 and W ′
2 .

Lemma 7.3. Let u(p)⊕u(r) ⊂ 2u(p)⊕u(r+p) be the embedding in the second
line of (9). (a) If p = 1 the embedding is spherical for all r . (b) If p = 2 the
embedding is spherical if and only if r = 0. (c) If p ≥ 3, the embedding is not
spherical.

We leave the proof to the reader.

Corollary 7.4. If m1 ≥ 3 or m2 ≥ 3, then k{x, e, f} ⊂ kx in equation (8) is
not a spherical embedding.

7.4. so(p, q). Let Λ = (+3)m1(−3)m2(+2)n(+1)r1(−1)r2 .

kx = u(m1)
+ ⊕ u(n

2
)+ ⊕ so(m2 + r1)

+ ⊕ u(m2)
− ⊕ u(n

2
)− ⊕ so(m1 + r2)

−

k{x, e, f} = so(m1)⊕ so(m2)⊕ u(
n

2
)⊕ so(r1)⊕ so(r2)

(12)
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where

u(
n

2
) = D(u(

n

2
)+ ⊕ u(n

2
)−);

so(m1)⊕ so(r2) ⊂ u(m1)
+ ⊕ so(m1 + r2)

−;

so(m2)⊕ so(r1) ⊂ u(m2)
− ⊕ so(m2 + r1)

+.

(13)

so(m1) (resp., so(m2)) is embedded diagonally in u(m1)
+ ⊕ so(m1 + r2)

− (resp.,
u(m2)

−⊕ so(m2 + r1)
+ ). so(r2) (resp., so(r1)) is embedded naturally in so(m1 +

r2)
− (resp., so(m1 + r2)

+ ).

Lemma 7.5. (a) If r > 0 and m = 2 or (b) m ≥ 3 the embedding

so(m) ⊕ so(r) ⊂ u(m) ⊕ so(m+ r))

in (13) is not spherical.

We leave the proof to the reader.

Corollary 7.6. If m1 ≥ 3 or m2 ≥ 3, then k{x, e, f} ⊂ kx in equation (12) is
not a spherical embedding.

7.5. so∗(2n). Let Λ = (+3)p(+2)q1(−2)q2(+1)r . Then

kx = 2u(p)⊕ u(p+ r)⊕ u(2q1)⊕ u(2q2)
k{x, e, f} = u(p)⊕ sp(q1)⊕ sp(q2)⊕ u(r).

(14)

with
u(p)⊕ u(r) ⊂ 2u(p)⊕ u(p+ r); sp(qi) ⊂ u(2qi), i = 1, 2

where u(p)⊕ u(r) is embedded in 2u(p)⊕ u(p+ r) as in equation (9).

Lemma 7.7. The containment k{x, e, f} ⊂ kx in equation (14) is spherical
⇐⇒ p ≤ 2.

Proof. This follows from Lemma 7.3.

7.6. sp(p, q).

Let Λ = (+3)m1(−3)m2(+2)n(+1)r1(−1)r2 . Then

kx = u(2m1)
+ ⊕ u(n)+ ⊕ sp(m2 + r1)

+ ⊕ u(2m2)
− ⊕ u(n)− ⊕ sp(m1 + r2)

−

k{x, e, f} = sp(m1)⊕ sp(m2)⊕ u(n)⊕ sp(r1)⊕ sp(r2)
(15)

where

u(n) = D(u(n)+ ⊕ u(n)−);

sp(m1)⊕ sp(r2) ⊂ u(2m1)
+ ⊕ sp(m1 + r2)

−;

sp(m2)⊕ sp(r1) ⊂ u(2m2)
− ⊕ sp(m2 + r1)

+

sp(m1) (resp., sp(m2)) is embedded diagonally in u(2m1)
+⊕ sp(m1 + r2)

− (resp.,
u(2m2)

−⊕sp(m2 +r1)
+ ). sp(r2) (resp., sp(r1)) is embedded naturally in sp(m1 +

r2)
− (resp., sp(m2 + r1)

+ ).

Lemma 7.8. If m1 ≥ 2 or m2 ≥ 2, then k{x, e, f} ⊂ kx in equation (15) is not
a spherical embedding.

Proof. This follows from Lemma 7.2.
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8. Proof of Theorem 6.1

8.1. sl(s, R). By the proof of Proposition 6.3 for sl(s, R), if K
C
·e is spherical

then no part size of the corresponding partition Λ exceeds 3. Indeed we have the
following.

Proposition 8.1. (g = sl(s, R)). K
C
· e is spherical if and only if in the

corresponding partition Λ no part size exceeds 2.

Proof. The proof of Proposition 6.3 implies that no part size in Λ can exceed 2.
Corollary 4.16 implies that if no part size exceeds 2, then K

C
· e is spherical.

8.2. su∗(2n). By the proof of the su∗(2n) case of Proposition 6.3 the signed
partition for a spherical nilpotent K

C
-orbit for su∗(2n) has at most one part of

size 3. We now show that in fact no part size can exceed 2.

Lemma 8.2. Suppose g = su∗(2n), and Λ = 3p2q1r is the partition of n
corresponding to the orbit K

C
· e. If p > 0 then K

C
· e is not spherical.

Proof. From the discussion preceding this lemma, if Λ is spherical then p = 0
or 1. Suppose p = 1. By Proposition 5.3, we have that:

e1(x) = 2 = e2(x); e3(x) = 1 = . . . = e2q+2(x); e2q+3(x) = 0 = . . . = en(x).

Since e1 + e2 is a weight of t
C

on p
C

, p
C

-height(e) > 3. So by Proposition 4.17,
K

C
· e is not spherical.

It follows from the previous lemma and Corollary 4.15, that

Proposition 8.3. If g = su∗(2n), then the spherical K
C
-nilpotent orbits are

exactly those corresponding to partitions of n with part sizes not exceeding 2.

8.3. su(p, q). Proposition 6.3 implies the following.

Proposition 8.4. If K
C
· e is a spherical nilpotent orbit of su(p, q) then the

corresponding signed partition has the form

Λ = (+3)m1(−3)m2(+2)n1(−2)n2(+1)r1(−1)r2 , (16)

where mi , ni and ri (i = 1, 2) are non negative integers.

Proposition 8.5. If g = su(p, q), K
C
· e is a spherical nilpotent orbit in p

C

and Λ is the corresponding signed partition then K
C
·e is spherical if and only if Λ

has one of the following forms (where n1, n2, r1, r2, r are non-negative integers):

(a) (+3)(+2)n1(−2)n2(+1)r1(−1)r2 ; (−3)(+2)n1(−2)n2(+1)r1(−1)r2

(b) (+3)2(+1)r ; (−3)2(−1)r

(c) (+2)n1(−2)n2(+1)r1(−1)r2 .

We prove the proposition in a series of lemmas.
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Lemma 8.6. (g = su(p, q)) Let the Λ be the signed partition in equation (16)
corresponding to the nilpotent orbit K

C
· e. If m1 ≥ 1 and m2 ≥ 1. Then K

C
· e

is not spherical.

Proof. Λ has p
C

-height exceeding 3 so the result follows from Proposition
4.17.

Lemma 8.7. (g = su(p, q)) Let the Λ be the signed partition in equation (16)
corresponding to the nilpotent orbit K

C
· e. If m1 ≥ 3 or m2 ≥ 3, then K

C
· e is

not spherical.

Proof. This follows from Lemma 7.4 and Corollary 4.13.

Lemma 8.8. (g = su(p, q)) Let the signed partition corresponding to the
nilpotent orbit K

C
·e be Λ = (+2)n1(−2)n2(+1)r1(−1)r2 . Then K

C
·e is spherical.

Proof. This follows from Corollary 4.15.

Lemma 8.9. (g = su(p, q)) Let the Λ be the signed partition in equation (16)
corresponding to the nilpotent orbit K

C
· e, where m1 or m2 is positive. Then Λ

is spherical if and only if one of the following is true:

(a) m1 = 1, m2 = 0 .

(a)′ m2 = 1, m1 = 0 .

(b) m1 = 2, m2 = n1 = n2 = r2 = 0

(b)′ m2 = 2, m1 = n1 = n2 = r1 = 0

Proof. By Lemma 8.6 and Lemma 8.7, Λ spherical implies that either m1 ∈
{1, 2} and m2 = 0 or m2 ∈ {1, 2} and m1 = 0.

(a) We first consider the case m1 = 1, m2 = 0. Then p = n1 + n2 + r1 + 2
and q = n1 + n2 + r2 + 1. After applying Proposition 5.4 we find that ej(x) = 0
for n1 +2 ≤ j ≤ n1 + r1 +1 and p+n2 +1 ≤ j ≤ p+n2 + r2 +1, and the non-zero
ej(x) are:

e1(x) = 2, ej(x) = 1 (2 ≤ j ≤ n1 + 1), ej(x) = −1 (n1 + r1 + 2 ≤ j ≤ p− 1),

ep(x) = −2, ej(x) = 1 (p+ 1 ≤ j ≤ p+ n2), ej(x) = −1 (p+ n2 + r2 + 2 ≤ j).

By equation (8)

kx = s(2u(1)+ ⊕ u(n1)
+ ⊕ u(n2)

+ ⊕ u(r1)+ ⊕ u(n2)
− ⊕ u(n1)

− ⊕ u(r2 + 1)−)

k{x, e, f} = s(u(1)⊕ u(n1)⊕ u(n2)⊕ u(r1)⊕ u(r2)).
(17)

The containment relations following equation (8) imply that K{x, e, f}
C

is spherical
in Kx

C
. In this case sR = s(u(1)⊕ t(n1)⊕ t(n2)⊕ u(r1)⊕ u(r2 − 1)) where t(n1)

and t(n2) are maximal tori inside the subalgebras u(n1) and u(n2) respectively
inside the parentheses in the expression for k{x, e, f} in equation (17 ).
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If ∆(Z) denotes the t
C

-weights of Z , we also have:

∆(Z) = {e1 − ep+n2+r2+2, . . . , e1 − ep+q; ep+1 − ep+q, . . . , ep+n2 − ep+q}.

Let V1 denote the span of the eigenvectors in Z with the first n1 weights in ∆(Z)
and let V2 denote the span of the eigenvectors with last n2 weights in ∆(Z).
One can show that for i = 1, 2, Vi is an irreducible representation of u(ni) of
dimension ni . It is known that the maximal torus of U(ni) has a dense orbit on
Vi . It follows that B(S) has a dense orbit on Z .

(b) Finally, we will consider the case m1 = 2, m2 = 0. (m1 = 0, m2 = 2 is
similar.)

We have Λ = (+3)2(+2)n1(−2)n2(+1)r1(−1)r2 . From equation (8) we get

kx = s(2u(2)+ ⊕ u(n1)
+ ⊕ u(n2)

+ ⊕ u(r1)+ ⊕ u(n2)
− ⊕ u(n1)

− ⊕ u(r2 + 2)−)

k{x, e, f} = s(u(2)⊕ u(n1)⊕ u(n2)⊕ u(r1)⊕ u(r2)).

By Lemma 7.3, Kx
C
/K{x, e, f}

C
is spherical if and only if r2 = 0. It follows that

Remark 8.10. If r2 > 0 and n1, n2, r1 are arbitrary, the following nilpotent
orbit is not spherical:

Λ = (+3)2(+2)n1(−2)n2(+1)r1(−1)r2 .

From now on assume that r2 = 0.

By applying Proposition 5.4 to Λ = (+3)2(+2)n1(−2)n2(+1)r1 , we obtain
the values of the ei(x). Using these values we find ∆(Z). We obtain the decom-
position ∆(Z) = ∆1 ∪∆2 ∪∆3 ∪∆4 where

∆1 = {e1 − en1+2n2+r1+7, . . . , e1 − e2n1+2n2+r1+6},
∆2 = {e2 − en1+2n2+r1+7, . . . , e2 − e2n1+2n2+r1+6},
∆3 = {en1+n2+r1+5 − en1+n2+r1+3, . . . , en1+2n2+r1+4 − en1+n2+r1+3},
∆4 = {en1+n2+r1+5 − en1+n2+r1+4, . . . , en1+2n2+r1+4 − en1+n2+r1+4}.

We also have

dimC Z = 2n1 + 2n2

sR = s(2u(1)⊕ t(n1)⊕ t(n2)⊕ u(r1))

u(r1) acts trivially on Z . Therefore if B(S) has an open orbit on Z , we must
have n1 + n2 + 1 ≥ 2n1 + 2n2 , i.e., n1 + n2 ≤ 1. But if n1 > 0 or n2 > 0,
Λ = (+3)2(+2)n1(−2)n2(+1)r1 contains either (+3)2(+2)n1−1(−2)n2(+1)r1+1(−1)
or (+3)2(+2)n1(−2)n2−1(+1)r1+1(−1) in its closure (by Theorem 2 of [19]). Neither
of the latter nilpotent orbits is spherical by Remark 8.10. Therefore Λ is not
spherical when n1 > 0 or n2 > 0. If n1 + n2 = 0, then Z = 0 and we conclude
that Λ = (+3)2(+1)r1 is spherical. We have shown that cases (a) and (b) of
our proposition are the only possibilities when m1 > 0. Likewise by considering
Λ = (−3)2(+2)n1(−2)n2(+1)r1(−1)r2 and applying similar arguments we can show
that cases (a)′ and (b)′ are the only ones possible when m2 > 0.

Proposition 8.5 follows from Propositions 8.4, Lemmas 8.6, 8.7, 8.8, and 8.9.

8.4. so(p, q). Proposition 6.3 implies the following.
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Proposition 8.11. (g = so(p, q)) If K
C
·e is spherical, then the corresponding

signed partition Λ has the form

Λ = (+3)m1(−3)m2(+2)n(+1)r1(−1)r2 ,

where m1, m2, n, r1, r2 are non-negative integers.

For convenience, in the proofs below we consider only nilpotents whose
signed partitions are without numerals or have roman numeral “I”. Nilpotents
whosed signed partitions have roman numeral “II” are handled by remark 4.19.

Lemma 8.12. (g = so(p, q)) If K
C
· e is the orbit corresponding to any of the

following signed partitions with or without numerals then K
C
· e is spherical:

(a) Λ = (+3)m(+2)n(+1)r1(−1)r2 , 1 ≥ m ≥ 0, n ≥ 0, r1, r2 ≥ 0;

(a)′ Λ = (−3)m(+2)n(+1)r1(−1)r2 , 1 ≥ m ≥ 0, n ≥ 0, r1, r2 ≥ 0;

(b) Λ = (+3)2(+1)r1 , r1 ≥ 0;

(c) Λ = (−3)2(−1)r2 , r2 ≥ 0.

Proof. For (a), we use an argument similar to that for part (a) of Lemma 8.9.
For (b) and (c), we use an argument similar to that for part (b) of Lemma 8.9.

Lemma 8.13. (g = so(p, q)) If K
C
· e corresponds to any of the following

signed partitions with or without numerals then K
C
· e is not spherical:

(a) Λ = (+3)2(+1)r1(−1)r2 , r1 ≥ 0, r2 ≥ 1;

(b) Λ = (−3)2(+1)r1(−1)r2 , r1 ≥ 1, r2 ≥ 0;

(c) Λ = (+3)p1(−3)p2(+2)n(+1)r1(−1)r2 , p1 ≥ 1, p2 ≥ 1;

Proof. (a) Here g = so(r1 +4, r2 +2). By Proposition 5.6: e1(x) = 2 = e2(x),
and ej(x) = 0 for all other j . If {x, e, f} is the corresponding triple, then:

kx = u(2)+ ⊕ so(r1)+ ⊕ so(r2 + 2)−; k{x, e, f} = so(2)⊕ so(r1)⊕ so(r2).

By Lemma 7.5 Kx
C
/ K{x, e, f}

C
is spherical if and only if r2 = 0. (b) is proven

similarly.

(c) This follows from Proposition 4.17.

Lemma 8.14. (g = so(p, q)) If K
C
· e corresponds to any of the following

signed partitions with or without numerals then K
C
· e is not spherical:

(a) Λ = (+3)m(+2)n(+1)r1(−1)r2 , for m ≥ 2, and n ≥ 2 (n even).

(a)′ Λ = (−3)m(+2)n(+1)r1(−1)r2 , for m ≥ 2, and n ≥ 2 (n even).

(b) Λ = (+3)m(+1)r1(−1)r2 , for m ≥ 3.

(b)′ Λ = (−3)m(+1)r1(−1)r2 , for m ≥ 3.

Proof. Assume that Λ has no numeral attached. In case (a) or (a) ′ , if n ≥ 2
then the closure of K

C
· e contains an orbit K

C
· e′ where K

C
· e′ is of type (a) or

(b) in Lemma 8.13. (See [9].) Now apply Proposition 4.11. The assertions about
(b) and (b) ′ follow from Corollary 7.6.
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Proposition 8.15. If g = so(p, q), then K
C
· e is spherical ⇐⇒ the

corresponding signed partition (after ignoring numerals) is of the form:

(a) Λ = (+3)m(+1)r1 , m ≤ 2, r1 ≥ 0;

(b) Λ = (−3)m(−1)r2 , m ≤ 2, r2 ≥ 0;

(c) Λ = (+3)m(+2)n(+1)r1(−1)r2 , 1 ≥ m ≥ 0, n ≥ 0 (n even), r1 ≥ 0, r2 ≥ 0;

(d) Λ = (−3)m(+2)n(+1)r1(−1)r2 , 1 ≥ m ≥ 0, n ≥ 0 (n even), r1 ≥ 0, r2 ≥ 0.

Proof. The result follows from Proposition 8.11 and Lemmas 8.12, 8.13, and
8.14.

8.5. so∗(2n). Proposition 6.3 implies the following.

Proposition 8.16. (g = so∗(2n)) If K
C
·e is spherical, then the corresponding

signed partition Λ has the form

Λ = (+3)p(+2)q1(−2)q2(+1)r,

where p, q1, q2, r are non-negative integers.

Lemma 8.17. (g = so∗(2n)) Let Λ be the signed partition for K
C
· e. (a) For

all integers r ≥ 0, if Λ = (+3)(+1)r , then K
C
·e is spherical. (b) For all integers,

q1 ≥ 0, q2 ≥ 0, r ≥ 0, if Λ = (+2)q1(−2)q2(+1)r , then K
C
· e is spherical.

Proof. For (a) first apply Proposition 5.7 to obtain (with n = r + 3) to
conclude that e1(x) = 2, en(x) = −2, and ej(x) = 0 for 1 < j < n . By (14)
kx = 2u(1)⊕ u(r + 1) and k{x, e, f} = u(1)⊕ u(r). By Lemma 7.7 Kx

C
/ K{x, e, f}

C

is spherical. Since Z = 0, Λ is spherical by Corollary 4.13. (b) follows from
Corollary 4.15.

Lemma 8.18. (g = so∗(2n)) For all integers p ≥ 2, q1 ≥ 0, q2 ≥ 0, and
r ≥ 0, if Λ = (+3)p (+2)q1 (−2)q2 (+1)r is the signed partition for K

C
· e, then

K
C
· e is not spherical.

Proof. Applying Proposition 5.7, we find that e1(x) = e2(x) = 2. Since e1 +e2
is a weight of t

C
on p

C
, we can apply Proposition 4.17.

Lemma 8.19. (g = so∗(2n)) For all integers q1 ≥ 1, q2 ≥ 1, r ≥ 0, if the
signed partition for K

C
· e is

Λ = (+3)(+2)q1(−2)q2(+1)r,

then K
C
· e is not spherical.
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Proof. In this case n = 2q1 + 2q2 + r + 3. If x is the neutral element
corresponding to Λ = (+3)(+2)q1(−2)q2(+1)r , then:

kx = u(2q1)⊕ u(2q2)⊕ u(r + 1)

k{x, e, f} = u(1)⊕ u(r)⊕ sp(q1)⊕ sp(q2).

Kx
C
/ K{x, e, f}

C
is spherical. Applying Proposition 5.7, we find that e2q1+2(x) =

. . . = e2q1+r+2(x) = 0 and that

∆(Z) = {e1 + e2, . . . , e1 + e2q1+1,−(en + e2q1+r+3), . . . ,−(en + en−1)}.

Using an argument similar to that for part (b) of Lemma 8.9, it can be shown that
B(S) does not have a dense orbit in Z .

Proposition 8.20. If g = so∗(2n), then the nilpotent e ∈ p
C

is spherical
⇐⇒ the corresponding signed partition is of the form (1) Λ = (+3)(+1)r or (2)
Λ = (+2)q1(−2)q2(+1)r .

Proof. Proposition 8.16 and Lemmas 8.17–8.19.

8.6. sp(n, R).

Proposition 8.21. If g = sp(n, R), the spherical nilpotent K
C

nilpotent
orbits in p

C
are precisely those corresponding to signed partitions with part sizes

not exceeding 2. That is, Λ corresponds to a spherical nilpotent orbit if and only
if Λ = (+2)q1(−2)q21r for nonnegative integers q1 , q2 , and r .

Proof. Corollary 4.16 and the proof of Proposition 6.3.

8.7. sp(p, q). Proposition 6.3 implies the following.

Proposition 8.22. (g = sp(p, q)) If K
C
·e is spherical, then the corresponding

signed partition Λ has the form

Λ = (+3)m1(−3)m2(+2)n(+1)r1(−1)r2 , (18)

where m1, ,m2, n, r1, r2 are non-negative integers.

If Λ is as in (18), then by applying Proposition 5.9 we find that ej(x) = 0
for 2m1 + n+ 1 ≤ j ≤ p and p+ 2m2 + n+ 1 ≤ j ≤ p+ q and the non-zero ej(x)
are:

e1(x) = 2 = . . . = e2m1(x), e2m1+1(x) = 1 = . . . = e2m1+n(x),

ep+1(x) = 2 = . . . = ep+2m2(x), ep+2m2+1(x) = 1 = . . . = ep+2m2+n(x),
(19)

where p = 2m1 +m2 + n+ r1 and q = m1 + 2m2 + n+ r2 .

Corollary 8.23. (g = sp(p, q)) If the nilpotent orbit K
C
· e is spherical

and corresponds to the signed partition Λ in equation (18) , then either, (a)
m1 = 0 = m2 = 0, (b) m1 = 1, m2 = 0, or (c) m1 = 0, m2 = 1.
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Proof. By Lemma 7.8 and Corolary 4.13, we must have m1 ≤ 1 and m2 ≤ 1.
If m1 = m2 = 1, then apply Proposition 4.17.

Lemma 8.24. (g = sp(p, q)) Let Λ be the signed partition corresponding to
K

C
· e.

(a) If Λ = (+2)n(+1)r1(−1)r2 , where n ≥ 0, r1 ≥ 0, r2 ≥ 0, then K
C
· e

is spherical.

(b) If Λ = (+3)(+2)n(+1)r1(−1)r2 or Λ = (−3)(+2)n(+1)r1(−1)r2 , where
0 ≤ n ≤ 1 and r1, r2 ≥ 0, then K

C
· e is spherical.

(c) If Λ = (+3)(+2)n(+1)r1(−1)r2 or Λ = (−3)(+2)n(+1)r1(−1)r2 , where
n > 1 and r1, r2 ≥ 0, then K

C
· e is not spherical.

Proof. (a) follows from Corollary 4.15.

For (b) and (c), first note that if Λ = (+3)(+2)n(+1)r1(−1)r2 , then p =
n+ r1 + 2, and q = n+ r2 + 1.(15) implies that:

kx = u(2)+ ⊕ u(n)+ ⊕ sp(r1)+ ⊕ u(n)− ⊕ sp(r2 + 1)−

k{x, e, f} = sp(1)⊕ u(n)⊕ sp(r1)⊕ sp(r2).

By Lemma 7.2, Kx
C
/ K{x, e, f}

C
is spherical.

Now suppose that n = 0. Equation (19) implies that 0 ≤ ej(x)+ ek(x) ≤ 2
for all 1 ≤ j ≤ p and p + 1 ≤ k ≤ p + q . Therefore, Z = 0. Since Z = 0, K

C
· e

is spherical by Corollary 4.13. The proof of sphericality for Λ = (−3)(+1)r1(−1)r2

is similar.

If n > 0, an argument similar to that in part (b) of Lemma 8.9 completes
the proof.

Proposition 8.25. If g = sp(p, q), then K
C
· e is spherical ⇐⇒ the

corresponding signed partition is one of the following (for n ≥ 0, r1 ≥ 0, r2 ≥ 0):

(a) Λ = (+3)(+1)r1(−1)r2 or (+3)(+2)(+1)r1(−1)r2 ;

(b) Λ = (−3)(+1)r1(−1)r2 or (−3)(+2)(+1)r1(−1)r2 ;

(c) Λ = (+2)n(+1)r1(−1)r2 .

Proof. Combine Proposition 8.22, Corollary 8.23, and Lemma 8.24.

9. The spherical nilpotent K
C
-orbits in p

C
for g exceptional

The following conventions hold throughout this section. We will use the notation
of Helgason [10] to describe the simple real exceptional algebra g . We use the
tables of D– okovic in [4] and [5] to describe the K

C
-nilpotent conjugacy classes of

the exceptional simple algebras and for information about the neutral ement x ,
kx , and k{x, e, f} associated to each conjugacy class.

Theorem 9.1. If g is a simple real exceptional Lie algebra then the spherical
nilpotent K

C
-orbits in p

C
are the following ones as listed in [4] and [5].

EI : classes 1, 2 and 3.
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EII : classes 1, 2, 3, 4 and 5.

EIII : classes 1, 2, 3, 4, 5, 6, 7, 8, and 9.

EIV : class 1.

EV : classes 1, 2, 3, 4, 5, 8 and 9.

EV I : classes 1, 2, 3, 4, and 5.

EV II : classes: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12.

EV III : classes 1, 2, 3 and 6.

EIX : classes 1, 2, 3, 4, and 5.

FI : classes 1, 2, 3, 4, and 5.

FII : classes 1 and 2.

GI : classes 1 and 2.

The proof is case by case. Detailed arguments will only be given for g not equal
to EIV , FI , FII or GI .

9.1. EI (k = sp(4)). By Remark 4.18 and Proposition 4.17, the K
C

classes 1, 2
and 3 are the only ones that could be spherical. Classes 1 and 2 must be spherical
by Corollary 4.15.

For class 3, kx = su(3) ⊕ 2u(1), k{x, e, f} = su(2) ⊕ u(1). Therefore,
Kx

C
/K{x, e, f}

C
is spherical. sR = 2u(1). Z = p

C
(3) and dimZ = 1. By

constructing sR and Z one shows directly that sR acts nontrivially on Z . Since
S0 = B(S), this shows that B(S) has a dense orbit on Z . So class 3 is spherical.

9.2. EII (k = su(6) ⊕ su(2)). By Remark 4.18 and Proposition 4.17, the K
C

classes 1-7, are the only ones that could be spherical. Classes 1, 2 and 3 are
spherical by Corollary 4.15.

For class 6, kx = su(6)⊕ u(1) and k{x, e, f} = 2su(3). Kx
C
/K{x, e, f}

C
is not

spherical. For class 7, kx = su(4)⊕ su(2)⊕ 2u(1) and k{x, e, f} = 2su(2)⊕ 2u(1).
By explicit construction of kx and k{x, e, f} one finds that k{x, e, f} is contained in
the su(4)⊕2u(1) component of kx hence Kx

C
/K{x, e, f}

C
is not spherical. It follows

that neither class 6 nor class 7 is spherical.

Finally consider classes 4 and 5. For class 4, kx = 2su(3) ⊕ 2u(1), and
k{x, e, f} = su(3)⊕ u(1); for class 5, kx = 2su(2)⊕ 4u(1), and k{x, e, f} = su(2)⊕
2u(1). By Lemma 4.14, k{x, e, f} is a symmetric subalgebra of kx , so condition
(a) of Corollary 4.13 is satisfied by class 4 and class 5. For class 4 and class
5, sR = 3u(1). One verifies directly that in each case sR acts non trivially
on Z = p

C
(3) which is one dimensional. Therefore, B(S), the complex torus

corresponding to s
C

, has a dense orbit on Z . So condition (b) of Corollary 4.13
is satisfied and both classes are spherical.

9.3. EIII (k = so(10) ⊕ R). By Remark 4.18 and Proposition 4.17, the K
C

classes 1-9, are the only ones that could be spherical. In fact, classes 1, 2, 3, 4 and
5 are spherical since the height of each of the corresponding G

C
classes is 2.

For class 9, kx = so(8) ⊕ 2u(1), and k{x, e, f} = (G2)−14 . So K{x, e, f}
C

is
spherical in Kx

C
. Since Z = 0 , class 9 is spherical.

By Figure 5 in [6], the closure of class 9 contains the closure of classes 6,
7 and 8 (and classes 1-5). Therefore, the spherical K

C
nilpotent classes of EIII

are classes 1–9.

9.4. EV (k = su(8)). By Remark 4.18 and Proposition 4.17, the K
C

classes
1-6, 8 and 9 are the only ones that could be spherical. Classes 1, 2, 3 and 4 are
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spherical because each of the corresponding G
C

classes has height 2.

For class 6, we have kx = su(6) ⊕ 2u(1) and k{x, e, f} = 2su(3). So
Kx

C
/K{x, e, f}

C
is not spherical.

For class 8 and for class 9, we have kx = 2su(3) ⊕ 3u(1) and k{x, e, f} =
su(3)⊕ u(1). Class 8 and class 9 are conjugate under Gθ

C
.

Consider class 8. By constructing kx and k{x, e, f} one checks that the su(3)
summand of k{x, e, f} is embedded diagonally in the 2su(3) summand of kx and
that Kx

C
/K{x, e, f}

C
is spherical. We also have sR = 3u(1), a maximal torus in

k{x, e, f} . Now s
C

is a complex three dimensional torus. One can find a basis for
Z consisting of noncompact root vectors for a maximal torus of k that contains
sR . Using this information, one verifies that [s

C
, Z] = Z . So B(S) = S0 has a

dense orbit on Z , making class 8 spherical. By Remark 4.19, class 9 is spherical.

Figure 6 in [8] shows that class 5 lies in the closure of each of the following
classes: 8 and 9. Their sphericality implies that of class 5.

9.5. EV I (k = so(12)⊕ su(2)). By Remark 4.18 and Proposition 4.17, the K
C

classes 1–6, 8 and 9 are the only ones that could be spherical. In fact, classes 1, 2
and 3 are spherical since the height of each of the corresponding G

C
classes is 2.

Since Z = 0 for classes 6 and 8, it suffices to check whether K{x, e, f}
C

is
spherical in Kx

C
. By [14], for n ≥ 3, su(n) is only spherical in so(2n) when

n is odd. For class 6, kx = so(12) ⊕ u(1), and k{x, e, f} = su(6). For class 8,
kx = so(8)⊕su(2)⊕u(1)⊕u(1), and k{x, e, f} = s(u(4)⊕u(2)) = su(4)⊕su(2)⊕u(1).
Thus for classes 6 and 8 sphericality fails. Since class 8 is not spherical and the
closure of class 9 contains class 8 (by results in [7]), class 9 can’t be spherical.

For class 4, kx = su(6) ⊕ 2u(1), and k{x, e, f} = sp(3) ⊕ u(1). For class 5,
kx = su(4) ⊕ su(2) ⊕ 3u(1), and k{x, e, f} = sp(2) ⊕ su(2) ⊕ u(1). So for class 4
and class 5, K{x, e, f}

C
is spherical in Kx

C
. In each case, sR = 3su(2) ⊕ u(1) and

sR contains a maximal torus of k{x, e, f} . One checks directly that this torus acts
non trivially on the one dimensional space Z . This implies that B(S) has an open
orbit on Z . Thus classes 4 and 5 are spherical.

9.6. EV II (k = e6⊕R). By Remark 4.18 and Proposition 4.17, the K
C

classes
1–12 are the only ones that could be spherical. In fact, classes 1–9 are spherical
since the height of each of the corresponding G

C
classes = 2.

Since Z = 0 for class 10, it suffices to check whether K{x, e, f}
C

is spherical

in Kx
C

. We have kx = su(6)⊕2u(1), and k{x, e, f} = su(5)⊕u(1). By constructing
these subalgebras, one checks that sphericality holds for the corresponding pair of
reductive groups. Thus class 10 is spherical.

For classes 11 and 12, kx = su(4)⊕ su(2)⊕ 3u(1), and k{x, e, f} = su(4)⊕
u(1) = u(4), so K{x, e, f}

C
is spherical in Kx

C
. Consider either class 11 or class

12. In each case Z = p
C
(3). sR = 4u(1), a maximal torus in k{x, e, f}

C
. A. Noel

constructs this maximal torus in [17]. One verifies directly that the intersection of
this maximal torus with su(4) does not act trivially on Z . This shows that p

C
(3)

(which has dimension 4) is not a trivial su(4)-module. Since, the dimension of the
smallest non-trivial su(4) module is 4 this shows that p

C
(3) is a 4 dimensional

irreducible representation of u(4). It follows that B(S) = S0 has a dense open
orbit on p

C
(3) . This establishes the sphericality of classes 11 and 12.
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9.7. EV III (k = so(16)). By Remark 4.18 and Proposition 4.17, the K
C

classes
1–4 and 6 are the only ones that could be spherical. In fact classes 1 and 2 are
spherical since each has height = 2.

For class 6, k{x, e, f} = u(4) is diagonally embedded in kx = u(4) ⊕ u(4),
so that K{x, e, f}

C
is spherical inside Kx

C
. sR = 4u(1), and an argument similar to

that for classes 11 and 12 in EV II shows that B(S) has a dense orbit on p
C
(3).

So class 6 is spherical. Since class 3 lies in the closure of class 6, class 3 is also
spherical.

For class 4, kx = so(12) ⊕ su(2) ⊕ u(1), and k{x, e, f} = su(6) ⊕ su(2).
Therefore, so K{x, e, f}

C
is not spherical in Kx

C
. Hence class 4 is not spherical.

9.8. EIX (k = e7 ⊕ su(2)). By Remark 4.18 and Proposition 4.17, the K
C

classes 1–6, 8 and 9 are the only ones that could be spherical. In fact classes 1, 2,
and 3 are spherical because they have height equal to 2.

Since Z = 0 for classes 6 and 8 for sphericality, it suffices to check whether
K{x, e, f}

C
is spherical in Kx

C
. For class 6, kx = (E7)−133 ⊕ u(1), and k{x, e, f} =

(E6)−78 , so sphericality fails. For class 8, kx = so(12)⊕su(2)⊕u(1), and k{x, e, f} =
so(10) ⊕ u(1). One verifies that k{x, e, f} is contained in the so(12) ⊕ su(2)
component of kx . But K{x, e, f}

C
is not spherical in Kx

C
. Therefore, class 8 is

not spherical. The closure of class 9 contains class 8. Hence by Proposition 4.11,
class 9 is not spherical.

For class 4, kx = E6(−78) ⊕ 2u(1), and k{x, e, f} = F4(−52) ⊕ u(1). So
sphericality holds for the reductive groups. sR = so(8) ⊕ u(1). One checks
that the maximal torus in S acts non-trivially on the one dimensional space Z
which establishes the sphericality of class 4. A similar argument establishes the
sphericality of class 5.
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