Journal of Lie Theory Vol. 15, No. 1, pp. 125–134 (2005) |
|
Extensions of Super Lie AlgebrasDmitri Alekseevsky, Peter W. Michor, and W. A. F. RuppertD. V. AlekseevskyDept. of Mathematics, University of Hull, Cottingham Road, Hull, HU6 7RX, England d.v.alekseevsky@maths.hull.ac.uk, P. W. Michor Institut für Mathematik Universität Wien Nordbergstraße 15 A-1090 Wien, Austria also Erwin Schrödinger Institut für Mathematische Physik Boltzmanngasse 9 A-1090 Wien, Austria Peter.Michor@esi.ac.at, and W. A. F. Ruppert Institut für Mathematik Universität für Bodenkultur, Gregor Mendelstrasse 33, A-1180 Wien, Austria ruppert@edv1.boku.ac.at Abstract: We study (non-abelian) extensions of a super Lie algebra and identify a cohomological obstruction to the existence, parallel to the known one for Lie algebras. An analogy to the setting of covariant exterior derivatives, curvature, and the Bianchi identity in differential geometry is shown. \endgraf Classification (MSC2000): Primary 17B05, 17B56 Full text of the article: (for faster download, first choose a mirror)
Electronic fulltext finalized on: 26 Aug 2004. This page was last modified: 4 Jun 2010.
© 2004 Heldermann Verlag
|