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Abstract. The Cartan - Dirac classification of spinors into types is gener-

alized to infinite dimensions. The main conclusion is that, in the statistical

interpretation where such spinors are functions on Z∞2 , any real or quater-
nionic structure involves switching zeroes and ones. There results a maze of

equivalence classes of each type. Some examples are shown in L2(T) . The

classification of spinors leads to a parametrization of certain non-associative
algebras introduced speculatively by Kaplansky.
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1. Introduction

Let H be a separable real prehilbert space and C = C(H) the Clifford algebra
of H , i.e., the quotient of the tensor algebra TR(H) of H by the ideal generated
by the elements of the form

h⊗ h′ + h′ ⊗ h + 2 < h, h′ >

with h, h′ ∈ H.
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ba Ciencia.
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In two little known papers from 1954, G̊arding and Wightman parame-
trized (up to equivalence) the unitary representations of the so-called Canonical
Commutation and Anticommutation Relations. The first essentially amounts to
parametrizing the unitary representations of the infinite-dimensional Heisenberg
group H , while the second amounts to doing the same for C . Their work,
based on original examples by von Neumann [15], show that both have “a true
maze” of equivalence classes of irreducibles, in striking contrast to the finite case.
Abusing language, one says that Stone-von Neumann fails in infinite dimensions
in both cases. The standard representations appearing in QFT constitute a
special class characterizable by the existence of vacua – vectors annihilated by
all the annihilation operators. One calls these Bose-Fock in the case of H , or,
abusing again, Fermi-Fock, in the case of C , or simply Fock representations.
According to ordinary use in finite dimensions, the unitary representations of C
will be called here complex spinor structures or simply spinors, and the particular
realization derived from the construction of G̊arding and Wightman, GW spinors.

In this article we determine the type of these spinors and deduce some
conclusions. Recall that a real (resp., quaternionic) structure on a complex
Hilbert space is an antilinear, norm-preserving operator S (resp., Q) such that
S2 = I (resp., Q2 = −I ). As in the finite dimensional case, a complex repre-
sentation of C is said to be of real, quaternionic or complex type, according to
whether it commutes with an S , a Q , or neither, conditions that are mutually
exclusive when the representation is irreducible.

The question of type is basic in finite dimensions, where its solution was
found apparently first by Cartan and rediscovered later by Jordan, Wigner and
Dirac. The fact is that every (complex) representation of C(Rn) is a multiple
of a unique irreducible one (for n 6≡ 3, 7 mod(8)), or a sum of multiples of
two unique irreducible ones (for n ≡ 3, 7 mod(8)). The irreducible ones are of
real type for n ≡ 0, 6, of complex type for n ≡ 1, 5 and of quaternionic type
for n ≡ 2, 3, 4 [5][6][14]. In the physics literature S and Q are called charge-
conjugation operators and the irreducible spinors of real type Majorana spinors.

In infinite dimensions we find mazes of inequivalent irreducible spinors of
each of the three types. The key condition for a spin-invariant real or quaternionic
structure to exist is that in their dyadic representation (cf. §2), changing all 0’s
to 1’s and all 1’s to 0’s must be a meaningful operation among spinors. This
rules out all representations common in physics: Fock, anti-Fock, Canonical.

Because the questions of reducibility and equivalence of the GW repre-
sentations are not completely resolved -indeed, they may be essentially unsolvable
in general, the GW parametrization works better in practice as a source of ex-
amples than as an instrument of proof. Our results are an exception to this rule:
the GW parametrization is well fit to describe the breakdown into types and
yields a neat answer. We now mention some specific consequences.

The spinors of real type yield the orthogonal representations of C in real
Hilbert spaces. If S is a spin-invariant real structure then {v : Sv = v} is an
invariant real form which, by restriction, provides a real representation of C and
every real representation must arise in this way.

When dimR H = 1, 3, 7, the real irreducible representations of C have
dimensions 2, 4, 8, respectively, and are in correspondence with the classical divi-
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sion algebras [2]. For this, the property of C having a module of dimension equal
to one plus the number of generators, is crucial. Of course, this property holds
when dimH = ∞ too, so it is natural to search for infinite-dimensional analogs
of quaternions and octonions. This possibility was considered by Kaplansky in
the fifties [13], who ruled out strict analogs and proposed weaker alternatives.
Although he seemed doubtful of their existence as well, examples were found in
the nineties [7][17]. We give here a parametrization of all such algebras up to
equivalence, concluding that there are mazes of inequivalent ones.

There are families of representations of C on L2(T) or L2(R), of real or
quaternionic type which seem to have analytic content. We discuss two operators,

D =
∞∑

k=1

ak∂k, D′ =
∞∑

k=1

a∗k∂k

where ak , a∗k , are the creation and annihilation operators associated to the spin
structure and the ∂k are certain dyadic difference operators. Notably, for the
standard Fermi-Fock representations they diverge off the vacuum. But for the
spinor structures in L2(T) they have a dense domain and relate neatly with the
real and quaternionic structures.

In the statistical interpretation of the creation and annihilation opera-
tors, a real or quaternionic structure necessarily empties all occupied states and
fills all non-occupied ones. This may be an unlikely feature for particles or fields,
but not necessarily for other systems modelled with 0’s and 1’s.

We thank H. Araki, J. Baez, A. Jaffe, A. Kirillov, F. Ricci, A. Rodŕıguez
Palacio and J. Vargas, for their helpful advise.

2. G̊arding-Wightman spinors

Let
X = Z∞2

be the set of sequences x = (x1, x2, . . . ) of 0’s and 1’s, and ∆ ⊂ X the subset
consisting of sequences with only finitely many 1’s. Then X is an abelian group
under componentwise addition modulo 2 and ∆ is the subgroup generated by
the sequences δk , where δk

j is the Kronecker symbol. The product topology on
X is compact and is generated by the sets

Xk = {x : xk = 1}, X ′
k = {x : xk = 0},

which, therefore, also generate the canonical σ -algebra of Borel sets in X . Let

χk, χ′k,

denote the characteristic functions of the sets Xk, X ′
k, respectively.

We will realize all the complex spinor structures on L2 spaces of C -
valued functions on X or direct integrals thereof. As a motivation, let us realize
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the standard finite even-dimensional spinors in this manner. For each positive
integer N consider the vector space

VN = {f : ZN
2 → C}.

Then, clearly, dim VN = 2N and the operators

(2.1)
Jkf(x) = −i(−1)x1+...+xk−1 f(x+δk)

J ′kf(x) = (−1)x1+...+xk f(x+δk)

where 1 ≤ k ≤ N , x ∈ ZN
2 , addition is modulo 2 and the δk is the standard

basis of ZN
2 , define an irreducible complex representation of the Clifford algebra

C(R2N ) -the unique one modulo equivalence. The unitarity is relative to the
natural L2 inner product in VN , which in turn is associated to the measure on
ZN

2 where each point has measure 1.
When N = ∞ , in order to reach all equivalence classes one must allow

for more general measures on the group X = Z∞2 and replace C -valued functions
for sections of appropriate fiber spaces over X . Three natural but very different
measures on X that generalize the finite case are:

The Haar measure of X , µX .
The Fermi-Fock measure on X , µ∆ , supported on the discrete set ∆

with each point having measure 1. More generally,
The Canonical measures, µxo+∆ , supported on translates of ∆.

The first is invariant under all translations in X while the second is invariant
only under those from ∆. It is µ∆ that leads to the representations that appear
most in QFT, however implicitly. It ignores all the points x with infinitely many
xi = 1, or “occupied states”, on the basis that the total number of fermions must
be finite. In any case, (2.1) define irreducible representations of C on L2(X, µX)
and on L2(X, µxo+∆) of very different nature.

The next theorem is G̊arding and Wightman’s main result in [9], rephra-
sed to fit our setting. A sketch of its proof is included in an appendix.

Recall that two measures λ, µ on the same Borel algebra of sets are said
to be equivalent if they have the same sets of measure zero. Equivalently, if there
exists locally integrable functions, denoted by dλ/dµ and dµ/dλ , such that for
any measurable set A , these Radon-Nikodym derivatives satisfy

λ(A) =
∫

A

dλ

dµ
dµ, µ(A) =

∫
A

dµ

dλ
dλ.

µ is said to be quasi-invariant by ∆ if µ is invariant under translations by
elements of ∆.

Now, consider triples
(µ,V, C)

where
• µ is a positive Borel measure on X , quasi-invariant under translations by ∆.
• V = {Vx}x∈X is a family of complex Hilbert spaces, invariant under transla-
tions by ∆ and such that the function x 7→ ν(x) = dim Vx is measurable.



Galina, Kaplan, and Saal 461

• C = {ck : k ∈ N} is a family of unitary operators ck(x) : Vx → Vx+δk = Vx

depending measurably on x and satisfying

(2.2)
c∗k(x) = ck(x+δk)

ck(x)cl(x+δk) = cl(x)ck(x+δl)

for all δ ∈ ∆ and almost all x ∈ X .
We will often write (µ, ν, C) instead of (µ,V, C), in view of the fact that

changing V unitarily will yield equivalent representations. Given such triple,
consider the Hilbert space

V = V(µ,ν,C) =
∫ ⊕

X

Vx dµ(x)

and define operators on V by

(2.3)

Jkf(x) = −i(−1)x1+...+xk−1

√
dµ(x+δk)

dµ(x)
ck(x) f(x+δk)

J ′kf(x) = (−1)x1+...+xk

√
dµ(x+δk)

dµ(x)
ck(x) f(x+δk)

where an f ∈ V is regarded as an assignment x 7→ f(x) ∈ Vx and all sums are
modulo 2.

In the real Hilbert space H , we fix an orthogonal basis with a given
pairing, {hk, h′k} , and define an R -linear

π = π(µ,ν,C) : H → EndC(V )

by
π(hk) = Jk, π(h′k) = J ′k.

Theorem 2.4. The operators J1, J
′
1, J2, J

′
2, . . . are mutually anticommuting or-

thogonal complex structures and, therefore, π = π(µ,ν,C) extends to a unitary
representation of C on V . Conversely, every spinor structure on a separable
complex Hilbert space is unitarily equivalent to some π(µ,ν,C) .

The proof of the theorem is in the appendix.

Remarks. (a) G̊arding and Wightman give a recursive formula for all possible
systems of C ’s, hence Theorem (2.4) gives an effective parametrization of all sep-
arable Clifford modules. Although the matters of equivalence and irreducibility
are not resolved, a lot is known in interesting special cases [4],[9],[8].

(b) The relation between the operators Jk, J ′k and the operators ak, a∗k
of the Canonical Conmutation Relations:

ak =
1
2

(J ′k + iJk) a∗k =
1
2

(−J ′k + iJk)
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(c) When ν(x) = 1, Vx can be identified with C , the direct integral
becomes

V = L2(X, µ)

and the ck(x)’s are just complex numbers of modulus one depending measurably
in x . The Fermi-Fock representation corresponds to the triple (µ∆, 1, {1}).
Von Neumann’s first examples of non-Fock representations, were special cases
of infinite tensor products, which in our notation are the V(µ,1,C⊗) , with

c⊗k (x) = ω
(−1)xk

k ,

the ωk being fixed complex numbers of absolute value 1. In particular,

V(µX ,1,{1})

with µX the Haar measure, is one such. As we shall see, this has a natural
realization on L2 of the circle.

(d) While V(µX ,1,{1}) and V(µ∆,1,{1}) are given by the same formulae
as those of the finite-dimensional case, namely (2.1), they are inequivalent: in
the first, the characteristic function of the point 0 = (0, 0, . . . ) gives a non-
zero vector annihilated by all the operators a∗k , while the second has no such
“vacuum” vector.

(e) Although the GW representations can be discussed more intrinsically
in terms of the “Clifford-Weyl systems” of [3], we prefer to keep {hk, h′k} as an
implicit parameter, to be in tune with previous publications. One must keep in
mind that this is not just a notational issue: different basis may yield inequivalent
representations (cf. Berezin’s notion of G -equivalence [4]). We will return to this
issue in §5.

For further results on the G̊arding-Wightman parametrization, see [4][8].

3. Real and Quaternionic structures

If U is a real module over C , then C⊗U is a complex module over C⊗C , which
comes with the C-invariant decomposition

C⊗ U = U ⊕R iU.

U is an invariant real form of C⊗U . Conversely, any module over C⊗C with an
invariant real form determines a real module over C simply by restriction. Hence,
parametrizing the invariant real forms of the G̊arding-Wightman modules up to
unitary equivalence, is the same as parametrizing the real representations of C
up to orthogonal equivalence.

The first problem is equivalent to that of determining the C -antilinear
operators

S : V → V
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which commute with the action of C and such that

(3.1) S2 = 1, ||Sf || = ||f ||.

The invariant real form associated to S is then {v ∈ V : Sv = v} and S
becomes complex-conjugation relative to it.

The map
x 7→ x̌ = x+1

where the sum is modulo 2 and 1 is the point with ones in all slots, is an
involution of the set X , which switches all zeroes to ones and viceversa. There
are induced involutions on subsets of X and on functions and measures on X :

Ǎ = {x̌ : x ∈ A}, f̌(x) = f(x̌), µ̌(A) = µ(Ǎ).

Theorem 3.2. π(µ,ν,C) admits an invariant real form if and only if the measures
µ and µ̌ are equivalent, ν̌(x) = ν(x) for almost all x ∈ X and there exist a
measurable family of antilinear operators

r(x) : Vx → Vx̌
∼= Vx

that preserve norms and satisfy

(3.3)
r(x)r(x̌) = 1

r(x)ck(x̌) = (−1)kck(x)r(x+δk)

for all k ∈ N and almost all x ∈ X .

Proof. If µ and µ̌ are equivalent, ν = ν̌ a.e. and r(x) : Hx → Hx is as stated,
then the operator

Sf(x) =

√
dµ̌(x)
dµ(x)

r(x)f(x̌)

is an invariant real structure in V (µ, ν, C). Indeed, it is clearly antilinear, it is
norm-preserving because both r(x) and

(3.4) Tf(x) =

√
dµ̌(x)
dµ(x)

f(x̌)

are so, and

S2f(x) =

√
dµ̌(x)
dµ(x)

r(x)Sf(x̌) = r(x)r(x̌)f(x) = f(x)
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showing that S is involutive. As for invariance,

SJkf(x) =

=

√
dµ̌(x)
dµ(x)

r(x)(Jkf)(x̌)

= i(−1)x̌1+...+x̌k−1

√
dµ(x̌)
dµ(x)

√
dµ(x̌+δk)

dµ(x̌)
r(x) ck(x̌)f(x̌+δk)

= i(−1)x1+...+xk−1+k−1

√
dµ(x̌+δk)

dµ(x)
(−1)kck(x)r(x+δk)f(x̌+δk)

= −i(−1)x1+...+xk−1 ck(x)r(x+δk)

√
dµ(x̌+δk)

dµ(x)
f(x̌+δk)

= −i(−1)x1+...+xk−1 ck(x)

√
dµ(x+δk)

dµ(x)
r(x+δk)

(√
dµ̌(x+δk)
dµ(x+δk)

f((x+δk )̌ )
)

= −i(−1)x1+...+xk−1 ck(x)

√
dµ(x+δk)

dµ(x)
Sf(x+δk)

= JkSf(x)

Finally, since J ′kf(x) = i(−1)xkJkf(x) and S(ρkf) = −ρkSf for ρk(x) =
(−1)xk , it follows that SJ ′k = J ′kS as well.

Conversely, let S be an arbitrary C-invariant, antilinear operator on
V =

∫
X

Vx dµ(x). Let Nk , N ′
k be the operators on V defined by

Nk = a∗kak N ′
k = aka∗k

As it can be seen in the proof of Theorem 2.4 (see the Appendix the details)
Nk and N ′

k are projections on V , moreover they act as multiplication by the
characteristic functions of the sets Xk and X ′

k = X̌k , respectively. Since
2ak = J ′k + iJk and 2a∗k = −J ′k + iJk , one obtains the relations

(3.5) Sa∗k = −akS, Sak = −a∗kS, SNk = N ′
kS.

If Lφ denotes the operator of multiplication by the C -valued bounded measur-
able function φ , the third equation in (3.5) implies that

(3.6) SLφ = Lφ̌S

for φ = χk or φ = χ′k . Since the Xk generate the σ -algebra of Borel sets of
X , (3.6) must hold for any measurable characteristic function and, a fortiori, for
any essentially bounded function φ . As a consequence,

(3.7) Supp(Sf) = (Supp(f))̌

for all f ∈ V . Indeed, if F = Supp(f), then Supp(Sf) = Supp(S(χF f)) =
Supp(χF̌ S(f)) ⊂ F̌ ; since S is an involution, the equality follows.
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In order to see that µ and µ̌ are equivalent, let E ⊂ X be a measurable
set contained in some En = {x : ν(x) = n} . We can identify all Vx , x ∈ En ,
with a fixed V(n) . Let u be a unit vector of V(n) and define f ∈

∫ ⊕
X

Vx dµ(x) by

f(x) =
{

χE(x)u x ∈ En

0 x 6∈ En,

On one hand,

‖f‖2 =
∫

X

(f(x), f(x))dµ(x) =
∫

E

(f(x), f(x))dµ(x) =
∫

E

(u, u)dµ(x) = µ(E).

On the other, because S preserves norms and Sf(x) is supported in Ě ,

‖f‖2 = ‖Sf‖2 =
∫

X

(Sf(x), Sf(x))dµ(x) =
∫

Ě

(Sf(x), Sf(x))dµ(x).

Therefore µ(Ě) = 0 ⇒ µ(E) = 0 for any E contained in some En . The last
restriction can now be dropped and the implication be reversed, so µ and µ̌ are
indeed equivalent.

To show that ν(x) = ν(x̌) for almost all x , suppose the contrary:
∃n ≤ ∞ , m < n and E ⊂ En such that µ(E) > 0 and Ě ⊂ Em . Since µ
and µ̌ are equivalent, µ(Ě) > 0. As before, identify all Vx , x ∈ En , with a
fixed V(n) . Let {vi} be an orthonormal basis of V(n) and F ⊂ E a measurable
subset. Then

fi(x) = χF (x)vi

are elements mutually orthogonal in V . If we let rV be V regarded as a real
Hilbert space with the inner product Re(u, v), the fi remain orthogonal in rV .
Since S is antilinear and preserves norm,

(Sfi, Sfj) = (fi, fj) = 0.

for i 6= j . Because of (3.7), the Sfj must vanish off F̌ , and we can conclude
that ∫

F

Re(Sfi(x̌), Sfj(x̌))dµ̌(x) =
∫

F̌

Re(Sfi(x), Sfj(x))dµ(x) = 0

Since µ is equivalent to µ̌ and F is arbitrary, this implies that

Re(Sfi(x), Sfj(x)) = 0

almost everywhere in Ě . On the other hand,

µ̌(F ) =
∫

F

|fi(x)|2dµ(x) =
∫

X

|fi(x)|2dµ(x)

= ‖fi‖2 = ‖Sfi‖2 =
∫

F̌

|Sfi(x)|2dµ(x)
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shows that the |Sfj(x)| cannot vanish identically. We conclude that {Sfi(x)}n
i=1

is a linearly independent set in Vx for almost all x in Ě ⊂ Em , which is a
contradiction since m < n .

We may now assume that Vx = Vx̌ , so the operator

Tf(x) =

√
dµ̌(x)
dµ(x)

f(x̌)

is well defined. It is C -linear, unitary and satisfies the relations

(3.8) T 2 = I, TNk = N ′
kT

The first is clear while the second follows from

TNkf(x) =

√
dµ̌(x)
dµ(x)

Nkf(x̌) =

√
dµ̌(x)
dµ(x)

χk(x̌)f(x̌) =

√
dµ̌(x)
dµ(x)

χ′k(x)f(x̌)

= N ′
kTf(x)

The product
R = ST

is then antilinear, bounded and commutes with all the Nk and N ′
k . This implies

that R acts fiberwise, as an antilinear operator-valued function r(x). In fact,
if R would be C -linear, rather than C -antilinear operators, this follows from
the Spectral Theorem. In our case we argue as follows: the condition that R
commutes with the Nk and N ′

k implies

RLφ = LφR,

for any essentially bounded real-valued function φ . On each En we can assume,
as before, that all rVx are the same rV(n) , so it is enough to define r(x)v for
v ∈ rV(n) . Identifying v with χEn

(x)v , Rv is an element of∫
En

rVx dµ(x) ⊂ rV

and, therefore representable as a Vx -valued function x 7→ (Rv)(x). Now

r(x)v := (Rv)(x)

defines our desired operator-valued function. Clearly, r(x) is antilinear, preserves
norms, and satisfies

r(x)f(x) = (Rf)(x) = (STf)(x)

for all f ∈ V . Because T is an involution, this is equivalent to r(x)(Tf)(x) =
Sf(x), yielding a pointwise formula for S :

(3.9) Sf(x) =

√
dµ̌(x)
dµ(x)

r(x)f(x̌).
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Since

f(x) = S2f(x) =

√
dµ̌(x)
dµ(x)

r(x)(

√
dµ(x)
dµ(x̌)

r(x̌)(f(x))) = r(x)r(x̌)f(x)

we obtain r(x)r(x̌) = I for almost all x ∈ X . Because S commutes with the
Jk, J ′k, themselves,

r(x)(−1)x1+...+xk−1+k−1ck(x̌) = (−1)x1+...+xk−1+1ck(x)r(x+δk),

must hold a.e.; the calculation is straightforward.

All this applies to the finite, even case as well. A measure µ on ZN
2 is

quasi-invariant if and only if every point has non-zero mass and any two such
measures are equivalent. Take µ({x}) = 1, ν(x) = 1 and ck(x) = I for all
x ∈ ZN

2 . From (3.3) one deduces that

r(1) = (−1)
N(N+1)

2 r(0).

Assuming, as we may, that r(0) is the standard conjugation on C , we see that
V splits over R if and only if N(N + 1)/2 is an even integer, i.e., for

N ≡ 0, 3 (mod 4)

as we mentioned earlier.
Assume now that V is infinite dimensional and separable. The axiom

of choice implies that there are always plenty of solutions r(x) to the equations
(3.3), whatever the data. Indeed, let X̃ = X/ ∼ , where x ∼ y if and only if
y = x̌ or x − y ∈ ∆. Choose an element xp ∈ p from each class p ∈ X̃ and
define r(xp) in an arbitrary manner. Then

r(x̌p) = r(xp)−1, r(xp+δ) = (−1)kck(xp)∗r(xp)ck(x̌p)

defines r(x) for all x . However, most of these solutions -and often all those
associated to a given C , will be non-measurable.

Corollary 3.10. If µ is discrete and V is irreducible over C , then it is irre-
ducible over R . In particular, this is the case for the Fermi-Fock representations.

Proof. If µ is discrete and V(µ,ν,C) is irreducible, then µ is supported in some
set of the form xo+∆ [8]. Then µ̌ is supported in (xo+∆)̌, which is disjoint
from xo+∆ and, therefore, cannot be equivalent to µ .

The proof above is based on results from [8],[9], involving relations among
the ergodicity of the measure µ , the nature of its support and the irreducibility
of π(µ,ν,C) . In the next result ergodicity is used in the statement, so we recall
that µ is ergodic under translations by ∆ if any ∆-invariant set has measure
zero or its complement has measure zero. This is equivalent to asking that every
essentially bounded measurable function invariant under translations by ∆ (in
the sense that f(x+δ) = f(x) ∀δ ∈ ∆ and a.a. x ∈ X ) is constant (i.e., f(x) = c
for some c and a.a. x ∈ X ). In our case, both the Haar measure µX and the
discrete measures µxo+∆ are ergodic for elementary reasons. Worth mentioning
here is the fact that if µ is quasi-invariant, discrete and ergodic, then

µ ∼= µxo+∆

for some xo ∈ X [8]. This is used in the last proof.
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Corollary 3.11. Suppose that µ is ergodic and that dµ(x+δk)/dµ(x) is bounded
away from zero and infinity as a function of x and k . Then V (µ, 1, {1})
is irreducible over R . More generally, this is true of all the tensor product
representations V (µ, 1, C⊗) .

Proof. When ν = 1, the operator-valued function r(x) of the Theorem is com-
plex valued and (3.3) implies r(x+δk) = (−1)kr(x). By hypothesis, ∃C > 0
such that

1
C

<
∣∣∣dµ̌(x+δk)

dµ(x)

∣∣∣ < C

for all k and almost all X . For any measurable essentially bounded function
like r(x), the difference r(x+δk) − r(x) must go to zero as k → ∞ , at least in
measure (see e.g., Theorem 4 in [8]). This is incompatible with that identity and
r being invertible.

We conclude that V(µ,1,{1}) has no invariant real forms. That the same
is true for tensor product representations follows by a similar argument, using
that for ck(x) = ω

(−1)xk

k ,

ck(x̌) = ω
(−1)xk+1

k = ck(x)−1

so that (3.3) becomes

r(x+δk) = (−1)kω
2(−1)xk

k r(x).

The irreducibility over R follows from the irreducibility over C , which in turn is
implied by the ergodicity of µ . Indeed, any complex linear operator commuting
with C must commute with the projection operators Nk and, therefore, consist
of multiplication by a function f(x). That the operator commutes with the
J ’s themselves implies, as in the proof of the Theorem, that f(x) is invariant
under translation by all elements of the subgroup ∆. By ergodicity, f must be
constant.

We next give a “normal form” for spinors of real type, in the case when
the multiplicities ν(x) are 1. In this case one may set

Vx = C

for all x and the direct integral defining V is an ordinary space of complex-valued
square-integrable functions:

V = V(µ,V,C) = L2(X, µ).

Like any space of complex-valued functions, this has a canonical real structure,
namely

VR = L2(X, µ)R = {f ∈ V : f(x) ∈ R a.e.}

for which the corresponding S -operator is

(Rf)(x) = f(x).
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As we will see, this cannot remain invariant under a non-trivial spin structure.
Consider instead the real structure

(3.12) Sof(x) = Tf(x) =

√
dµ(x̌)
dµ(x)

f(x̌).

whose space of real vectors can be written as

(3.13) V R = L2(X, µ)R = {f ∈ V : f(x)
√

dµ(x) = f(x̌)
√

dµ(x̌)}.

Proposition 3.14. π(µ,1,C) leaves L2(X, µ)R invariant if and only if

ck(x̌) = (−1)kck(x).

In such case, r(x)f(x) = Rf(x) = f(x) .

Proof. For any π(µ,ν,C)

JkTf(x) = −i(−1)x1+...+xk−1

√
dµ(x+δk)

dµ(x)
ck(x) Tf(x+δk)

= −i(−1)x1+...+xk−1

√
dµ(x+δk)

dµ(x)
ck(x)

√
dµ̌(x+δk)
dµ(x+δk)

f(x̌+δk)

= −i(−1)x1+...+xk−1

√
dµ(x̌+δk)

dµ(x)
ck(x) f(x̌+δk)

so

TJkTf(x) =

√
dµ(x̌)
dµ(x)

JkTf(x̌)

=

√
dµ(x̌)
dµ(x)

(−i)(−1)x̌1+...+x̌k−1

√
dµ(ˇ̌x+δk)

dµ(x̌)
ck(x̌)f(ˇ̌x+δk)

= −i(−1)x1+...+xk−1

√
dµ(x+δk)

dµ(x)
(−1)k+1ck(x̌)f(x+δk)

= J̃kf(x)

with
c̃k(x) = (−1)k+1ck(x̌).

Now, JkSo = JkRT = JkTR = T J̃kR , since T is real. On the other hand,
looking at the formula for Jk , it is clear that RJkR = Ĵk, with ĉk(x) = −ck(x).
Therefore

SoJkSo = RTJkTR = J ′k

with
c′k(x) = ˆ̃ck(x) = −c̃k(x) = −(−1)k+1ck(x̌) = (−1)kck(x̌).

In particular, So commutes with the Jk iff c′k = ck , which translates into the
condition of the Theorem.
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Remark. The assumption ν = 1 can be dropped altogether, provided we mea-
surably fix a real structure σ(x) on each Vx , invariant under translations by
∆ and checking, and replace R and bars for σ(x); (3.14) remains true. For the
next result, however, the restriction ν = 1, which is a property of the equivalence
class of a representation, seems essential.

Theorem 3.15. Every pair (π, S) consisting of a unitary representation of C
with ν = 1 , together with an invariant real structure, is unitarily equivalent to a
GW representation on V = L2(X, µ) , having L2(X, µ)R as invariant real form
and multipliers satisfying ck(x̌) = (−1)kck(x).

Proof. Realize π as a GW representation π(µ,1,C) . By (3.2), µ is equivalent
to µ̌ , the derivative dµ(x̌)/dµ(x) exists a.e. and the operator T of (3.4) is a
well defined unitary operator on V . Let r(x) be the operator-valued function
associated to (π, S),

r(x)(f(x)) = (STf)(x).

Since each r(x) is antilinear and norm preserving, R ◦ r(x) is a linear, unitary
operator on Vx = C and therefore has the form

R ◦ r(x) = ω(x)I

for some measurable ω : X → T . We are using ◦ to denote composition of
operators when there is some risk of viewing r(x) itself as an ordinary C -valued
function.

Because R is just plain conjugation and r(x) is antilinear, we also have

r(x) ◦R = ω(x)I.

Because r(x)r(x̌) = 1, one has

R ◦ r(x̌) = R ◦ r(x)−1 = R ◦ (r(x) ◦R ◦R)−1 = R ◦ (ω(x)I ◦R)−1 = ω(x)I

so that
ω(x̌) = ω(x)

for almost all x . For −π < θ ≤ π set
√

eiθ = ei θ
2 . Then

u(x) =
√

ω(x)

is a measurable T-valued function satisfying

u(x)2 = ω(x), u(x̌) = u(x).

The operator
Uf(x) := u(x)f(x)
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is unitary from V to V and

USU−1f(x) = u(x)r(x)TU−1f(x) = u(x)r(x)

√
dµ(x̌)
dµ(x̌)

u(x̌)−1f(x̌)

=

√
dµ(x̌)
dµ(x̌)

u(x)r(x)Ru(x)Rf(x̌) =

√
dµ(x̌)
dµ(x̌)

Ru(x)ω(x)u(x)f(x̌)

=

√
dµ(x̌)
dµ(x̌)

u(x)u(x) u(x)u(x)Rf(x̌) =

√
dµ(x̌)
dµ(x̌)

Rf(x̌) = RTf(x)

= Sof(x),

so that S = U−1SoU.

Corollary 3.16. If a real form of L2(X, µ) is invariant under some spinor
structure, then it is of the form UL2(X, µ)RU−1 for some unitary U .

Remark. If π is irreducible then S is unique modulo sign. This follows from
Shur’s Lemma applied to the intertwining operator S1S2 , which is C -linear.

The “simplest” infinite-dimensional Majorana spinors are those in
V (µX , 1, {ρk}) with µX being the Haar measure of X and the ρk given by the
dyadic Rademacher functions

ρ2`(x) = 1, ρ4`+1(x) = (−1)x4`+3 , ρ4`+3(x) = (−1)x4`+1 .

Theorem 3.17. π(µX ,1,{ρk}) is irreducible over C , but

L2(X)R = {f ∈ L2(X) : f(x̌) = f(x)}

is an invariant real form. The real representation obtained by restriction to
L2(X)R is irreducible and does not arise from any representation of C ⊗ C by
restriction of the scalars.

Proof. The irreducibility over C follows from the ergodicity of the Haar measure,
exactly as in the proof of Corollary (3.10).

It is straightforward to check that the functions ck satisfy (2.2) and the
conditions of Theorem (3.14), so the corresponding Jk, J ′k, must leave the real
form V R invariant. Of course, this can be deduced by direct calculation as well.
V R must be irreducible under C , since any closed invariant subspace generates
a closed C⊗ C-invariant subspace in V .

Finally, suppose that the representation of C in V R could be extended to
one of C⊗C in V R itself. Denote by J the operation representing multiplication
by

√
−1: J is an orthogonal complex structure in V R commuting with C . Its

unique C -linear extension to all of V = V R ⊕ iV R is unitary and commutes
with all the Jk, J ′k . As we have already mentioned, this implies that J is given
pointwise, by an operator-valued measurable function: (Jf)(x) = j(x)f(x). In
the present case, j(x) is complex valued. Since j(x)2 = −1, we can write it as
j(x) = ε(x)i for some measurable ε : X → {±1} . The condition for J to leave
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invariant the real form V R and to commute with the Clifford action amount to,
respectively,

ε(x̌) = −ε(x), ε(x+δk) = ε(x)

for almost all x and all k . The second equation implies that ε is actually
constant on each ∆-equivalence class. By ergodicity of µX , ε must then be
constant almost everywhere, contradicting the first equation.

Corollary 3.18. Assume µ ∼= µ̌ . Then
(a) L2(X, µ)R is a real form of L2(X, µ) which is not unitarily conjugate

to L2(X, µ)R
(b) If π is a spin representation on L2(X, µ) , then RπR is another,

which is not unitarily equivalent to π .

Proof. Let {Jk, J ′k} represent a spinor structure on L2(X, µ), which we can take
in its GW form (2.3) with parameters C . Let Rck(x) denote the multipliers for
the representation RJkR . By inspection, RJkR = Jk implies Rck(x) = −ck(x),
while RJ ′kR = J ′k implies Rck(x) = ck(x), which is impossible since |ck(x)| = 1.

For more on the nature of the spinors that split over R , see §5.
Now we will analyze the quaternionic structures on spinors. Recall that

a quaternionic structure in a C-module V is a C -antilinear operator

Q : V → V

that preserves norm, commutes with the action of C and satisfies

Q2 = −I.

Theorem 3.19. π(µ,ν,C) admits an invariant quaternionic structure if and only
if µ and µ̌ are equivalent, ν̌ = ν almost everywhere, and there exist a measurable
family of operators

q(x) : Vx → Vx̌
∼= Vx

which are C-antilinear, preserve the norm and satisfy

(3.20)
q(x)q(x̌) = −I,

q(x)ck(x̌) = (−1)kck(x)q(x+δk)

for all k ∈ N and almost all x ∈ X .

Proof. The argument exactly parallels that of Theorem 3.2, with the equation
r(x)r(x̌) = I replaced for q(x)q(x̌) = −I , as it fits the condition Q2 = −I . We
will not repeat it here, but will highlight the pointwise formula obtained for the
quaternionic structure, for later reference:

(3.21) Qf(x) = q(x)Tf(x)

where T is as in (3.4).
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Corollary 3.22. If µ is discrete and π(µ,ν,C) is irreducible over C , then it
admits no invariant quaternionic structure. In particular, the Fermi-Fock repre-
sentations are of complex type.

Proof. As we mentioned in (3.9), discreteness of µ and irreducibility of π(µ,ν,C)
implies that µ is supported in some translate xo+∆. Since (xo+∆)̌∩ (xo+∆) =
Ø, µ cannot be equivalent to µ̌ . π(µ,ν,C) cannot admit then any real or quater-
nionic structures and, therefore, is of complex type.

There are families of representations π(µ,ν,C) whose µ and ν are consis-
tent with checking, so that the operator T is a well defined unitary involution,
but whose ck(x) do not transform properly. Indeed, this is the case for π(µX ,1,{1})
and, more generally,

Corollary 3.23. The tensor product representations π(µX ,1,C⊗) are all of com-
plex type.

Proof. The Haar measure is ergodic and satisfies the condition of (3.10). Hence
the same argument as in the proof of that Corollary shows that there are no
measurable solutions q(x) to the equations (3.20).

Most interesting are the quaternionic structures invariant under a spinor
structure with ν = 1, i.e., when the fibers Vx have real dimension two and,
therefore, do not admit any quaternionic structures themselves. To describe
them, recall that in this case V = L2(X, µ), which has the space of real-valued
functions as a (non-invariant) real form; let, as in §2, denote the conjugation
with respect to it by v 7→ v̄ .

Proposition 3.24. If µ̌ ∼= µ , ν = 1 and for a.a. x

c1(x) = −c1(x̌), ck(x) = (−1)k+1ck(x̌) ∀k ≥ 2,

then

Q1f(x) = (−1)x1

√
dµ(x̌)
dµ(x)

f(x̌)

is a quaternionic structure in L2(X, µ) invariant by π(µ,1,C) . In that case,

q(x) = (−1)x1R.

Proof. Both T Jk = TJkT and RJk = RJkR are GW representations whose
multiplier operators are, respectively,

T ck(x) = (−1)k+1ck(x̌), Rck(x) = −ck(x).

Therefore,
J̃k := TRJkRT

has

c̃k(x) = T (Rck)(x) = (−1)k+1Rck(x̌) = (−1)k+1(−ck(x̌)) = (−1)kck(x̌)
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as the parameter C . The operator Φ(x) = (−1)x1I anticommutes with J1 and
J ′1 and commutes with Jk and J ′k for all k > 1. Since Q = ΦRT and, clearly,
ΦRT = RΦT = −RTΦ,

QJkQ = ΦRTJkΦTR = −ΦRTJkTRΦ = −ΦJ̃kΦ =

{
J̃1 k = 1

− J̃k k > 1

and similarly for the J ′k . It follows that the ck ’s for QJkQ are

Qc1(x) = c̃1(x) = −c1(x̌), Qck(x) = −c̃k(x) = −(−1)kck(x̌) (k > 1).

Hence, the representation commutes with Q iff c1(x) = −c1(x̌) and ck(x) =
(−1)k+1ck(x̌) for k > 1.

Remark. Once again, (3.24) holds for arbitrary ν , provided we measurably fix a
real structure σ(x) on each Vx , invariant under translations by ∆ and checking,
and replace R and the bars for σ(x) throughout.

Theorem 3.25. Every pair (π,Q) consisting of a unitary representation of C
with ν = 1 , together with an invariant quaternionic structure, is unitarily equiv-
alent to a GW representation on L2(X, µ) having Q1 as invariant quaternionic
structure.

Proof. Realize π as a GW representation π(µ,1,C) . By Theorem (3.19), µ is
equivalent to µ̌ , the derivative dµ(x̌)/dµ(x̌) exists a.e. and T is a well defined
unitary operator on V . Let q(x) be the operator-valued function associated to
(π,Q),

q(x)(f(x)) = (QTf)(x).

Since each q(x) is antilinear and norm preserving, R ◦ q(x) is a linear, unitary
operator on Vx = C and therefore has the form

R ◦ q(x) = α(x)I

for some measurable α : X → T . Because R is just plain conjugation and q(x)
is antilinear, we also have q(x) ◦R = α(x)I. Because q(x)q(x̌) = −1,

R ◦ q(x̌) = −R ◦ q(x)−1 = −R ◦ (q(x)◦R ◦R)−1 = −R ◦ (α(x)I ◦R)−1 = −α(x)I,

so that
α(x̌) = −α(x)

for almost all x . If we set β(x) = (−1)x1α(x), then

R ◦ q(x) = (−1)x1β(x)I, q(x) ◦R = (−1)x1β(x)I, β(x̌) = β(x).

Define
u(x) :=

√
β(x),
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where for any −π < θ ≤ π ,
√

eiθ := ei θ
2 . Then u(x) is a measurable T-valued

function satisfying

u(x)2 = β(x), u(x̌) = u(x).

The operator
Uf(x) := u(x)f(x)

is unitary from V to V . One has

UQU−1f(x) = u(x)q(x)TUf(x) = u(x)q(x)

√
dµ(x̌)
dµ(x̌)

u(x̌)−1f(x̌)

=

√
dµ(x̌)
dµ(x̌)

u(x)q(x)Ru(x)Rf(x̌)

=

√
dµ(x̌)
dµ(x̌)

u(x)(−1)x1β(x)u(x)Rf(x̌)

= (−1)x1

√
dµ(x̌)
dµ(x̌)

u(x)β(x)u(x)Rf(x̌)

= (−1)x1

√
dµ(x̌)
dµ(x̌)

u(x)u(x) u(x)u(x)Rf(x̌)

= (−1)x1

√
dµ(x̌)
dµ(x̌)

Rf(x̌)

= (−1)x1RTf(x) = Qf(x)

Corollary 3.26. If a quaternionic structure on L2(X, µ) is invariant under
some spinor structure, then it is unitarily equivalent to Q1 .

Remark. If π is irreducible then there is a most one invariant Q up to sign. This
follows from Schur’s Lemma applied to the operator Q1Q2 , which is C -linear and
commutes with π . We will ignore the sign ambiguity and talk in that case about
the unique quaternionic (or real) structure. real or quaternionic structures, see
§6.

4. Examples in L2(T)

The representations
πC := π(µX ,1,C)

where µX is the Haar measure, are realized on L2 of the circle T , as follows.

x 7→
∞∑

k=1

xk

2k
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from X to the unit interval [0, 1) is a bijection off a countable set. Under it,
the Haar measure µX corresponds to the Lebesgue measure on [0, 1). Hence,
as a measure space, (X, µX) is a union of (0, 1) with a set of measure zero, or
Lebesgue space. The same is true for the circle T ; in this case, the maps

θk : T → Z2

such that

t = e2πiθ ↔ θ =
∞∑

k=1

θk(t)
2k

.

induce an identification

(4.1) L2(T) = L2(X, µX).

As a topological space, however, X is homeomorphic to the Cantor set,
via

x 7→
∞∑

k=1

xk

3k
;

X is sometimes called the Cantor group [12]. The two topologies are related
by Cantor’s function. We will often switch between T and X , but must keep
in mind that translations in X do not correspond to rigid rotations in T -they
preserve the measure but not the metric. In the switching, Cantor’s function will
not be used explicitly, thanks to the fact that at the L2 -level, it is like switching
between Fourier’s and Walsh’ basis.

The group of unitary characters of X -the continuous homomorphisms
X → T , can be identified with ∆, the subgroup of X of elements with finite
support. The character corresponding to α ∈ ∆ is

φα(x) = (−1)
∑

αkxk .

In particular,
X̂ = {φα}α∈∆

is an orthonormal basis of L2(X, µX). Via the identification (4.1) the φα become
the classical periodic Walsh functions w0, w1, . . . , defined by

(4.2) wn(t) = (−1)
∑∞

k=1
nk−1θk(t)

for t ∈ T and n =
∑∞

k=0 nk2k is the dyadic expansion of the integer n . The
correspondence is

wn ↔ φα iff n =
∞∑

k=0

αk+12k.

We will refer to both the wn and the φα as Walsh functions.
Of course, X̂ 6= T̂ , since on T the φα are not even continuous. Periodic

Walsh functions jump between 1 and −1, with the jumps occurring at the points



Galina, Kaplan, and Saal 477

of the form j2k with j, k ∈ Z . As an illustration, here is w5(e2πiθ) = (−1)θ1+θ3

(↔ φδ1+δ3 ) for θ > 0:

·̂
w
...
1
...
...
...

0 · · · · 18 · · ·
1
4 · · · · · · · ·

1
2 · · · · · · · · · · · · · · · · 1 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · θ · · · >

...

...
-1

Define
σk = δ1+ · · ·+δk

and τkf(x) = f(x+δk) for x ∈ X . Then πC is defined by

Jk = −iφσk−1ckτk, J ′k = φσkckτk.

For simplicity, we shall refer to these representations as spinor structures, on
L2(T). Since the Haar measure on T is ergodic and ν = 1,

Proposition 4.3. The representations (πC , L2(T)) are irreducible.

Remarks. (a) The operation x 7→ x̌ in X corresponds to the symmetry in (0, 1)
with respect to the midpoint which, on T ⊂ C , becomes ordinary complex
conjugation. The real form V R is

L2(T)R = {f ∈ L2(T) : f(t) = f(t̄)}

and πC leaves it invariant if and only if the ck ’s, which are now functions from
T to itself, satisfy

ck(t) = (−1)kck(t̄).

An analogous statement can be made for the invariant quaternionic structure
defined by

Qf(t) = (−1)θ1(t)f(t)

(b) The function (−1)θ1(t) is the periodic Haar’s mother wavelet.
(c) L2(T)R , the typical spin-invariant real form, is the real span of the

Fourier basis {e2πikθ} . The ordinary real form L2(T)R is the real span of the
Walsh basis {wn} .

Infinite matrices of 0’s and 1’s are a source of an interesting family of
examples.
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Definition. The representation (πC , L2(T)) is a character representation if
C ⊂ X̂ .

Explicitly, the assumption is that

ck(x) = φγk(x) = (−1)
∑

j≥1
γk

j xj

for appropriate γk ∈ ∆. These can be can be regarded as the rows of an infinite
matrix

(4.4) γ =

 γ1
1 γ1

2 . . .
γ2
1 γ2

2 . . .
...

...


of 0’s and 1’s with finitely many 1’s in each row. Regarding X as a Z2 -vector
space, ∆ is a subspace and the set of such γ ’s can be identified with EndZ2(∆)∗ .

Given such γ , define unitary operators on L2(X, µX) by

Jγ
k f(x) = −iφσk−1+γk(x)f(x+δk)

Jγ
k
′
f(x) = φσk+γk(x)f(x+δk),

k = 1, 2, . . . .

Proposition 4.5. Jγ
k , Jγ

k
′
, define a spinor representation if and only if

(4.6) γk
` = γ`

k, γk
k = 0

for all k, ` . In that case, they act on the Walsh basis by:

Jγ
k φα = −i(−1)αkφα+γk+σk−1 , Jγ

k
′
φα = (−1)αkφα+γk+σk .

The corresponding spinor representation πγ is irreducible.
If

(4.7)
∑

j

γk
j ≡ k mod(2) ∀k

then πγ is of real type and has

L2(T)R = {f ∈ L2(T) : f(t) = f(t)}

as the unique invariant real form.
If, instead,

(4.8)
∑

j

γ1
j ≡ 0,

∑
j

γk
j ≡ k mod(2) ∀k ≥ 2

πγ is of quaternionic type and

Qf(t) = (−1)θ1(t) f(t),
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is the unique invariant quaternionic structure.

Proof. The operators Jk , J ′k are of the form (2.3), with the characters ck(x) =
φγk(x)I as multipliers. We verify equations (2.2):

ck(x+δk) = φγk(x+δk) = φγk(δk)φγk(x) = (−1)
∑

j
γk

j δk
j φγk(x)

= (−1)γk
k φγk(x) = φγk(x) = ck(x)

= ck(x)∗

since the ck are real. Also,

ck(x)cl(x+δk) = φγk(x)φγl(x+δk) = φγk(x)φγl(x)φγl(δk)

= φγk(x)φγl(x)(−1)γl
k = (−1)γk

l φγk(x)φγl(x)

= φγk(x+δl)φγl(x) = cl(x)ck(x+δl)

It is clear that the converse also holds. The calculation of the action on Walsh
functions is straightforward and irreducibility follows from (4.2).

According to Theorem (3.14), πγ will leave L2(T)R invariant if and only
if ck(x̌) = (−1)kck(x), which translates into the equation

φγk(x̌) = (−1)kφγk(x).

Since φγk(x̌) = φγk(1+x) = φγk(1)φγk(x) = (−1)
∑

j
γk

j φγk(x) and φ is real, the
equation is satisfied exactly when

∑
j γk

j ≡ k mod(2), i.e., when γ ∈ ΓR .
A similar computation shows that πγ leaves Q invariant exactly when

γ ∈ ΓH . The uniqueness follows from the irreducibility of πγ .

Because of (4.6), the columns of γ also involve finitely many ones, so
γ ∈ EndZ2(∆). Define

Γ = {g ∈ EndZ2(∆) : γk
` = γ`

k, γk
k = 0}

ΓR = {g ∈ Γ : satisfying (4.7)}

ΓH = {g ∈ Γ : satisfying (4.8)}

In other words, γ ∈ Γ belongs to ΓR if and only if the parity of the number of
1’s in the k th. row (or column) equals the parity of k , while γ ∈ ΓH if and only
if the same condition holds except for the first row, which must have an even
number of 1’s.

For γ = 0, πγ is of complex type, by (4.5). Set, instead,

B =


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

 , β =


B 0 0 . . .
0 B 0 . . .
0 0 B . . .
...

...
...

 , γ =


0 0 0 0 . . .
0 0 0 0 . . .
0 0 B 0 . . .
0 0 0 B . . .
...

...
...

...
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where bold letters denote matrices and non-bold scalars. Then β ∈ ΓR and
γ ∈ ΓH , so that πβ is of real type while πγ is of quaternionic type.

For any (vector-valued) function f on X define

∂kf(x) := φδk(x)(f(x+δk)− f(x))

where, as usual, addition in X is modulo 2. These difference operators are
natural in two ways: they are the partial derivatives in X = Z∞2 once we fix
the motion from 0 to 1 as positive and, via X ≈ T , the ordinary derivative
on T with respect to the angular parameter is f ′(θ) = limk→∞ 2k∂kf(x(θ)) or,
equivalently,

d

dθ
=

∞∑
k=0

2k(2∂k+1 − ∂k).

This follows by taking incremental quotients of the form ∆θ = (−1)θk2−k and
noting that the translation x 7→ x+δk in X , corresponds to the operation
θ 7→ θ+(−1)θk2−k in T .

This suggests some deformations of the derivative operator that, aside
from the obvious one

∑∞
k=0 zk(2∂k+1 − ∂k), are directly related to spinors.

For example, the operators ∂k can be expressed in terms of the Jκ
k , Jκ

k
′ of the

special character representation κ = π(µX ,1,{1}) ; a small calculation shows that
∂k = i(φσk−1Jκ

k − Jκ
k Jκ

k
′). Replacing now κ by any π = πC -indeed, by any π

whatsoever, one obtains corresponding “twisted derivatives”

d

dπθ
= i lim

k→∞
2k(φσk−1Jπ

k − Jπ
k Jπ

k
′).

We will not discuss these here but will concentrate instead in the following first-
order differential-like operators which relate directly to the main subject of this
paper.

Given a spin structure πC on L2(T), consider the associated operators

D =
∑

k

Jk∂k,
∑

k

D′ = J ′k∂k

or, better yet, their linear combinations D = (−D′+iD)/2, D′ = (D′+iD)/2.
Evidently,

D =
∞∑

k=0

ak∂k, D′ =
∞∑

k=0

a∗k∂k.

We will not attempt to motivate them a priori. They are, of course,
linear wherever defined and annihilate constants, but their resemblance to Dirac
operators does not go very far because the ∂k do not commute with the spinor
representation. Moreover, they -even their domain and spectra- depend on the
specific representation, not just on its equivalence class.
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Proposition 4.9. For the standard Fermi-Fock representation the domain of D′

consists of {0} alone. For the character representations, the domains of both D
and D′ are dense in L2(T) .

Proof. The characteristic functions of points in ∆, χα , are an orthonormal
basis of V(µ∆,1,{1}) , where the Fermi-Fock representation acts. One has

∂kχα = (−1)1+αk(χα+χα+δk
)

so
D′χα =

∑
k

(−1)1+αkφσkχ′k(χα+χα+δk
).

This is nonzero only at the points of the form x = α , x = α+δl , so

D′χα = C0
α χα+

∑
k≥1

Ck
α χα+δk

with Ck
α = D′χα(α+δk) ∈ Z . Therefore

C0
α = D′χα(α) =

∑
k

(−1)αkφσk(α)χ′k(α) = −
∑

k 6∈supp(α)

φσk(α)

Since α has finite support, φσk(α) is a constant, = 1 or −1, for all k >> 0, so
the series diverges.

For the character representations, the Hilbert space is V(µX ,1,C) , where
the φα form an orthonormal basis -or, equivalently, L2(T), where the wn form
an orthonormal basis. With ck = φγkI ,

Jkf(x) = −iφσk−1+γk(x)f(x+δk), J ′kf(x) = φσk+γk(x)f(x+δk)

wherefrom

(4.10) Jkφα = −i(−1)αkφα+γk+σk−1 , J ′kφα = (−1)αkφα+γk+σk .

On the other hand,
∂kφα = −2χk(α)φα+δk

where, as before, χk is the characteristic function of the set Xk . Therefore

Dφα = 2
∑

k∈ supp(α)

(−1)αkχkφα+γk+σk

=
∑

k∈ supp(α)

(−1)αk(φα+γk+σk − φα+γk+σk−1)

(4.11)
D′φα = 2

∑
k∈ supp(α)

(−1)αkχ′kφα+γk+σk

=
∑

k∈ supp(α)

(−1)ak(φα+γk+σk + φα+γk+σk−1).

D and D′ are therefore well defined in the linear span of the Walsh functions,
which is dense in L2 .
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Proposition 4.12. Let π = π(µ,ν,C) be a GW representation with µ equivalent
to µ̌ and let Dπ, D′

π, be the associated operators. Then

TDπT = −D′
π̃, TD′

πT = −Dπ̃

where T is the operator of (3.14) and π̃ = π(µ,ν,C̃) with

c̃k(x) := (−1)k+1ck(x̌).

In particular, a spinor structure π on L2(T) leaves invariant the real form
L2(T)R if and only if

TDπT = D′
π.

Proof. As we saw in the proof of (3.14),

TJkTf(x) = J̃kf(x)

with
c̃k(x) = (−1)k+1ck(x̌).

Since J ′kf(x) = i(−1)xkJkf(x) and T anticommutes with multiplication by
(−1)xk , one has

TJkTf(x) = −J̃ ′kf(x)

and, therefore,
TakT = ã∗k, Ta∗kT = ãk.

These identities have a meaning and are valid for any GW triple, as long as T
is invertible. Under the same assumption and for identical reasons,

T∂k = −∂kT.

Therefore
TDT =

∑
k

TakTT∂kT = −
∑

k

ã∗∂k = −D̃′

and, similarly, TD′T = −D̃.

The last assertion follows by comparing the formula for c̃k with (3.14).

Corollary 4.13. If a spinor structure π on L2(T) leaves invariant some real
structure, then

Spec(D′
π) = −Spec(Dπ).

Whenever defined, either operator determines the representation. For
example, if {ak} are the creation operators corresponding to a character repre-
sentation, then

2akf = Dπ − φδkDπ(φδkf)

2a∗kf = D′
πf − φδkD′

π(φδkf).

Remark. For character representations, the matrices of D and D′ in the Walsh
basis involve only 0 and ±1, as is evident from (4.11). An intriguing aspect of
these matrices is that, although very non-symmetric, they appear to be always
diagonalizable. More remarkably, the diagonalization can be done over Z in
the sense that all eigenvalues are integers and all eigenspaces can be spanned
by integral linear combinations of the Walsh functions. The diagonalizability
condition is equivalent to a combinatorial property of the matrices γ which we
have been able to verify in some, but not all, cases.
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5. Kaplansky’s infinite-dimensional numbers

The real finite-dimensional division algebras, -associative or not, with or without
a 1, occur only in dimensions 1,2,4 and 8. If we require a multiplicative identity
and that ||ab|| = ||a|| ||b|| for some norm (be normed), one obtains the usual
algebras of real, complex, quaternionic and octonionic numbers.

In [13], Kaplansky proved that

there are no infinite dimensional normed division algebras,

no “infinityonic numbers”. Of course, in infinite dimensions there are many
division algebras, even associative and commutative ones, like R[t] , as well as
many normed algebras, because U ⊗ U ∼= U for any linear space. But none will
satisfy both conditions simultaneously.

A normed algebra has no zero-divisors, a condition that is often used as
the definition of division algebra on the basis of the equivalence that exists in
finite dimensions. So, let us make our terminology more precise.

For the rest of the section, an algebra is any vector space U endowed
with a bilinear operation ? . It is normed if U is a real Hilbert space and
||v ? w|| = ||v|| ||w|| . It is left-division if ∀v 6= 0, ∃v−1

L such that

v−1
L ? (v ? w) = w ∀w.

It is right-division if ∀v 6= 0, ∃v−1
R such that

(w ? v) ? v−1
R = w ∀w;

it is simply division if it is both left- and right-division. An equivalence, is a
change ? 7→ ?̃ of the form

v?̃w = A(B(v) ? C(w))

with A,B,C ∈ O(U). Then, up to equivalence, one may assume that in a
division algebra there is a two-sided unit and that left and right inverses agree.

Kaplansky then shows that weakening “division” to, say, “left-division”
does nothing in finite-dimensions, i.e., that

a finite-dimensional real left-division normed algebra, is a division algebra

and speculates about the situation in infinite dimensions. A counterexample
could claim the role of infinite-dimensional relatives of the quaternions and
octonions. The first counterexamples were found 30 years later by Cuenca and
Rodriguez-Palacios [7],[17].

Now we can describe all such structures, i.e., all the left-division normed
algebras on an infinite-dimensional separable real Hilbert space -or ILNA’s, as we
will be calling them for short. It turns out that there are mazes of inequivalent
ones, as implied by
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Theorem 5.1. The ILNA’s are naturally parametrized up to equivalence by the
triples (µ, ν, C) of 3.15 and 3.15. In fact, if U is a separable real Hilbert space,
then there is a one-to-one correspondence between real representations of C on
U and structures of ILNA’s on U having a left-identity.

Proof. We only need to show that such algebras are in correspondence with the
real orthogonal representations of C ; the examples of [7][17] were also implicitly
or explicitly built from the CAR’s, the new ingredient here being the role of the
GW parametrization.

Let (U, ?) be given, where U is a separable Hilbert space. Pick a unit
vector vo ∈ U and define v?̂w = v−1

o ? (v ? w), where we drop the subscript L
in v−1

L . Then vo?̂w = v−1
o ? (vo ? w) = w . Therefore, up to equivalence, we may

assume that ? has a left-identity element ε , i.e.,

ε ? u = u

for all u . Let H denote the orthogonal complement of ε in U . Then

π(h)v = h ? v, (h ∈ H)

defines a unitary representation of C on U . Indeed, if h, h′, are orthogonal to
1, then polarizing the norm condition yields

h ? (h′ ? v)+h′ ? (h ? v) = −2 < h, h′ > v

for all v ∈ U .
Conversely, let π be an real orthogonal representation of C on U and

choose an isomorphism of real Hilbert spaces

F : U →̃ H ⊕ R ⊂ C.

It is precisely when
dimR H = 1, 3, 7,∞,

that such isomorphism exists, i.e., that C has a non-trivial module of dimension
dim H+1.

Define ? = ?π by

(5.2) u ? v = π(F (u))v.

By the orthogonality of π , the resulting algebra is normed. Finally, if u ∈ U ,
u 6= 0, write F (u) = h+λ with h ∈ H and λ ∈ R . Then

F−1(h− λ) ? (u ? v) = π(FF−1(h− λ))(u ? v) = π(h− λ)(π(F (u)v)

= π(h− λ)(π(h+λ)v) = (π(h− λ)π(h+λ))v

= π((h− λ)(h+λ))v = π(h2 − λ2)v = (−||h||2H − λ2)v

= −(||h||2H+λ2)v = −||h+λ||2Cv = −||F−1(h+λ)||2Cv

= −||u||2Uv

In terms of the involution in H ⊕ R (“conjugation”) K(h+λ) = −h+λ ,

u−1
L := ||u||−2F−1KF (u)

is a left-inverse of u .
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We next look a bit more closely at the structure of ? and show how
its groups of symmetries reflects various classes spinors that exist in infinite
dimensions. The exceptional properties of the symmetries of the Octonions [2]
leads to some conjectures. Here we discuss only aspects directly related to real
and quaternionic structures and related matters.

To an ILNA (U, ?) we associate its group of equivalences

Eq(?) ⊂ O(U)3

consisting of the triples (g0, g1, g2) of orthogonal transformations of U satisfying

(5.3) go(u ? v) = (g1u) ? (g2v)

∀u, v ∈ U . Then

Aut(?) = {(g0, g1, g2) ∈ Eq(?) : g0 = g1 = g2}.

As we saw in the proof of (5.1), (U, ?) can be assumed to have a left-
identity e . Set

=(U) = e⊥ so that U = Re⊕=(U)

We digress briefly on the peculiarities of the infinite-dimensional case and
on the choice of paired basis {hk, h′k} which, so far, has remained as an implicit
parameter.

This choice determines a subspace

(5.4) Hr = spanR{hk},

and an orthogonal complex structure j on H

j(hk) = h′k, j(h′k) = −hk,

so that
H = Hr ⊕ jHr.

This data is equivalent to an isomorphism of real Hilbert spaces

H ∼= C⊗Hr.

The equivalence class of π depends on Hr and j -this is the reason we use the
plural when talking about Fock representations. In QFT, H is taken complex
from the start; the physical meaning of the complex structure (or lack thereof)
is discussed in [3].

Let
τ : H → H, τ(h1 + jh2) = h1 − jh2

hi ∈ Hr, which is an orthogonal involution. Obviously, Hr and j determine τ ,
and (5.4) is the decomposition of H into ±1-eigenspaces of τ

(5.5) H = H+ ⊕H−.
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Conversely, let τ be an orthogonal involution of H . It determines an orthogonal
decomposition (5.5) but the summands be of different size. In finite dimensions
one sometimes says that an involution is a polarization if dim H+ = dim H− .
This condition is equivalent to the existence of an isomorphism of H which
anticommutes with τ . For example, when τ comes from a pair (j, Hr), then j
is such an isomorphism. In infinite dimensions we adopt this as a definition of
polarization.

As we saw in the proof of (5.1), (U, ?) can be assumed to have a left-
identity e ; then left multiplication by elements of

=(U) := e⊥

defines the Clifford action of C(=(U)) on U : =(U) is identified with H and
inherits the structures above:

(5.6) =(U) ∼= C⊗W,

for some subspace W ⊂ U and, writing also j for the induced complex structure
in =(U),

U = Re⊕W ⊕ jW.

We will keep denoting by τ the corresponding complex-conjugation.
The existence of these conjugations characterizes infinite-dimensional

left-division normed algebras, since in the finite-dimensional case dimR =(U) is
odd and, therefore, cannot support a complex structure. It is a bit one gains in
exchange for giving up two-sided inverses.

Another infinite-dimensional phenomenon is the fact that right multipli-
cation is never invertible.

Rv : u 7→ u ? v

is injective whenever v 6= 0, because there are no zero-divisors. But, as shown
in [13], if Rv is onto for some v then (U, ?) would be two-sided division, which
is ruled out. Hence,

Rv(U) = U ? v

is always a proper subspace of U . In particular, Re fixes e and leaves e⊥ = =(U)
invariant. From the above, =(U) ? e 6= =(U) so that

cokerRe 6= (0)

Next we exemplify how algebraic properties of =(U) ? e and τ discrim-
inate among ILNA’s and relate to analytic properties of the associated spinors.
We will say that a given (U, ?) “comes from” a given spin structure π if it is
equivalent to the one constructed from π by the procedure of (5.1).

Proposition 5.7. (U, ?) comes from a Fermi-Fock representation if and only it
has no proper left-ideals, U is a complex Hilbert space and

(a) ? is C-linear in the right-slot:

u ? iv = i(u ? v)
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(b) =(U) ? e is a complex subspace; equivalently,

(jw) ? e = i(w ? e)

for all w ∈ =(U) .

Proof. The Fermi-Fock representations π are characterized by the fact that U
is a complex Hilbert space, the operators π(h) are C -linear, π is irreducible and
there exists a non-zero vo ∈ U annihilated by all a∗k ’s. From §3 we know that
such π is irreducible over R , which translates into (U, ?) not having proper left-
ideals. We can choose vo = e , so the condition a∗kvo = 0 becomes J ′ke = iJke,
i.e.,

π(h′k)e = iπ(hk)e

∀k . In terms of the complex structure j this amounts to π(jhk)e = iπ(hk)e , or

π(jh)e = iπ(h)e

∀h ∈ Hr . Via the identification H ↔ =(U) this becomes

(5.8) (jw) ? e = i(w ? e)

∀w ∈ =(U). It follows that =(U) ? e is closed under multiplication by i .
Conversely, suppose that the latter is the case: ∀w ∈ =(U) ∃!w′ ∈

=(U) : i(w ? e) = w′ ? e ; uniqueness is assured because Re is injective. Then
jw := w′ defines a linear operator j : =(U) → =(U) with the property that for
all w ∈ =(U),

(jw) ? e = i(w ? e).

j is norm-preserving, because ? is normed, and j2 = −I , because

(j2w) ? e = i(jw ? e) = −w ? e.

Under j , =(U) becomes a complex Hilbert space, with hermitian inner product
h(u, v) =< u, v > +

√
−1 < ju, v > . Let {wk} be a complex unitary basis of it.

Then {wk, jwk} is a real orthonormal basis and W := spanR{wk} is a real form
of (=(U), j), totally isotropic for < ju, v > . Then

Jku := wk ? u, J ′ku := (jwk) ? u

defines a C(=(U))-spin structure on U . The equation (jw) ? e = i(w ? e)
translates into

a∗ke = 0

∀k , so e is a vacuum vector.

Because of the evident lack of symmetry between the two slots, worsened
in infinite dimensions, true automorphisms of ILNA’s do not come easily. We
will see that how the operator

Tf(x) =

√
dµ̌(x)
dµ(x)

f(x̌), f ∈
∫ ⊕

X

Vx dµ(x)
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used to typify spinors, can be used to construct automorphisms of ? .
Recall that T : V → V , V =

∫ ⊕
X

Vx dµ(x), is well defined and invertible
if and only if the measure µ and the multiplicity function ν are quasi-invariant
and invariant, respectively, under the operation x 7→ x̌ . For simplicity we will
assume

µ = µ̌, ν = ν̌ = 1, µ(X) = 1.

Then
V = L2(X, µ), T f(x) = f(x̌)

and the constant function 1 lies in V , is a unit vector and is fixed by T .
In our algebra (U, ?π), U always arises as a π -invariant real form of V .

By (3.13), we may assume that

U = V R = {f ∈ L2(X, µ) : f(x̌) = f(x) a.e.}.

Choose the left-identity e to be the constant function 1, which lies in U . Then

H = =(U) = {f ∈ L2(X, µ) : f(x̌) = f(x),
∫

X

f(x)dµ(x) = 0}.

It is clear that on U , T coincides with the conjugation (τf)(x) = f(x) and that
H is invariant under this operation (but not under multiplication by i !). The
eigenspaces of T = τ actually polarize H :

(5.9) H = H+ ⊕H−

where the 1-eigenspace H+ consists of the real, even (relative to the checking
symmetry) functions and the −1-eigenspace H− consists of the purely imaginary,
odd functions. For emphasis, we can rewrite (5.9) as

H = Hreal,even ⊕ iHreal,odd

Under X ≈ (− 1
2 , 1

2 ), checking coincides with the symmetry with respect to 0,
so “even” and “odd” acquire their ordinary meaning.

For the Walsh functions,

φα(x̌) = (−1)p(α)φα(x)

where p(α) is the parity of (the numbers of 1’s in) α . The linear combinations of
Walsh functions are dense in L2(X, µ), because this is true of the finite products
of the χk , χ′k , and 2χk = 1−φδk

, 2χ′k = 1+φδk
. It follows that H+ is spanned

as a Hilbert space by the φα with α even, while H− is so by the iφβ with β
odd.

Pick an orthonormal basis {hk} of H+ and h′k of H− ; only now can π
be specified, by

π(hk)f = Jkf, π(h′k)f = J ′kf

with Jk, J ′k, as in (2.3).
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According to the proof of (3.14), whenever T is well defined and invert-
ible one has

(5.10) TJkT = J̃k, TJ ′kT = −J̃ ′k

where, if π = π(µ,ν,{ck}) , J̃ corresponds to the spin structure π̃ = π(µ̌,ν,{c̃k}) ,
with

(5.11) c̃k(x) := (−1)k+1ck(x̌)

as multipliers. Let ?̃ be the associated product. Then (5.10), which is equivalent
to T (π(h)v) = π̃(τ(h))Tv , translates into T (w ? v) = τ(w) ?̃ T v for w ∈ =(U).
Extending τ to all of U so that τ(e) = e , one obtains

T (u ? v) = τ(u) ?̃ T (v).

But on U , T = τ . Moreover, suppose that π = π̃ , i.e., J̃k = Jk . In that case,

T (u ? v) = T (u) ? T (v).

According to (3.14) the multipliers ck must satisfy ck = (−1)k ck , while ac-
cording to (5.11) they must also satisfy čk = (−1)k+1ck. In the terminology
used above, this is equivalent to asking that ck be real and odd for k even and
imaginary and even for k odd. We have proved

Proposition 5.12. . Assume that µ̌ = µ , µ(X) = 1 , ν = 1 and that ck is real
and odd for k even, and imaginary and even for k odd. Let πr be the real spin
structure in L2(X, µ)R associated to the GW parameters µ, ν, {ck}, together with
the conjugation τ = T and let (L2(X, µ)R, ?) be the corresponding ILNA with
the function 1 as left identity. Then

T (f ? g) = T (f) ? T (g)

for all f, g ∈ L2(X, µ)R .

Example . Let γ an infinite matrix of 0’s and 1’s and set

c2n = φγ2n , c2n+1 = iφγ2n+1

with γ2n ∈ ∆ odd and γ2n+1 ∈ ∆ even. The condition ck(x)∗ = ck(x + δk)
translates into

φγ2n(δ2n) = 1, φγ2n+1(δ2n+1) = −1,

that is,
γ2n
2n = 0, γ2n+1

2n+1 = 1.

The condition ck(x)cl(x+ δk) = cl(x)ck(x+ δl) translates, exactly as in the case
of the character representations, into γ being symmetric.

Finally, the conditions of (5.12)

č2n = −c2n, č2n+1 = c2n+1
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translate into φ̌γ2n = −φγ2n and iφγ2n+1 = iφ̌γ2n+1 respectively. This is equiva-
lent to φγ2n(1) = −1, φγ2n+1(1) = 1, or to

p(γ2n) = 1, p(γ2n+1) = 0.

We conclude: γ is to be symmetric, with diagonal (1, 0, 1, 0, . . . ) and the
parity of γk opposite to that of k .

γ =


B 0 0 . . .
0 B 0 . . .
0 0 B . . .
...

...
...

. . .

 where B =
[

1 1
1 0

]
.

is the simplest example.
Next we give the elementary description announced earlier for the alge-

bras (L2(T), ?γ) arising from Character Representations. According to (4.10),
the algebraic span of the Walsh basis is preserved by the operators Jk, J ′k, thus
? must be given by such expressions.

To make them explicit, we extend the sum modulo 2 in the set {0, 1} ⊂ N
to an abelian group structure in all of N :

m+̃n :=
∑
j≥0

(mj+̃nj)2j

where
m =

∑
j≥0

mj2j , n =
∑
j≥0

nj2j , (mj , nj ∈ {0, 1})

are the dyadic expansions of the positive integers m,n . The operation +̃ is just
addition in ∆, transported to N via n : ∆ → N ,

n(α) =
∑
j≥0

αj+12j .

Since the Walsh functions wn correspond to characters, one has

(5.13) wm(θ)wn(θ) = wm+̃n(θ).

Note that m 7→ m+̃2j switches mj−1 between 0 and 1 and

m(j) := m+̃(2j − 1) = m+̃(1 + 2 + 32 + . . . + 2j−1)

is the integer obtained from m by changing its first j binary digits m0, . . . , mj−1 .
Define a function Nγ : Z≥0 × Z≥0 → Z≥0 by

Nγ(k, m) = n(γk)+̃m(k−1).

Regarding L2(T) as a real space, a straightforward calculation shows that the
product is given by the following table

w0 ?γ wm = wm

(iw0) ?γ wm = wNγ(1,m)+̃1

wk ?γ wm = (−1)1+mk−1iwNγ(k,m)

(iwk) ?γ wm = (−1)mk−1wNγ(k+1,m)+̃2k

for all k ≥ 1 and all m ≥ 0, together with the requirement that u? iv = i(u?v).
For emphasis:
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Proposition 5.14. This table defines an R-bilinear operator

? : L2(T)× L2(T) → L2(T)

satisfying
||f ? g|| = ||f || ||g||

and such that ∀f 6= 0 ∃f−1
` :

f−1
` ? (f ? g) = g, ∀g.

For example, take γ = 0 . Then No(k,m) = m(k−1) so

w0 ?o wm = wm

(iw0) ?o wm = wm(0)+̃1 = wm+̃1

wk ?o wm = (−1)1+mk−1iwm(k−1)

(iwk) ?o wm = (−1)mk−1wm(k)+̃2k = (−1)mk−1wm(k+1)

The representation π(µX ,1,1) being irreducible /R , this algebra has no proper
left ideals.

If, instead, γ ∈ ΓR (see (4.5)), then ?γ has exactly two complementary
left-ideals, I , iI , while if γ ∈ ΓH , there exist an antilinear, norm-preserving
operator Q such that

Q2 = −I, f ?γ Qg = Q(f ?γ g).

We end this section relating these algebras and their equivalences to spin
representations of orthogonal groups. The key identity is the following weak form
of commutativity/associativity. Given (U, ?π) with left-identity e , we identify
H with =(U), so the spin structure on U is identified with left-multiplication
by elements of =(U). For any 0 6= h ∈ =(U) let

rh : U → U

be the reflection through the 2-plane spanned by h and e , i.e.,

rh(e) = e, rh(h) = h, rh(v) = −v ∀v ⊥ {h, e}.

So, rh|=(U) is minus the reflection trough the hyperplane h⊥ . Extend h 7→ rh

to all of U by setting
re := I.

Since for h′ ⊥ h , it holds that

−π(h)π(h′) = π(h′)π(h)

it is easy to see that for any u, h ∈ =(U)

π(rhu) = π(h)π(u)π(h)−1.
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Let
R(H) ⊂ O(H)

be the (ordinary) group generated by the reflections rh , i.e., the operators of the
form

(5.15) g = rh1 · · · rhm

with hi ∈ H, |hi| = 1. Since

π(rhrku) = π(h)π(rku)π(h)−1 = π(h)π(k)π(u)π(k)−1π(h)−1

= π(hk)π(u)π(hk)−1,

setting
Mπ(rh1 · · · rhm) = π(h1) · · ·π(hm)

defines a projective representation of R(H) on U :

Mπ : R(H) → O(U)

such that

(5.16) π(g(h)) = Mπ(g)π(h)Mπ(g)−1.

Because (5.15) is not unique, Mπ(g) is only projectively defined. Indeed, it
is unique up to sign: r−h = rh but π(−h) = −π(h). According to common
language, Mπ should be called the spin representation of the group R(H).

Although not a Lie group, R(H) is, in a sense, the largest subgroup of
O(H) for which a spin representation can be defined so that (5.16) holds without
further restrictions when dim H = ∞ . O(H) is generated by R(H) in the strong
topology, but Mπ does not extend to a projective representation of it.

An interesting fact is that some π ’s do induce spin representation of
some Lie subgroups K ⊂ O(H). For example, if π = π(µ∆,1,1) (Fermi-Fock)
and K consists of all g ∈ O(H) such that [g, iH ] is Hilbert-Schmidt, then Mπ

is well defined on K and is, in fact, the infinite-dimensional spin representa-
tion that appears in QFT [3][16]. The problem of describing all the possible
spin (and metaplectic) pairs (Mπ,K) seems well fit to treatment by the GW
parametrization.

6. Appendix

In this section we give the main lines of the proof of Theorem 2.4 following [8].

Theorem 2.4. The operators J1, J
′
1, J2, J

′
2, . . . are mutually anticommuting or-

thogonal complex structures and, therefore, π = π(µ,ν,C) extends to a unitary
representation of C on V . Conversely, every spinor structure on a separable
complex Hilbert space is unitarily equivalent to some π(µ,ν,C) .
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Proof. The first implication is verified by a straightforward computation using
the functional equations for the ck .

Let now a countable collection of mutually anticommuting unitary com-
plex structures on a separable complex Hilbert space V be given. If infinite (or
even) We can pair them arbitrarily so as to list them as J1, J

′
1, J2, J

′
2, . . . . The

assumed properties

||Jku|| = ||u|| = ||J ′ku||, J2
k = −I = J ′k

2
,

JkJl + JlJk = JkJ ′l + J ′lJk = J ′kJ ′l + J ′lJ
′
k = 0,

when written in terms of the “creation” and “annihilation” operators

ak =
1
2

(J ′k + iJk) a∗k =
1
2

(−J ′k + iJk)

become
akal + alak = 0 = a∗ka∗l + a∗l a

∗
k, aka∗l + a∗l ak = δkl.

Therefore, the products

Nk = a∗kak, N ′
k = aka∗k

are mutually commuting bounded self-adjoint operators, that are projectors:

N2
k = Nk, N ′

k
2 = Nk.

According to the Spectral Theorem for self-adjoint operators, there exist a σ -
algebra of sets B and a measure µ on B such that

(6.1) V =
∫ ⊕

∪B
Vb dµ(b),

where each operator in the set N = {Nk, N ′
k} , acts as multiplication by an

essentially bounded function, f 7→ φf . Indeed, any selfadjoint operator P that
commutes with all elements in N is of the same form.

If the operator P is a projection, the corresponding function must satisfy
φ2 = φ and, therefore, be the characteristic function of some set YP ∈ B :

P (f) = χYP
f, ∀f ∈

∫ ⊕

∪B
Vb dµ(b).

In this way, each of the operators Nk, N ′
k, corresponds to a set Xk, Xk′ ∈ B , so

that, in the decomposition (6.1),

Nkf = χXk
f, N ′

kf = χX′
k
f.

But because our N comes from a Clifford representation, one has the identities

Nk + N∗
k = I, NkN∗

k = 0,
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So, Xc
k = X ′

k .
The direct integral representation (6.1) is not unique. Moreover one can

consider as the underlying space the set X whose points are the subset in B of
the form

x =
∞⋂

k=1

Zk

where Zk = Xk or X ′
k and B is replaced by the Borel algebra generated by the

sets {Xk, X ′
k} . We assign the number 1 to each set Xk and 0 to each X ′

k . So
that to each point x ∈ X correspond an infinity binary sequence. In this way,
we identify X with Z∞2 .

We may now write

V =
∫ ⊕

X

Vx dµ(x)

with the operators N acting by

Nkf(x) = χk(x)f(x) = xkf(x), N ′
kf(x) = χ′k(x)f(x) = (1− xk)f(x)

if we view xk in Z .
The fact that x 7→ ν(x) = dim Vx is measurable, is part of the spectral

theorem. The quasi-invariance of µ follows from the identity

(6.2) JkLφ = −LkφJk,

where Lφ is the operator of multiplication by the C -valued, bounded measurable
function φ and kφ(x) = φ(x+δk). When φ is a characteristic function of a set
Xk or X ′

k , (6.2) is a formal consequence of the relations between the ak ’s and
the Jk, J ′k . Hence the formula holds for any measurable characteristic function.
How to go from this to the quasi-invariance of µ and the ∆-invariance of ν
is explained in [8] and the main idea was used in the proof of the invariance
statements of Theorem (3.2), so we will skip that here.

As to the operators ck(x) : Vx → Vx+δk = Vx , they are defined explicitly
by

ck(x)f(x) = i(−1)x1+...+xn−1Jkτkf(x), τkf(x) =

√
dµ(x+δk)

dµ(x)
f(x+δk).

That they satisfy the invariance property is, again, a formal consequence of (6.2)
and of the commutation relations satisfied by the Jk, J ′k .
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