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Towards explicit description of ramification
filtration in the 2-dimensional case

par ViIcTOR ABRASHKIN

RESUME. Le résultat principal de cet article est une description
explicite de la structure des sous-groupes de ramification du grou-
pe de Galois d’un corps local de dimension 2 modulo son sous-
groupe des commutateurs d’ordre > 3. Ce résultat joue un role
clé dans la preuve par 'auteur d’un analogue de la conjecture de
Grothendieck pour les corps de dimension supérieure, cf. Proc.
Steklov Math. Institute, vol. 241, 2003, pp. 2-34.

ABSTRACT. The principal result of this paper is an explicit de-
scription of the structure of ramification subgroups of the Galois
group of 2-dimensional local field modulo its subgroup of commu-
tators of order > 3. This result plays a clue role in the author’s
proof of an analogue of the Grothendieck Conjecture for higher
dimensional local fields, c¢f. Proc. Steklov Math. Institute, vol.
241, 2003, pp. 2-34.

0. Introduction

Let K be a 1-dimensional local field, i.e. K is a complete discrete valu-
ation field with finite residue field. Let I' = Gal(Kgep/K) be the absolute
Galois group of K. The classical ramification theory, cf. [8], provides I'
with a decreasing filtration by ramification subgroups I'”), where v > 0
(the first term of this filtration T'(*) is the inertia subgroup of T'). This ad-
ditional structure on I' carries as much information about the category of
local 1-dimensional fields as one can imagine: the study of such local fields
can be completely reduced to the study of their Galois groups together with
ramification filtration, cf. [6, 3]. The Mochizuki method is a very elegant
application of the theory of Hodge-Tate decompositions, but his method
works only in the case of 1-dimensional local fields of characteristic 0 and
it seems it cannot be applied to other local fields. The author’s method
is based on an explicit description of ramification filtration for maximal
p-extensions of local 1-dimensional fields of characteristic p with Galois
groups of nilpotent class 2 (where p is a prime number > 3). This infor-
mation is sufficient to establish the above strong property of ramification
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filtration in the case of local fields of finite characteristic and can be applied
to the characteristic 0 case via the field-of-norms functor.

Let now K be a 2-dimensional local field, i.e. K is a complete discrete
valuation field with residue field KW, which is again a complete discrete
valuation field and has a finite residue field. Recently I.Zhukov [9] pro-
posed an idea how to construct a higher ramification theory of such fields,
which depends on the choice of a subfield of “l1-dimensional constants” K.
in K (i.e. K. is a l1-dimensional local field which is contained in K and
is algebraically closed in K). We interpret this idea to obtain the ramifi-
cation filtration of the group I' = Gal(Kep/K) consisting of ramification
subgroups '), where v runs over the ordered set J = J; U Jy with

Ji={(v,c)eQx{c}|v>0}, Jo={jeQ®|j>(0,0)}.

Notice that the orderings on J; and Jo are induced, respectively, by the
natural ordering on Q and the lexicographical ordering on Q?, and by
definition any element from J; is less than any element of Jy. We no-
tice also that the beginning of the above filtration {T')};c;, comes, in
fact, from the classical “1-dimensional” ramification filtration of the group
I'c = Gal(Kcgep/Kc) and its “2-dimensional” part {F(v) }ies, gives a filtra-
tion of the group [ = Gal(Kgep/K K sep). Notice also that the beginning
of the “Js-part” of our filtration, which corresponds to the indices from the
set {(0,v) | v € @>0} C J2 comes, in fact, from the classical ramification
filtration of the absolute Galois group of the first residue field K of K.

In this paper we give an explicit description of the image of the ramifica-
tion filtration {T'0)} jeJ in the maximal quotient of I', which is a pro-p-group
of nilpotent class 2, when K has a finite characteristic p. Our method is, in
fact, a generalisation of methods from [1, 2], where the ramification filtra-
tion of the Galois group of the maximal p-extension of 1-dimensional local
field of characteristic p modulo its subgroup of commutators of order > p
was described. Despite of the fact that we consider here only the case of
local fields of dimension 2, our method admits a direct generalisation to
the case of local fields of arbitrary dimension n > 2.

In a forthcoming paper we shall prove that the additional structure on I
given by its ramification filtration {T'W)};c; with another additional struc-
ture given by the special topology on each abelian sub-quotient of I' (which
was introduced in [5] and [7]) does not reconstruct completely (from the
point of view of the theory of categories) the field K but only its composite
with the maximal inseparable extension of K.. The explanation of this
phenomenon can be found in the definition of the “2-dimensional” part of
the ramification filtration: this part is defined, in fact, over an algebraic
closure of the field of 1-dimensional constants.
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1. Preliminaries: Artin-Schreier theory for 2-dimensional local
fields

1.1. Basic agreements. Let K be a 2-dimensional complete discrete val-
uation field of finite characteristic p > 0. In other words, K is a complete
field with respect to a discrete valuation v; and the corresponding residue
field K1) is complete with respect to a discrete valuation T with finite
residue field k ~ vy, No € N. Fix a field embedding s : K) — K, which

is a section of the natural projection from the valuation ring O onto K1),
Fix also a choice of uniformising elements to € K and 79 € K (1. Then
K = s(KW)((ty)) and KO = k((7)) (note that k is canonically identified
with subfields in K" and K). We assume also that an algebraic closure
K,s of K is chosen, denote by Kse, the separable closure of K in K, set
I' = Gal(Ksep/K), and use the notation 79 = s(7p).

1.2. P-topology. Consider the set P of collections w = {J;(w) };ez, where
for some I(w) € Z, one has J;j(w) € Z if i < I(w), and J;(w) = —o0
if i > I(w). For any w = {J;(w)}icz € P, consider the set A(w) C K
consisting of elements written in the form 3°,_, s(b;)t}, where all b; € K(1),

for a sufficiently small ¢ one has b; = 0, and b; € 7"6]i(w)OK<1> if J;(w) # —o0.

The family {A(w) | w € P} when taken as a basis of zero neighbourhoods
determines a topology of K. We shall denote this topology by Pk (s,to)
because its definition depends on the choice of the section s and the uni-
formiser tg. In this topology s(b;)ty — 0 for i — 400, where {b;} is an
arbitrary sequence in KW, Besides, for any a € Z, we have Tg tg — 0 if
j — +00 and, therefore, s is a continuous embedding of K into K (with
respect to the valuation topology on K and the Pk (s, tg)-topology on
K). It is known, cf. [5], if t; € K is another uniformiser and s; is an an-
other section from KM to K, then the topologies Pk (s,to) and P (s1,t1)
are equivalent. Therefore, we can use the notation Pg for any of these
topologies. The family of topologies Pg for all extensions E of K in K,
is compatible, cf. [7, 5]. This gives finally the topology on K, and this
topology (as well as its restriction to any subfield of K,j;) can be denoted
just by P.

1.3. Artin-Schreier theory. Let o be the Frobenius morphism of K.
Denote by T'#P the maximal abelian quotient of exponent p of I'. Consider
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the Artin-Schreier pairing
&1 K/(0—id)K @, T — T,

This pairing is a perfect duality of topological F,-modules, where
K /(o —id)K is provided with discrete topology, and T'%" has the pro-finite
topology of projective limit F?b = @FE/I@ where E/K runs over the
family of all finite extensions in K,z with abelian Galois group of exponent
.

Consider the set Z? with lexicographical ordering, where the advantage
is given to the first coordinate. Set

Ay ={(i,j) € Z% | (i,5) > (0,0),j # 0, (i, j,p) = 1},

Ay ={(i,0) | i >0,(i,p) =1}, A= Ay U A; and A° = AU {(0,0)}.

Consider K/(o — id)K with topology induced by the P-topology of K
(in this and another cases any topology induced by the P-topology will
be also called the P-topology). Choose a basis {a, | 1 < r < Ny} of the
Fp-module k and an element ag € k such that Tryp, ap = 1. Then the
system of elements

{arms 15" | (i,4) € A1 <7 < Noj U faol, (1)

gives a P-topological basis of the [, module K/(o —id)K.
Let  be the set of collections w = {J;(w)}o<i<r(w), Where I(w) € Zxo
and J;(w) € N for all 0 <1i < I(w). Set

A(w)={(i,j) e A’ | 0<i < T(w),j < J;(w)}

and A(w) = A%w)N A = A%w) \ {(0,0)} (notice that (0,0) € A°(w)).
Denote by U; (w) the Fp-submodule of K /(o —id)K generated by the images
of elements of the set

{awry 15| (i,4) € A),1 <7 < No} U {ao}, )
where 79 = s(7p). This is a basis of the system of compact [F,-submodules
in K/(0 —id)K with respect to P-topology.

Let
Gy ={D{)) | (i) € A1 <7< No}U (D)}
be the system of elements of T'?P dual to the system of elements (1) with
respect to the pairing &;. For w € §Q, set

Gi(w) = { D)) € G1 | (3,§) € Aw),1 <7 < NoJ U {Dop}-

Denote by M{ (resp., M{ (w)) the Fy-submodule in I'4" generated by ele-
ments of G (resp., Gi(w)). Notice that G (resp., G1(w)) is an [F-basis of
M{ (resp., ./\/l{(w))
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For any w € Q, set 'y (w)2” = Hom(U; (w), F,), then
%P = lim Iy (w)?".
wel

We shall use the identification of elements D(T‘).) where (i,5) € A(w),

(1,

1 <r < Ny, and D) with their images in I'1(w)*. Then
M{(w) = Homp 0p(Us (w), Fp) C T§"

and T'y(w)® is identified with the completion of M{ (w) in the topology
given by the system of zero neibourghoods consisting of all [F,,-submodules

of finite index. Denote by /\/llff (w) the completion of ./\/l{ (w) in the topology
given by the system of zero neibourghoods consisting of IF,-submodules,
which contain almost all elements of the set G;(w). Then M}ff (w) is the
set of all formal F)-linear combinations
(r) p(r)
> Py +enPoo

(,5) €A(w)
1<r<Ng

and we have natural embeddings M{(w) C Iy (w)? C /\/ljlof(w).

We notice that T'%" is the completion of ./\/l{ in the topology given by the
basis of zero neibourghoods of the form V; ® V5, where for some w € 0, V;
is generated by elements DE:)J) with 1 < r < Ny and (i,5) ¢ A°w), and
Fp-module V5 has a finite index in M{ (w). Denote by M’l’f the completion
of /\/l{ in the topology given by the system of neibourghoods consisting of
submodules containing almost all elements of the set G;. Then M’l’f is the
set of all F,-linear combinations of elements from G'1, and we have natural
embeddings M{ c T3> ¢ MPF,

1.4. Witt theory. Choose a p-basis {a; | ¢ € I} of K. Then for any
M € N and a field E such that K C E C Kp, one can construct a lifting
O (E) of E modulo p™, that is a fully faithful Z/pMZ-algebra Oy (E)
such that Oy (E) ®7,,mz Fp = E. These liftings can be given explicitly in
the form

Ou(E) = Wt (0" B) [{[ai] | i € 1}],

where [a;] = (a;,0,...,0) € Wy (E). The liftings Op/(E) depend functo-
rially on E and behave naturally with respect to the actions of the Galois

group I' and the Frobenius morphism o.
For any M € N, consider the continuous Witt pairing modulo p™

En e OM(K)/(U — ld)OM(K) ®Z/pI\/IZ Fﬁ}[’ — Z/pMZ,

where I‘?\}/} is the maximal abelian quotient of T' of exponent p™ considered
with its natural topology, and the first term of tensor product is provided
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with discrete topology. These pairings are compatible for different M and
induce the continuous pairing

O(K)/(o —id)O(K) ®z, I'(p)* — Z,,

where O(K) = lim Oy (K) and I'(p)?" is the maximal abelian quotient of
the Galois group I'(p) of the maximal p-extension of K in Kep.

Now we specify the above arguments for the local field K of dimension 2
given in the notation of n.1.1. Clearly, the elements £y and 79 give a p-basis
of K, i.e. the system of elements

{Tot0’0<a b<p}

is a basis of the KP-module K. So, for any M € Nand K C E C Kgp, we
can consider the system of liftings modulo p™

Om(E) = Wy (eM1E)t, 7], (3)

where t = [to], 7 = [1p] are the Teichmuller representatives.

Choose a basis {a, | 1 < r < Ny} of the Zy,-module W(k) and its
element g with the absolute trace 1. We agree to use the same notation
for residues modulo p™ of the above elements a,, 0 < r < Ny. Then the
system of elements

{777t | (i,5) € A, 1 <7 < No} U{ao} (4)

gives a P-topological Z/pM Z-basis of Oy (K) /(o —id)Oy(K).

For w € Q, denote by Ups(w) the P-topological closure of the Z/p™Z-
submodule of O/ (K) /(0 —id)Op(K) generated by the images of elements
of the set

{777t | (4,§) € Aw),1 <7 < No} U{ap} (5)
This is a basis of the system of compact (with respect to the P-topology)
submodules of Oy (K) /(o0 —id)Op(K) (i.e. any its compact submodule is
contained in some Ujs(w)). As earlier, we introduce the system of elements
of I'ab

Gy = {DE:)J) | (i,j) e A,1 <r < No} U {D(O,O)}a

which is dual to the system (4) with respect to the pairing £y;. Similarly
to subsection 1.3 introduce the Z/pM™ Z-modules Ml , Mﬁf; and for any
w € Q, the subset Gp(w) C Gy and the Z/pMZ-submodules Mﬂ(w),

[ (w)? and M%(u)) such that
ML, T c MEE ME (W) C Ty (w)™ € ML (w),
rab = @FM(w)ab, and Homp _op(Unr(w), Fp) = MQ(w)
Apply the pairing &3 to define the P-topology on F?\B. By definition,

the basis of zero neibourghoods of T'3% consists of annihilators Ups(w)? of
compact submodules Uy (w), w € Q, with respect to the pairing ;.
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We note that
Un(w)P = Ker (I‘?\Ij} — FM(w)ab) .

Finally, we obtain the P-topology on I'(p)* = LimIy (w)? and note that
M,w

the identity map id : T'(p)2. top — I'(p)?" is continuous. Equivalently, if

E/K is a finite abelian extension, then there is an M € N and an w € 2

such that the canonical projection I'(p)** — T'p /K factors through the

canonical projection T'(p)*® — T'pr(w)?P.

1.5. Nilpotent Artin-Schreier theory. For any Lie algebra L over Z,
of nilpotent class < p, we agree to denote by G(L) the group of elements
of L with the law of composition given by the Campbell-Hausdorff formula

1
(ll,lg) — ll OlQ = l1 + lQ + [l1,l2]

Consider the system of liftings (3) from n.1.4 and set O(E) = lim Op(E),
where K C ' C Kgp. If L is a finite Lie algebra of nilpotent class < p
set Lp = L ®z, O(E). Then the nilpotent Artin-Schreier theory from [1] is
presented by the following statements:

a) for any e € G(L), there is an f € G(Lk,,,) such that of = f oe;

b) the correspondence 7 +— (7f) o (—f) gives the continuous group homo-
morphism ¢ : I' — G(L);

c)if e € G(Lk) and f1 € G(Lk,,,) is such that o fi = f1oe1, then the ho-
momorphisms ¢ . and 1y, ., are conjugated if and only if e = coej o (—oc)
for some ¢ € G(Lk);

d) for any group homomorphism ¢ : I' — G(L) there are e € G(Lk) and
[ € G(Lg,,,) such that ¢ = ¢y.

In order to apply the above theory to study I' we need its pro-finite
version. Identify I'(p)®® with the projective limit of Galois groups I'fg /K
of finite abelian p-extensions E/K in K. With this notation denote by
L(E) the maximal quotient of nilpotent class < p of the Lie Z,-algebra

L(FE) generated freely by the Zj,-module I'g . Then L= lim ﬁ( ) is a
topological free Lie algebra over Z with topological module of generators
I'(p)*P and £ = lim £(E) is the maximal quotient of L of nilpotent class
< p in the category of topological Lie algebras.

Define the “diagonal element” é € O(K)/(oc — id)O(K)®z,I'(p)* as
the element coming from the identity endomorphism with respect to the
identification

O(K)/(0 —id)O(K)&z,T'(p)*” = Endeont (O(K)/(0 — id)O(K)

induced by the Witt pairing (here O(K) is considered with the p-adic topol-
ogy). Denote by s the unique section of the natural projection from O(K)
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to O(K)/(c —id)O(K) with values in the P-topological closed submodule
of O(K) generated by elements of the set (4). Use the section s to obtain
the element

e = (s®id)(é) € O(K)&T(p)** C Lk := O(K)QL
such that e — ¢ by the natural projection
Lx — L3 mod(c —id)L3? = O(K) /(o — id)O(K)&T (p)?P.

For any finite abelian p-extension E/K in Kep, denote by e the projection
of e to Lg(F) = L(F) ®z, O(K), and choose a compatible on E system
of fr € L(E)sep = L(E) ® O(Kgep) such that ofp = fr oer. Then the
correspondences 7 — 7 fg o (—fg) give a compatible system of group ho-
momorphisms ¢g : I'(p) — G(L(E)) and the continuous homomorphism

¢ =limyp: (p) — G(L)

induces the identity morphism of the corresponding maximal abelian quo-
tients. Therefore, ¥ = 1 mod C,(T'(p)) gives identification of p-groups
I'(p) mod Cp(I'(p)) and G(L), where C,(I'(p)) is the closure of the sub-
group of I'(p) generated by commutators of order > p. Of course, if
f = lim fi € G(Lap), then of = foe and ¥(g) = (9f) o () for any
g € T. Clearly, the conjugacy class of the identification ) depends only on
the choice of uniformisers ¢ty and 7y and the element oy € W (k).

For w € Q and M € N, denote by L/(w) the maximal quotient of
nilpotent class < p of the free Lee Z/p™ Z-algebra L (w) with topological
module of generators I'j;(w)®P. We use the natural projections I'(p)*? —
I3 (w)? to construct the projections of Lie algebras £ — Lys(w) and
induced morphisms of topological groups

Yu(w) : T(p) — G(Ly(w)).

Clearly, the topology on the group G(Ls(w)) is given by the basis of neigh-
bourhoods of the neutral element consisting of all subgroups of finite index.

Consider Z/pM Z-modules M@(w) and M%(w) from n.1.4. Denote by
ﬁ& (w) the maximal quotient of nilpotent class < p of a free Lie algebra over
7./p™ 7 generated by ./\/lf\l,(w), and by £% (w) the similar object constructed
for the topological Z/pM Z-module M% (w). Clearly, ﬁ]’\f; (w) is identified
with the projective limit of Lie sub-algebras of Ljs(w) generated by all
finite subsystems of its system of generators

r .o 0
{Dgi;) | 1<r<No(3,5) € A(w)} U {DEO?O)} . (6)
Besides, we have the natural inclusions

L1 () C Ly (w) € L2 (w),
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where L£y/(w) is identified with the completion of E{Z[(w) in the topology
defined by all its Lie sub-algebras of finite index. Let

ev(w) = Z Oér’l'_jt_iDg’)j) + O‘ODE(()),)o) € OM(K)®M%(<,U).
(i,7) € A(w)
1<r<Np

Lemma 1.1. There ezists far(w) € G(Ly(w)sep) such that ofayr(w) =
fr(w) o enr(w) (and therefore ep(w) € Opn(K)®T32(w)) and for any
g €T(p),

Y (w)(g) = (9fa(w)) o (= fu(w)).
Proof. Denote by €);(w) the image of e in Oy (K)®Ly(w)®. Let Up
be an open submodule of M’]\’/J;(w) and U} = Uy N Tpr(w)?P. Set eg =
er(w) mod Oy (K)®Uy and efy = €, (w) mod Oy (K)QUS. Then

e, €l € V i= Opr(K) @ Tar(w)* /UG = Opr(K) © MPL(w) /U,

The residues eg mod(o — id)V and ey mod(c — id)V coincide because the
both appear as the images of the “diagonal element” for the Witt pairing.
But ep and e, are obtained from the above residues by the same section
Vmod(o — id)V — V, therefore,

ey (w) = epr(w) mod Oy (K)QUy.

Because intersection of all open submodules Uy of Mjs(w) is 0, one has
ehy(w) = ep(w) and we can take as fy(w) the image of f € G(Lesep)
under the natural projection G(Lsep) — G(Lar(w)sep). The lemma is
proved. O

By the above lemma we have an explicit construction of all group mor-
phisms s (w) with M € N and w € Q. Their knowledge is equivalent to
the knowledge of the identification ¢y mod Cy,(I'(p)), because of the equality

= limyy (W)
M,w
which is implied by the following lemma.
Lemma 1.2. Let L be a finite (discrete) Lie algebra over Z, and let ¢ :

I'(p) — G(L) be a continuous group morphism. Then there are M € N,
w € Q and a continuous group morphism

¢um(w): G(Lm(w)) — G(L)
such that ¢p(w) = Ypr(w) o dpr(w).

Proof. Let e € G(Lk) and f € G(Lgep) be such that of = foe and for any
g € I'(p), it holds

¢(9) = (9f) o (=1)-
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One can easily prove the existence of ¢ € G(Lg) such that for
e1 = (—c)oeo(oc), one has
D T a0

(a,b)eA°

where all [(, )0 € Ly = L ® W(k) and [(g )0 = al(o,0) for some [y € L.
If fi = focthen of; = f1 oe; and for any g € T,

¢(9) = (9f1) o (= f1).
Let hy,...,hy € L be such that for some m; € Z>o with 1 <i <,

l(a‘7b)70 = Z a(a,b),ih’h

1<i<u
where all coefficients a(q3); € W (k), then

el = Z A;hi,

1<i<u

If

where all coefficients
Ai = Z O[(a’b)’z"r_bt_a € OM(K)
(a,b)eA9
with M = max{m,; | 1 <i <wu}. Clearly, there exists w € 2 such that
a(ap); =0forall 1 <i<wand (a,b) ¢ A%(w).
Let 1, ..., BN, be the dual W (IF,)-basis of W (k) for the basis a1, . .., an,

from n.1.4. Consider the morphism of Lie algebras ¢/, (w) : Lyr(w) — L
uniquely determined by the correspondences

D,0) — L(0,0), 2 — Z "(Brl(a,p),0)
0<n<Nyp
for all (a,b) € A(w) and 1 <r < Nj.

Clearly, ¢/,(w) is a continuous morphism of Lie algebras, which trans-
forms epr(w) to e1. Let f' € G(Lgep) be the image of fas(w), then of’ =
f' oey. So, the composition

¢' = vu(w) o ¢y (w) : I'(p) — G(L)
is given by the correspondence ¢'(g) = (gf’) o (—f’) for all g € T'(p).

Let co = f o (—f) € G(Lsep). Then ¢y € G(Lgep)|o=ia = G(L). There-

fore, for any g € I'(p),
¢(9) = (9f) o (= f) = (—co) o (9f") o (= f") 0co = (—c0) © ¢'(g) © co.
So, we can take ¢ps(w) such that for any I € Ly (w),

du(w)(1) = (—co) © $hs(w)(1) o co.
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The lemma is proved. O

2. 2-dimensional ramification theory

In this section we assume that K is a 2-dimensional complete discrete
valuation field of characteristic p provided with an additional structure
given by its subfield of 1-dimensional constants K. and by a double valu-
ation v(¥ : K — Q2 U {oo}. By definition K, is complete (with respect
to the first valuation of K') discrete valuation subfield of K, which has fi-
nite residue field and is algebraically closed in K. As usually, we assume
that an algebraic closure K, of K is chosen, denote by ., the separable
closure of any subfield E of K, in K, set I'r = Gal(Esp/E) and use
the algebraic closure of K. in FE as its field of 1-dimensional constants FEk.
We shall use the same symbol v(?) for a unique extension of v(®) to E. We
notice that pr; (v(?) : E — QU {oc} gives the first valuation on E and
proy(v(©) is induced by the valuation of the first residue field EM) of E. The
condition v(?)(E*) = Z? gives a natural choice of one valuation in the set
of all equivalent valuations of the field F.

2.1. 2-dimensional ramification filtration of fE CI'g. Let E be a
finite extension of K in K,,. Consider a finite extension L of E in g,

and set fL/E = Gal(L/EL.) (we note that L. = (EL¢).). If liﬂlfL/E =Ig
L
then we have the natural exact sequence of pro-finite groups

1—>fE—>FE—>FEC—>1. (7)
The 2-dimensional ramification theory appears as a decreasing sequence
of normal subgroups {Fg)} - of ', where
je

Jo = {(a,b) € Q* | (a,b) > (0,0)} .

Here Q? is considered with lexicographical ordering (where the advantage is
given to the first coordinate), in particular, Jo = ({0} x Q>0)J (Q=0 x Q).
Similarly to the classical (1-dimensional) case, one has to introduce the
filtration in lower numbering {F L/E,j }j el for any finite Galois extension
L/E. Apply the process of “eliminating wild ramification” from [4] to
choose a finite extension EC of L in K¢ 415 such that the extension L:= LEC
over E := EFE, has relative ramification index 1. Then the corresponding
extension of the (first) residue fields L(Y /EW is a totally ramified (usually,
inseparable) extension of complete discrete valuation fields of degree [E : E‘]

If 0 is a uniformising element of L() then Oz = Opw10]. Introduce
the double valuation rings Oz := {l e E|vO() > (0,0)} and 07 =
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{l eL|vO() > (0,0)}. Then O; = Og[f] for any lifting 6 of 6 to
O;3.

7. This property provides us with well-defined ramification filtration of
FE/E C I't/g in lower numbering

I'yej= {9 SV 00 (g0 — 0) > v(9) +j} ;

where j runs over the set Js.
One can easily see that the above definition does not depend on the

choices of EC and . The Herbrand function gof}E 1 Jog — Jy is defined

similarly to the classical case: for any (a,b) € J () take a partition
(0,0) = (ao,bo) < (al,bl) <0 < (as,bs) = (a, b),

such that the groups I'y/p ; are of the same order g; for all j between
(ai—1,b;—1) and (a;,b;), where 1 <i < s, and set

99%?E(aab) = (g1(a1—ao)+- - +gs(as—as—1), g1 (b1 —bo)++ - -+gs(bs—bs—1))

Let E C L1 C L be a tower of finite Galois extensions in Fg,. Then the
above defined Herbrand function satisfies the composition property, i.e. for
any j € J@, one has

2) . 2 2 .
Wp) = (W0,) - (8)

This property can be proved as follows. Choose as earlier the finite
extension E. of L., then all fields in the tower

L>Li DE,
where I = LEC, L = L1EC, E = EE, (note that L. = ELC :717?0),
have the same uniformiser (with respect to the first valuation). If 6 is a
uniformiser of the first residue field L(}) of L and 6 07 is a lifting of 0,
then O = Opl0] and Of = O [#]. But we have also O = OE[NZ/L(Q)]

(1)

because N7 /zl(é) is uniformizing element of El . Now one can relate the

L
values of the Herbrand function in the formula (8) by classical 1-dimensional
arguments from [8].

Similarly to classical case one can use the composition property (8) to
extend the definition of the Herbrand function to the class of all (not nec-
essarily Galois) finite separable extensions, introduce the upper number-

(2) (-
ing I'r/p; = I‘(Lg;%/E(])) and apply it to define the ramification filtration

{I‘g)} of the subgroup fE CcTI'g.
JjEJ2
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2.2. Ramification filtration of I'g. The above definition of 2-dimen-
sional ramification filtration works formally in the case of 1-dimensional
complete discrete valuation fields K. Note that in this case there is a
canonical choice of the field of 0-dimensional constants K., and we do not
need to apply the process of eliminating wild ramification. This gives for

any complete discrete valuation subfield £ C K, the filtration {F%})} .
v>
of the inertia subgroup I'r C I'g. Note also that this filtration depends on

the initial choice of the valuation v(¥) : K — QU {00} and coincides with
classical ramification filtration if v(0)(E*) = Z.

Consider the 2-dimensional ramification filtration {F(Ej)}‘ p and the
JE€J2

above defined 1-dimensional ramification filtration {FSEUC)} . for the (first)

valuation pry(v() : K, — QU {o0}.
Let J = J; U Ja, where J; = {(v,c) | v > 0}. Introduce the ordering on
J by the use of natural orderings on J; and J2, and by setting j; < jo for

any j1 € Ji and jy € Jo. For any j = (v,c) € Jq, set Fg) = pr! <Fgc))
where pr : 'y — I'g_ is the natural projection. This gives the complete

ramification filtration {Fg)} - of the group I'g. For any finite extension
je

L/E, we denote by
QOL/E S —J

@ .
L/E -

: J1 — Jp (which coincides with

its Herbrand function given by the bijection ¢ Jo — Jp from n.2.1

(1)
Lc/Ec

the classical Herbrand function if v(%) (E*) = Z2?). We note also that the
above filtration contains two pieces coming from the 1-dimensional theory
and the both of them coincide with the classical filtration if v(0)(E*) = 72,
The first piece comes as the ramification filtration of I'g. given by the

and its 1-dimensional analogue ¢

groups I’ %’C) = Fg’c)/ Fg’o) for all v > 0. The second piece comes from the

ramification filtration of the first residue field E) of E. Here for any v > 0,
0, 0,

Fg()l) = FSE v)/FSE OO), where

Fg’oo) = the closure of U {Fg’b) | (a,b) € J?) 0 > 0} .

2.3. n-dimensional filtration. The above presentation of the 2-dimen-
sional aspect of ramification theory can be generalised directly to the case
of n-dimensional local fields. If K is an n-dimensional complete discrete
valuation field, then we provide it with an additional structure by its (n—1)-
dimensional subfield of “constants” K. and an n-valuation v K —
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Q" U {oco}. For any complete discrete valuation subfield E of K, the n-

dimensional ramification filtration appears as the filtration {Fg)} . of
JeJ"

the group Iy = Gal (Esep/ Ecsep) With indexes from the set
Jp=4{a€Q"|a>(0,...,0)}

(where E. is the algebraic closure of K. in F). The process of eliminating
wild ramification gives for any finite Galois extension L/F a finite extension
EC of L. such that for the corresponding fields L= LEC and E = EEC, the
ramification index of each residue field L) of L with respect to the first
r < n — 2 valuations over the similar residue field E( of E is equal to 1.
Then one can use the lifting © of any uniformising element of the residue

field L("=Y to the n-valuation ring 07 = {l eL| v >(0,... ,0)} to
obtain the property

O; = Oz[6].
This property provides us with a definition of ramification filtration of
I'; /B cTy /E in lower numbering. Clearly, if L is any field between E and

L, and L= L1E~]c, then one has the property
O, = Op [Niy1, 0]

This provides us with the composition property for Herbrand function, and

gives finally the definition of the ramification filtration {Fg)}je ;. of I in
upper numbering.

One can choose a subfield of (n — 2)-dimensional constants K., C K.
and apply the above arguments to obtain the ramification filtration of
Gal(K¢sep/Keesep).- This procedure gives finally the ramification filtra-
tion of the whole group I'g, which depends on the choice of a decreasing
sequence of fields of constants of dimensions n — 1, n — 2, ... , and 1.

3. Auxiliary facts

In this section K is a 2-dimensional complete discrete valuation field
given in the notation of n.1.1. We assume that an additional structure
on K is given by its subfield of 1-dimensional constants K. and a double
valuation v(®) such that K. = k((to)) and v(O(K*) = Z2 (or, equivalently,
v (tg) = (1,0) and v (79) = (0,1)). As in n.1.4 we use the construction
of liftings of K and Kgep, which corresponds to the p-basis {tg, 70} of K.
We reserve the notation ¢ and 7 for the Teichmuller representatives of ¢g
and 79, respectively. For any tower of field extensions K C E C L C Ky,
we set

j(L/E) = max {j eJ| Fg) acts non-trivially on L} ,
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where Fg) is the ramification subgroup of I'p = Gal(Fsp/E) with the
upper index j € J. Similarly to the 1-dimensional case, j(L/E) is the
value of the Herbrand function of the extension L/FE in its maximal “ edge
point”. Then the composition property (8) from n.2.1 gives for arbitrary
tower of finite extensions F C L C L,

J(L/E) = max (j(L/B), o1, pG(L/L1)} (9)
If o« € W(k), then as usually
E(a,X)=exp (aX +o(@)XP/p+ -+ 0" (a)XP" /p" +...) e W(k)[[X]].
3.1. Artin-Schreier extensions. Let L = K(X), where
XP — X = agry 'ty %, (10)
with ap € k* and (a,b) € A, ie. a,b€Z, a >0, (a,b,p) = 1.

Proposition 3.1. a) If b= 0, then j(L/K) = (a,c);

b) if b # 0 and vy(b) = s € Z>o, then j(L/K) = (a/p®,b/p®).

Proof. The above examples can be found in [9]. The property a) is a well-

known 1-dimensional fact. The property b) follows directly from definitions,
s+1

we only note that one must take the extension M. = K.(t1), t’f o to, to

kill the ramification of L/K and to rewrite the equation (10) in the form

1 _
p_t‘ll(p )7_1 =7, bl’

where b; = b/p®, a’l’s =qpand X = (Tltl_“)ps. Then for any j € J,

() _ PJ; for j < (a/ps+17b1/p)7
YL/K\ j+ (1—1/p)(a/p®,b1), otherwise.

So, I‘(Lj/)K = e if and only if j > (a/p®,b1), that is j(L/K) = (a/p®,b/p®).
The proposition is proved. O

3.2. The field K(N*,j*). Let N* € N, ¢ = pV" and let j* = (a*,b*) € Jy
be such that A* :=a*(¢—1) € N[1/p|, B* :=b*(¢—1) € Z and (B*,p) = 1.
Set s* = max{0, —vp(a*)} and introduce t19,t20 € K,z such that I, = ¢,

*

and tgg = th-

Proposition 3.2. There exists an extension Ko = K(N*,j*) of K in Keep
such that

a) Koo = K. and [Ko : K] = ¢;

b) for any j € Ja, one has

@ ()= aJ, forj <j*/a,
PKo/k\J (g—1)7*+ 4, otherwise.
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(what implies that j(Ko/K) = 5*);
c) if Kby := Ko(tao), then its first residue field K’;l) equals k((710)), where

o B(=1, 7y to) = 0

here t4 = & 4" and E is an analogue of the Artin-Hasse exponential
10 20
from the beginning of this section).

Proof. We only sketch the proof, which is similar to the proof of proposition
of n.1.5 in the paper [2].
Let t(fl = to, 7{171 =19, and K1 = K(t1,71). Let L1 = K1(U), where

Ul + b*U = Tl—b*(q—l)ps tl—a*(q—l)ps '

It is easy to see that [L; : K] = ¢ and the “2-dimensional component” of

the Herbrand function @5;21) I is given by the expression from n.b) of our

proposition. Then one can check the existence of the field K’ such that
K CK' C Ly, [K':K]=gqand L1 = K'K;. We notice that K = K. and
one can assume that K’ = K(U?!). Now the composition property of the

Herbrand function implies that cp(Lzl) KT gog? /K-

To verify the property c) of our proposition let us rewrite the above
equation for U in the following form

(Ultg*(q’l))q 4 b*tg*(frl)2 (Ultg*(q71)> _ Tl*b*(qfl)’

where UP" = U and t} = ¢, (notice that t3 ' = t10). This implies the
existence of 9 € Ly such that Uty (a=1) _ Tz—b (¢—1)

can be written in the form
bk _ *(0_1)2 *( 0 1)2 —b*(a—
72b a(g—1) <1+b*tg (¢-1) T;J (¢-1) ) _— b*(q=1)

, i.e. the last equation

One can take 19 in this equality such that Tg_l = 11y € K’ and after taking

the —(1/b*)-th power of the both sides of that equality, we obtain
e i\ —1/b
40" (1 + b*t(llo(q 1)7'{0[) (a 1)> =T19.
This gives the relation
o (1= o OV = gy g gy D g

where A € K'(t3) is such that v°(A) > (0,0). Then a suitable version of the
Hensel Lemma gives the existence of B € K'(tg) such that v*(B) > (0,0)
and the equality of n.c) of our proposition holds with

/ b*(g—1)+1,a*(¢—1)
T10 = Ty9 + BTy tio .
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3.3. Relation between different liftings. Choose j* € J, and N* € N,
which satisfy the hypothesis from the beginning of n.3.2 and consider the
corresponding field Ky = K(N*,j*). Let K’ = Ky(tig), then K’ is a
purely inseparable extension of K of degree ¢ and K., = Ksp K'. Clearly,
K’ = K'Y ((t10)), where K’ = k((r0)).

Consider the field isomorphism 1 : K — K’, which is uniquely defined
by the conditions |, = o=N", n(ty) = t10 and n(79) = T19. Denote by Tsep
an extension of 1) to a field isomorphism of Kge, and K.

For M > 0, denote by O}, ,(K') and O}, (K{,,), respectively, the lift-
ings modulo pM ™ of K" and K/, with respect to the p-basis {t19, 710} of K'.
We reserve now the notation ¢; and 7 for the Teichmuller representatives of
elements t10 and 719, respectively. Clearly, n(Onr41(K)) = O}, (K') and
Nsep(Onr+1(Ksep)) = Oy 41 (Kfep)- On the other hand, by n.c) of Prop. 3.2,
K} .= K'(t29) = Ko(tao) is a separable extension of Ky := K (t29). We note
that Ké,sep = KéepKé and Ko gp = KeepK2. Denote by Opsy1(K2) and
Onr41(Kagep), respectively, the liftings modulo pM of Ky and K op with
respect to the p-basis {t20, 70} of K2 (as earlier, to and 7 are the Teichmuller
representatives of elements toy and 79, respectively).

Clearly, one has the natural embeddings

On+1(K) C On41(K2), Opg1(Ksep) C Onr1 (K2, sep)-

With respect to these embeddings we have t = tgps . Denote by O}, (K3)
and O}, (K3 ) the liftings of K3 and K, with respect to the p-basis
{t20, 10} of K} (as usually, to and 71 are the Teichmuller representatives of
elements to and 719, respectively). Clearly,

OA/f\/[-l-l(K/) - O§\4+1(Ké)a OA/f\/[—&—l(K;ep) C 09\4+1(Ké,sep)'

With respect to these embeddings we have tgs = 1.
The first group of the above liftings can be related to the liftings of the
second group by the following chain of embeddings

oMOn 41 (Ko) € Wari1 (6™ Ky) € Wiy (6™ Kb) € Onpar (K3).
Similarly, one has the embedding o™ Opry1(Kasep) € Ofyyiq (K3 p). The
above embeddings correspond to the relation
TprE(—l, TlB*tf* )pM = " mod pM+1,
which follows from the basic equation given by n.c) of Prop. 3.2.

3.4. A criterion. Let L be a finite Lie algebra over Z, of nilpotent class
< pandlet M € N be such that p™ 1L = 0. Consider the group homomor-
phism ¢ : I' — G(L). By the nilpotent Artin-Schreier theory there exists
ane € G(Lg) = L®0p41(K) and an f € G(Lsep) = LROp41(Kep) such
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that of = foeand for any g € I', ¢0(g) = (gf)o(—f). Let K(f) = Kiégr%
be the field of definition of f over K. Note that for jo € J, the ramification
subgroup I'0) ¢ Ker )y if and only if j(f/K) := j(K(f)/K) < jo.

Consider f1 = nsep(f) € Liep = L ® Oy, 1(Kf,). We use the embed-
dings from n.3.3

UMOM—i-l(Ksep) - UMOM+1(K2,Sep) - O§\4+1(K§,sep)a

and O§\4+1(Kéep) - O§\/1+1(Ké,sep) to define X € L/2,sep = L®O§\4+1(Ké,sep)
such that

oM f = (0M+N*f1) o X.

Let T'y = Gal(K2gep/K2) and let {ng)}jej be the ramification filtration
of I's related to the additional structure on Ky given by the valuation p(0) | Ky
and the subfield of 1-dimensional constants Ky . = K¢(t20).

Let K4(X) be the field of definition of X over K). Set

Jo(X/K3) = max {j eJ| ng) acts non-trivially on KQ(X)} .
Proposition 3.3. jo(X/K2) = max {5*,j(f/K)}.

Proof. One has the natural identification I' = I'y, because K3 gp = Keep K2
and Ky is purely inseparable over K. With respect to this identification
for any j € Jy, we have T'U) = ng), because the extension Ky/K is in-

duced by the extension of 1-dimensional constants Ko ./K.. This implies

Pl iy = P o T2 Kb/ K) = j* and jo(X/K3) > 5
If j(f/K) € J1, then K(f) C Kcgsep, K'(f1) C K¢ and, therefore, X
is defined over Kj . .., and jo(X/K3) = ja(K5/Ks) = j*, i.e. in this case
the proposition is proved.

Now we can assume that A = j(f/K) € Jy. Let IV = Gal(K],,/K') and

' sep
let {T” U )}je J be the ramification filtration corresponding to the valuation
o' = n(v®) and K! = K.(t19). Then j/(f1/K') = A, where J'(fi/K') is
defined similarly to j(f/K) but with the use of the filtration {I” & )}je J-

Because K} = K'(tg0) is obtained from K’ by extension of its field of
constants, there is an equality

i'(fi/K") = j'(f1/K3) = A
But the relation v/¥ = quv® implies that

¢ A =g (f1/K3) = ja( 1/ K3).
This gives

Ja(K5(f1)/ ) = max { (K3/K2), ¢3) e, (a7 A) |
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Because j(K}/K>2) = j* and SD@/Kz = gog())/K, it remains to consider the
2

following two cases:
—let A = j(f/K) = j(Ka2(f)/K2) < j*, then ja(Ky5(f1)/K2) =
J(K}/Ks2) = j* and, therefore, j(K5(X)/K2) < j*, ie. j(K)(X)/K2) = j*;

—let A > j*, then jo(K}(f1)/K2) = @i¢) e, (a7 A) = 5" + (A= j*) Ja <

A = j(K5(f)/K2), what gives that js(K5(X)/K2) = j(K5(f)/K2) = A.
The proposition is proved. O

Corollary 3.4. Suppose that jo > j*. Then the following three conditions
are equivalent:

a) j(f/K) < jo;

b) ja2(X/K2) < jo;

c) j'(X/K") < qj° — (¢ — 1)5*.

3.5. First applications of the above criterion. Corollary 3.4 can be
applied to study ramification properties of the homomorphism 9. This
criterion has been already applied in the case of 1-dimensional local fields
to describe the structure of the ramification filtration modulo commutators
of order > p [1, 2], and will be applied in section 5 to the description of
2-dimensional ramification filtration modulo 3rd commutators. It can be
used to prove also the following two propositions.

Proposition 3.5. Let M € Z>o and let f € Opnr41(Ksep) be such that
of — f=wr b,
where w € W(k)*, a € Z>o, b € Z\ {0}, (a,b,p) =1 and vy(b) = s. Then

JE)/E) = (pMa,p" ).

Proof. First, consider the case s = v,(b) = 0. We are going to reduce the
proof to the case M = 0, where the statement of our proposition has been
already known by Prop. 3.1.
Choose a* = m*/(q — 1), where (m*,p) = 1, ¢ = p’¥ for some N* € N,
and
q

2(¢—1)
One can take, for example, g =p, N*=1ifp#2, qg=4, N* =2 if p =2,
and m* = pMa(q—1) — 1.
Take b* =1/(q¢—1), j* = (a*,b*) and consider the field Ky = K(N*, j*)
and all related objects introduced in n. 3.4. Consider f; € OM+1(Kéep)
such that

pMa < a* < pMa.

ofi — fi = (N w)r e,
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then X = oM f — oM™V f) € O}, (K} ,,) and satisfies the equation
oX — X = (oMw)ry P ag o (E(b, o) - 1) ,

where ©* = Tf (a- 1)tl*(q_l). It can be easily seen that for some h = h(T) €
Zp[[T], one has

E®b, T =1+ bpMT + T2h(T).
Therefore, X = X7 + X5, where

_haM * (o M Py
o X1 — Xy = pMb(eMw)r] bp™ q+b" (g l)t1 ap*atat(a=1)

Xy — Xy = Ay = *bP]VIquZb*(q 1) lfaquHa*(qfl)h(@*)‘
By the choice of a* we have the inequality —ap™q + 2a*(q — 1) > 0, which
implies lim,, .o 0" A2 = 0, X3 € O}, (K') C O}, ,(K3) and j'(X/K') =
J(X1/K'"). But
§'(X1/K') = (ap™gq —a*(q — 1), bp™q = b"(q — 1))
by Prop.3.1. By Corollary 3.4 we conclude that j(f/K) = (p™a,p™b), and
the case s = 0 is considered. .
Let vp(b) = s > 1. Set b = b'p*, t'¥ =t, L = K(t'), w = o 5w, and

take f € O}, (Lsep) such that of’ — f' = W'~ and o’ f' = f. Let

L. :=k((t')) and consider the valuation vI(LO) of L such that véo) (t') = (1,0)
and v( )( ) = (0,1). In the ramification theory, which corresponds to
the valuation v(LO) and the field of constants L., we have already known
that jr(f'/L) = (®Ma,pMV). But if @ € Lag and v (a) = (d/,¥'), then

(LO)( ) = (p*d’, V). Because the field of constants of L is the same in the
both ramification theories, one has

i) = ™ *a,p™0) = (M e, pM o).

It remains only to note that j(f'/L) = j(f/K). The proposition is proved.

Proposition 3.6. Let a € N, b,c € Z\ {0}, (a,b, ) = 1 s = Up(b) <w
and o, € W(k)*. Letf—f(ﬁ,aab)g: (
such that

cg—g=oar ™ of — f=pr"C.
Then j(f/K) = (™ ~*a,p™ (b + 0)).
Proof. First, consider the case v,(b) = 0 and M = 0. Let L; = K(g),
Ly = Li(f). Let £ =t and gt§ = 0~ *(a)r; ’. Then

-1
Tl—bp <1 o a(a) Tf(pl)t‘f(pl)> — b
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and we can assume that

—1
r=f (14 T 00 ) mod £ Vi) 1]

Therefore, 7¢g = o1 (a)r; P79 + A, where A € L; and lim 0" A = 0.

n—oo

Therefore,

JUF/L) = 3(7 L) = <p Cp;b) ,

where f7 — f = 7, P’ This implies that
J(f/K) =max {j(L1/K), ¢,k (5(f/L1))}

a b
=max 1 (a,b),pr, ——4c = (a,b+ c).
{@oronn (80 +c)} =@oro

Consider now the case s = 0 and M € N. Set a* = pMa and choose
b* € Z such that (b*,p) = 1 and bpM < b* < bp™ + cp™. Consider the field
Ky = K(1, (a*,b*)) from n. 3.2 together with all related objects. Introduce
fi, 91 € Ohyy1 (K,) such that

sep
ogr—g1=0 o) ", ofi — fi =0 1B Car.
Set
Y:O_Mg_O_M+1gl7 X:UMf_UM+1f17
then
M+1 M+l

oY —Y = oM (o) (E(b, o )P — 1) ,

ocX — X = UM(ﬁ)TprMHE(c, @*)pMUMg — UM(ﬁ)TprMHUMHgl.

In the notation from the proof of Prop. 3.5 we have

b4 (p=1)

oY =Y = oM(a)pMbr] tl_apM—i-

_bplv1+1

oM ()7 " 9 2 (0).

Therefore, Y = pMY; + tcpr(pfz)Al, where A; € k((71))[[t1]] and Y7 is the
element from O}, | (K{,,) modp = K., such that

sep
oY1 —-Y) = UM(a)lwfbpMH%*(pfl)tl_apM.
Therefore,
Mg — oM+lg L pMy, 4 t<111)]‘”(10—1)A17
and for some As € k((71))][[t1]], one has

—epMH1

oX — X = oM ()1 (E(c, o P — 1) oMHlg 4
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One can check up that

—epM+1

77 (Bl o 1) et k() [n]

and
M
lim o° (t‘lzp (p_l)o*M“gl) =0.

S§—0OQ
So, if X1 € K[, is such that

M+1

oXi1 - X1 =BT 1,

then jo(X/K}) = jo(X1/K)). Now we can apply the case M = 0 of our
proposition to obtain that

. 1 .
J2(X1/K35) = E(GPM7 epM T+ bpM T — b (p — 1)).

This gives immediately that jo(X1/K2) = (p™a,p™ (b+c)). The case s = 0
is considered.

The case of arbitrary s € Z>o can be reduced now to the case s = 0 in
the same way as in Prop. 3.5. The proposition is proved. U

4. Filtration of E{V[(w) mod C’g(ﬁﬁ/l(w))
In this section we fix w = {J;(w) }o<i<r(w) €  and M € N. We set

J(w) = max{J;j(w) | 0 <i < I(w)}.
Clearly, the set
Si(w) = {p"a | (a,b) € B°(w),n € Z}

consists of non-negative rational numbers and has only one limit point 0.
Therefore, for any a € Q¢, we can define the positive rational number

01(w,a) =min{a — s | s € Si(w),s < a}.
We also agree to use the notation
LT := Lp(w)’ mod C3 (EM(w)f) , LPT = Lyr(w)P mod Cs <EM(w)pf) ,

where £/ (w)/ and £s(w)P/ are Lie W), (FFp)-algebras from n. 1.5. We also
set

Lar(W)] = La(w) © Wa(k), Lar( = Lar(w)P! @ War(k),
Li = Lf o W(k) and o = f o wik).
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4.1. Special system of generators. Let
By ={(a,b) € Jy | be Z,(b,p) =1,a € Z[1/p]} .

This is a set of rational pairs which are either of the form (0,b), where
beN,(b,p) =1, or — (a,b), where b € Z, (b,p) =1, a > 0 and a € Z[1/p).
Set By = Ay, i.e. By is the family of pairs (a,0) such that a € N and
(a,p) = 1. We also set B = By UB; and BY = BU{(0,0)}.

For j = (a,b) € Z2, let

s(j) = s(a) = max{—u,(a), 0}.

Then the correspondence (a,b) — (ap®, bp®), where s = s(a, b), induces the
bijection f5 : By — As and the identical map f; : By — Aj. One can set
by definition fy : (0,0) — (0,0) and apply these maps fo, f1, fo to obtain
the bijections f : B — A and f0: B — A% Set By(w) = f, "Aa(w),
Bi(w) = f{ A1 (w), B(w) = 1 A(w), and B(w) = fO (A%(w). If (a,b) €
B(w) and f(a,b) = (i,j) € A(w), set in the notation of n.1.4

D(a,b),O = Z a’“Dg,)j) S ﬁM(w)ﬁ.
1<r<No
We set also D(gg)0 = @D(o) and for any (a,b) € B%(w) and n € Z,
Dpyn = 0"Diapy0- Clearly, Dy p)ning = D(ap)ns SO We can assume if
necessary that n € Z mod Nj.
It is easy to see that the family

{Djn | j € B(w),n € Zmod No} U {Dg)}

is the set of free generators of the Wy, (k)-Lie algebra Ly (w)! @ War (k) (or
the set of free generators modulo deg p of the Lie algebra £ (w)! @ W (k)).
We shall agree to use the notation Dj,, for all j € B°, by setting D, =0

if j ¢ B%(w).

4.2. Elements F,(w), v € J. Define the elements F, (w) = F, € L .=
Lif ® W (k) for all v € J as follows.

Let v = (71,¢) € J1.

For v, ¢ Z, set

_ § n1 . .
}—’7 - p al [D]1n17D.]2n2] )
n1,m2,51,j2

where the sum is taken under the restrictions n1 € Zx>q, no € Z, j1 =
(a1,0),j2 = (a2,0) € Bi(w) and p™a; + p™2as = 71 (notice that ny =
vp(71) < 0).
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If v1 € Z, then v = ap™, where m € Z>p, a € N and (a,p) = 1. In this
case we set

Fy=ap™Digoym — Y. 0(n1,n2)p™ a1 [Djiny s Djomy]
n1,n2,J1,J2

where the sum is taken under the same restrictions as in the case of non-
integral y; and

1, if ny > no,
n(ni,n2) =< 1/2, if ng =ng,
0, if n; < no.
Let v = (71,72) € Jo.
If vo ¢ Z, set
Fy=- Z n(n1 — s1,m2 — s52)p™* by [DjlvaJém] )

n1,m2,J1,J2
where the sum is taken under the restrictions n1 € Z>g, n2 € Z,
g1 = (a1,b1), jo = (a2,b2) € B(w), p™ay + p™?az = 71, p™by + p"2by = 72
(notice that F, # 0 implies that ng = v,(712) < 0), and s1 = s(a1),
so = s(ag).
If 45 € Z, then 5 = bp™, where m € Z>o, b € Z and (b,p) = 1. In this
case we set

]:'y = bme(a,b),m - Z 77(“1 — S1,N2 — 32)pn1b1 [Djlnlangng] )

n1,12,71,52

where a = yp™™, s1 = s(j1),52 = s(j2), the sum is taken under the
same restrictions as in the case of non-integral v, (notice that everywhere
D, =0if j ¢ Bw)).

One can easily verify that the above definition gives elements F, from
Lif but, in fact, one has the following more strong property.

Proposition 4.1. For any vy J, Fy € L{.

Proof. The only non-obvious case appears when v = (v1,72) € Jo,
v1 > 0. We must prove the finiteness of the set of collections of the
form (j1,n1,j2,n2), where j; = (a1,b1),j2 = (az,b2) € B(w), n1,ng € Z,
0<ni <M, ny—s1 >ng—s2, p"a;+p"2az =y and p"tby +p"2by = 3.

Let ! = a1p®, a3 = agp*2, then a and a9 are integers from the interval
[0, I(w)] and we can assume that they are fixed.

Assume that a,a) # 0. Then the equality a;p™ + agp™ = v; implies
that

51("‘)771) < a[l)pnlislaagpnzisz <71

therefore, there are mi(w,y1), ma2(w,y1) € Z such that

mi(w,v1) < ni — s1,m2 — 52 < ma(w, 7).
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So, we can assume that the values n; — s1 and ng — sy are fixed. The
equality b1p™ + bap™? = o implies the double inequality

Y2 — J(w)pmz(w,’n) < b1pm < J(w)pmz(w,’yl).

Together with the obvious inequality n1 > n1 — s1 it implies the finiteness
of the set of all different collections (b1,n1). All other components of the
collection (j1,m1,j2,m2) can be recovered uniquely from (b1,n1) and the
values a?,ag,nl — 81,M9 — S9, which were fixed earlier. Therefore, our
proposition is proved in the case a(l), ag #0.

Suppose now that @y = 0. Then s; = 0, by > 1 and the relation
p"27%2a9 = 71 determines uniquely the value of ny — so. The inequalities

J(w)pM >bp" >1

imply the finiteness of the set of different collections (b1,n1). As earlier,
this gives the finiteness of the set of all collections (ji,n1, j2, n2) such that
0
CLl — O.
Suppose, finally, that @) = 0. Then sy = 0, by > 1 and the value of
ni1 — s1 is determined uniquely. The finiteness of the set of all collections
(bo, n2) follows from the inequalities

1 <bop™ < J(w)p™ ™, ng > min{ni,vp(y2)} > min{0,v,(y2)}
This gives the finiteness of the set of all collections (j1,n1, j2, n2) such that

ag = 0. The proposition is completely proved. O

4.3. Ideals Li(j), j € J. Forany j € J, define the ideal Li(j) of L£ as its
minimal o-invariant ideal containing the elements F, for all v > j, v € J.

Clearly, {L£ (])} _, is a decreasing filtration of ideals of Lg.
j€
For a € Q>o, set

Li(ar) = {Lg(j) | j=(d,V) € Jo,d > a} .
Notice that for a given a and all sufficiently large b, the ideals Li( j), where
j = (a,b), coincide.

Proposition 4.2. Let j; = (a1,b1) € J2, m € Z>o and p"ay = a. Then
for any ja = (aa,b2) € Jo, where ag > 0, and any n1,ng € Z, it holds

pm [DjanDjQ”Q] S Li(a_‘_)-

Proof. We can set ny = m because the statement of our proposition is
invariant under action of o. By induction we can assume, that our propo-
sition holds for all j' = (a/,¥') € Jy and m/ € Zsg, such that p™a/ = a
and p™ b > p™b; (notice that if p”b; > pM J(w), then Dj,m = 0). Because
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Dj,yn, depends only on the residue ng mod Ny we can assume also that ng
is a “sufficiently big” negative integer such that

P (w) < d1(w,a), bo+p " > J(w), m—s; > ny — sy
(where, as usually, s; = s(a1) and s2 = s(a2)).
Let v = (71,72), where 71 = a + p"2as and 9 = p"1by + p"2by. Consider

the expression for F, € L£ (7). This expression is a linear combination of
commutators of second order of the form

pm1d1 [D(cl,d1),m17D(CQ,dz),mQ] ) (11)

where my € Z>o, ma € Z, (c1,d1), (c2,d2) € B(w), my — s§ > mg — s with
st =s(c1), sh=s(c2), and c1p™ + cop™? =1, dip™ + dop™? = o.

First, notice that may = vp(y2) = na.

If ;p™ > a, then the term (11) belongs to [Li(a—i—), Li] C Li(a—l—). Oth-
erwise, the inequality cop™ < I(w)p™ < d1(w,a) implies that
ap™ = a. If dip™ > p™by, then the term (11) belongs to Li(a—k) by
the inductive assumption. If d;p™ = p™b;, then the term (11) coincides
with the term from our proposition multiplied by by € Zj. If dip™' < p™b,
then the equality dip™ + dop™2 = p"1b; + p™2by implies that

dy =bo+p "2(p"by —p"d1) > ba+p " > J(w).

This gives p®2dy > J(w), i.e. D(cy.ds),m, = 0 and the term (11) is equal to
0.
It remains only to note that F, € Li(a—k). The proposition is proved. [

4.4. Elements ﬁjyo(w), j € B, and their properties. For any j =
(a,b) € Jo, define the elements D;o(w) = Dj

=Djo— > n(ma,mi)n(ms — s1,m2 — 52) [Djy > Djp.ms) »
m1,m2,j1,J2

where the sum is taken for all my,mg € Z and j; = (a1,b1),j2 = (az,b2) €
B(w) such that byp™ + bap™2 = b and a1p™ + agp™? = a. One can easily
verify that the above expression gives the element from LZf .

For any n € Z, set ﬁj,n = 0"Dj. Clearly, the family

{ﬁj,n ‘ j S B(w),n c Zmong} U {D(O,O)}
generates the algebra sz. Notice that if j € J,\B(w), then D;,, € CQ(LZf).
Proposition 4.3. For any j = (a,b) € J, IN)LO € Li.

Proof. We must prove the finiteness of the set of all collections of the form
(j1,m1, ja, m2), where ji1 = (a1,b1),j2 = (az,b2) € B(w) and my,me € Z
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are such that mo > mq, my — s1 > mg — S9, a1p™ + ap™™ = a and
bip™t 4 bap™? = b.

Let a1 = a(l)pfsl, as = agp*s"’, b = b(l)p*sl and by = bgp*”. Then a(l)
and aJ are integers from the interval [0, I(w)] and we can assume that they
are fixed.

Suppose af, a9 # 0. Then the relation a;p™ + agp™? = a gives that

mi1—s1,,0

a>p aj > 61(w,a).
This implies the existence of m;(w,a), ma(w,a) € Z such that
mi(w,a) <mg —s1 < mo(w,a).
Therefore, we can fix the value of m; — s1. We have also
P (w) Z pMby = pT T = b= Ty 2 b= p™ T (),

Because m; > my — s1 > mj(w,a), this implies the finiteness of the set
of all different collections (b, m1). As in the proof of Prop. 4.1 any such
collection determines uniquely the collection (j1,m1, j2,m2). This proves
our proposition in the case a(f, ag £ 0.

Let a(l) = 0, then 57 = 0, 1 < by < J(w) and my — sy is uniquely
determined. If m; = mg then m; < wy(b). If my < mg then mo = v,(b). In
the both cases m; < v,(b) and

pby < J(w)pr®.

Besides, we have m; > mg — so and b p™ > p™27%2. This implies the
finiteness of all collections of the form (b1, m). This proves our proposition
under the assumption af = 0.

If ag = 0, then s = 0, 1 < by < J(w) and the value of m; — s1 is
determined uniquely. Here we have the inequalities

mi — s1 < my < vp(b).
Apart from the trivial boundary p™b; < b, we have also a lower boundary
Py = b= B > b~ ()P > b J(w)p .

This gives the finiteness of the set of all collections (b, m1) and we can
finish the proof as earlier. The proposition is proved. U

For v € Js, define the elements .7?«, (w) = .%7 € Lﬁf as follows.

Let Y= (’71,’}/2). _
If either v = 0 or vo ¢ Z, set F, = F,.
If 45 € Z, then v = bp™ for m € Z>p and (b, p) = 1. In this case we set

ﬁw = pmbﬁ(a7b),m - Z n(ma, m2)p™ by ﬁjhmuﬁjmmz] )

m1,mz2,j1,J2
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where ¢ = p~"v; and the sum is taken for all mi,me € Z and j; =
(a1,b1),j2 = (ag,b2) € B(w) such that a;p™ + agp™2 = 1 and byp™ +
bop"2 = 79 (one can verify that this expression gives an element from Lif ).

Proposition 4.4. For any v € J, 7-17 € Li.
This proposition can be proved in the same way as Prop. 4.1 and Prop. 4.3.

Proposition 4.5. For any j € Ja, Lg(j) s the minimal o-invariant ideal
of L£ such that for any v > j, F, € Lg(j).

Proof. Tt is sufficient to prove that for any v = (y1,72) € J,
]?7 = F,mod [L£(71+), Lﬂ . (12)

We can assume that v = p™(a,b), where m € Z>¢ and (a,b) € Ba(w).
Then

P™D(a5)m — P"0D(a.p) m

= pmb Z n(m%ml)n(ml — S1,M2 — 52) |:Dj1,m17Dj2,m2] s
m1,m2,j1,j2
where my, mg € Z, j1 = (a1,b1), j2 = (ag2,b2) € B(w), p"™aj +p™ay = p™a
and p™tby + p"2by = p™b.
Notice that if m; < 0, then m; = ms and, therefore, either a;p™
or aop™? is bigger than ap™. Therefore, if we assume in addition that
my,mg > 0, then the right-hand side of the above equality will not be

changed modulo [L£ (71+), Li] and can be rewritten in the form

Y. M [Ejl,mlvﬁjmmz} n(mz, mi)n(my — s1,ma — s2)—

mi1,m2,j1,j2

- Z P by [Djl,ml,Djz,mg} n(my, ma)n(mse — s2,m1 — 1)
mi1,m2,j1,j2

(we substitute p™1by 4+ p""2by instead of p™b and interchange indexes 1 and

2 in the second group of terms). The relation (12) can be obtained then by

the use of the relations n(ma, m1) = 1—n(m1, mz) and n(me—s2,m1—81) =

1 —n(my — s1,ma — s2). O

Proposition 4.6. Let m € Zsq and j = (@,b) € Ba(w). If a > 0 is such
that p™a > 2(a — §1(w, a)), then for any n € Z, one has p™Dj,, € Lg(a—i—).

Proof. The statement of the proposition is invariant under action of o,
therefore, we can assume that m = n.
Notice that p™bDj,, is the only a first order term in the expression of

Fpmi € Li(p™)) C Li(a+). Therefore, it is sufficient to verify that any
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commutator of second order from that expression belongs to Li(a+). Any
such commutator is of the form

pml by [D(al,bl),ml ) D(az,bz),’ﬂw}’
where mg < my, m; > 0, (a1,b1), (a2,b2) € B(w), a1p™ + agp™2 = p™a.
Because p™a > 2(a — 01(w,a)), we have either a;p™ > a — 61(w,a), or
asp™? > a — 01(w, a).

In the first case a;p™ > a. If a1p™* > a, then our term belongs to
[Lﬁ(a—k),Lﬁ] C L£(a+). If p™a; = a, then az > 0 and our term belongs
to Lﬁ(a—k) by Prop. 4.2.

In the second case the inequality mg < mj implies agp™ > a — 61(w, a)
and we finish the proof in the same way. The proposition is proved. O

5. Ramification filtration modulo 3rd commutators

As usually, K is a complete discrete valuation field of dimension 2 given
in the notation of n. 1.1. It has an additional structure given by a dou-
ble valuation v(?) and a subfield of 1-dimensional constants satisfying the
agreements from the beginning of n. 3. Consider the corresponding ramifi-
cation filtration {F(j)}jeJ of I' = Gal(Kep/K). Fix w € Q, M € Z>o, set

L = Ly+1(w) mod C3(Lys4+1(w)), and consider the group epimorphism
Y =1Yy4+1(w)mod C3(Lys41(w)) : I' — G(L),
cf. n. 1.5. This gives the decreasing filtration of ideals {L(j)}j ¢y of L such

that ¥(I'0)) = LY. For any j € .J, denote by L(j) the ideal of L generated
by elements of the ideal L/ (j) from n. 4. The following theorem gives an
explicit description of the image of the ramification filtration of I' in its
maximal p-quotient of nilpotent class 2.

Theorem 5.1. For any j € J, L(j) = LY.
The rest of section deals with the proof of this theorem.

5.1. The cases j = (v,c) € J; and j = (0,v) € Js.
Set Ly = L®WM+1(]€), Lig = L®OM+1(K) and Lsep = L®OM+1(Ksep).
Let

e= eM+1(w) mod Cg(ﬁM_H(w)) = Z TibpstfapsD(ayb%S € Lk,

(a,b)eBO (w)
s=s(a)

= fuyi(w)mod C3(Lyr41(w)) € Lsep-

Then of = foe and for any g € T, one has ¢(g) = (gf) o (—f).
Let I. be the minimal ideal of L such that I. ® Wjs11(k) contains all

Diq,p),0 with indexes (a,b) € B%(w) with b # 0.
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Consider the natural projection pr, : L — L/ := Le.
Denote by the same symbol extensions of scalars of that projection. Then
we obtain the elements

ec = pre(e) € G(Le @ Opy1(Ke)), fe=pr(f) € G(Le ® Opr1(Ksep))
Here Opr41(Kc) and Opgq1(Kesep) are liftings modulo pM+1 constructed

via the p-basis of K determined by uniformising element ¢ty € K.. Notice

that
€c = Z t_aDa,Oa
a

where a runs over the set {a € N | (a,p) = 1,a < I(w)}U{0}. There is also
an equation o f. = f. o e. and a group epimorphism

e : T'e = Gal(K¢ gep/Kc) — G(Le)

such that for any g € T'c, 1c(g) = (9fc) o (—fe)-
Notice in addition, the composition

21, 2 GLe)
coincides with the composition
I — e 2% G(Le)

(where the first arrow is the natural projection from n. 2.1).
One can easily see that for any v > 0,

HIre9) = pr? (ve(r)),

where Fﬁ”) is the ramification subgroup of the Galois group I'c of the 1-
dimensional field K.. The case j = (v,c) of our theorem follows now from
the description of ramification filtration for 1-dimensional local field from
1, 2.

| TLe case j = (0,v),v > 0, can be considered similarly, because the
ramification subgroup ') appears from the ramification subgroup I'V)(®)
where T = Gal(Ks(gI))/K(l) is the Galois group of the first residue field
KO of K.

5.2. Abelian case. Let j° = (a",8°) € Jo. The ideal L(j%), mod Cy(Ly)
is the minimal ideal of Ly mod C3(Ly) containing all elements of the form
P°D(a,p),s» Where s € Z>q and the indexes (a,b) € J are such that p°(a, b) >
4%, We can apply Prop. 3.1 to deduce that

LU") = L(j°) mod Cy(L),

what gives the assertion of our theorem modulo 2nd commutators.
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5.3. Application of the criterion. Until the end of the paper we assume
that j° = (a®,8°) € J, is such that a® > 0. Consider the rational number
81(w,a’) defined in the beginning of n. 4. Define similarly da(w,b°) as
the minimal value of all positive differences of the form »° — p™b;, where
(0,b1) € B’(w) and n € Z.

Choose j* = (a*,b*) € Jo and N* € N satisfying the assumptions from
the beginning of n. 3.2, and the following conditions: a* = a°, b* < %, and

a® +pMI(w)  pMI(w)
o (w,a%) 7 ad

M oM T
Lo p"Jo(w) 2p (”)+1}.

> )
o> S
Consider the fields from n.3.3: Ko = K(N*, j*), K' = K(t19) with

t9, = to and K} = K'(t) with t5, = t19, where s* = s(a*), the lift-
ings Oy (K'), Oy (Kép) and O)y (K5 ), the field isomorphisms

sep
n: K — K and nsep : Kgep — Kéep and the elements
—b _
ne)=er= Y TP Digyysne € Liri= L Oy (K),

(a,b)eBO (w)
s=s(a)

Usep(f) =he€ Léep L® OM—H( sep)'

Then we can use the equations

1
O'f fOC—f+€+ [fa ]7 O'f1:f1061 f1+61+ [f1761]
to obtain for the element
= (O'Mf) o (_UM—’_N*fl) S L2,sep =L® O?W—I—I(KQ,SGP)

the following equation
1 x . 1
X—oX=A-3 [A, oMH+N el} — [aX, G MH+N el} +5 XA, (13)

where

A=cMN e — Mo =

% s+M _hnSt+M _ s+M
- Z (E(bve )P - 1) T K qtl » qD(a,b),s+M

(a,b)eBO (w)
s=s(a)

The criterion from n.3.3 implies that the ideal L") is the minimal ideal

in L such that the element X mod LY ’) is invariant with respect to the

2,sep
(°)

action of I's' /, where Lgse) L0% OMH(KQ,SQP). By n. 5.2 one can
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assume that LU") contains [L( 7%, L]. We are going to prove our theorem
by decreasing induction on j°. For this reason introduce the ideal

L(j*+) = J LG).
7>3°

Then it will be natural to look for the ideal LU") in the family of all ideals
of L containing the ideal L(j°+) + [L(5%), L]. In order to realise this idea
we shall simplify the relation (13) in nn. 5.4-5.5 below modulo the ideal
{L(j%+) + [L(5°), L] }sep generated by elements of L(j%+) + [L(j°), L] in
L2,sep-

5.4. Auxiliary statements. Let Oy = Wiy 1((71))[[t2]] C Ofyyp 1 (K3).
For b€ Zy and 1 <r < M, set

E_1(b) =1, Ey(b) = E(,0%),

E.(b) =0"Ey(b H o"“exp (bp"O%),

1<u<lr

where F' is an analogue of the Artin-Hasse exponential from the beginning
of n. 3.
Clearly, for all 0 < r < M and b,b’ € Zj,, one has

E.(b+V)=E.(b)E.(V).

For 0 <r < M and b € Zj, set &.(b) = E.(b) — 0cE,_1(b). Then &.(b) €
thcll*(q_l)Oé and

E(b+V)=ED) +EWV)+ D o'Ei(b)a?E (1),

0,
where the sum is taken for all 0 < 4,5 < r, such that either i =0 or j = 0.
For 0 <r < M and (a,b) € B°(w) such that s(a) < N* + 7, set
Ar(a,b) = £ O)7 "t Dia)r € Ly,

Lemma 5.2. There is an € > 0 such that

A=— Z oM=+5 A, (a,b) mod t‘prI(w)JreLO/Q,

M—r4+s<N*
r,(a,b)
where in the right-hand sum s = s(a), r runs from 0 to M and (a,b) runs
over the set B%(w).

Proof. The terms of the expression for A from the end of n. 4.4, which do
not appear in the right-hand sum, can be written in the form

—b s+ M _amS+M

oM r+s€ (b) P qtl ” qD(a,b),s—H\/b
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where M —r +s > N*, 0 <r < M and (a,b) € B(w). All those terms

tqu I(w)+e
1

belong to Lo, for some ¢ > 0, because

_aps+Mq +pM—r+sa*(q _ 1) — pM—r+s(_apr+N* + a*(q _ 1)) >

g(—ap"™ +a*(q — 1)) > ¢(—p" (W) +a* (g~ 1)) > " I(w)
(we use that a*(q — 1) > 2pMI(w), cf. n. 5.3). O

Denote by Mg(w, j*) the subset of all W (k)-linear combinations of ele-
ments from Ly of the form

—p"bg+b*(q—1) ,—a* r
T t" P Dias fpr b)mo

where 0 <7 < M, (a*/p",b) € BY(w), p"b < b°.
Lemma 5.3. If M —r+ s < N*, then
Ar(ab) € LG+t L0 0y T Loyt Mo(w, 5)+CalLicy)-
Proof. Consider the decomposition
Er(b) = p'bO* + p O 11, (0),

where p1,5(X) € W(k)[[X]] and ©F = Tf*(qfl)tcf*(q*l) (it follows easily
from the definition of the Artin-Hasse exponential). This decomposition
induces the decomposition of A, (a,b) into 2 summands. Consider the first
summand

St = br WG D
If pra > a* = a® or p"a = a* and p"b > b°, then S; € L(jO)Ké + Ca(Lky).
If p'a = a* and p"b < b°, then S; € My(w,j*). If 0 < p'a < a*, then

pMI(w)+e
S1 ety L(0+)o, + C2(Ly) because
—ap’q +a*(q — 1) > gd1(w,a°) — a® > pMI(w),
cf. the beginning of n. 5.3. If @ = 0, then S € t(f*(q_l)LOé.

Consider the second summand

—bp"q+2b*(q—1) ,—ap”q+2a* (g—1 "
Sy =1 p"q (g )tl ap”q+2a* (g )pTD(a,b),r,ur,b(@ ).

If p"a > a*, then Sy € L(a0+)Ké + Co(Lgy) C L(jO)Ké + Co(Lgy). If
0 <p'a <a*, thenSy € t‘f*(q_Q)L(O+)0/2+Cz(LKé) and a*(g—2) > pMI(w),

cf. the beginning of n. 5.3. If a = 0, then S € t?a*(q_l)LOé C tT*(q_l)LOé.
The lemma, is proved. g
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Denote by M (w, j*) the set of all W (k)-linear combinations of elements
of Lo gep of the form

Y(a,prbq - b*(q - 1)7 a*)pTD(a*/pT,b),ma
where a € W (k), m € Zmod Ny, (a*/p",b) € B(w), p"b < b° and for ¢ € Z,
one has

Y(a,¢,a*) — oY (a, ¢ a) = ar] 7.

This W (k)-module coincides with the W (k)-submodule of Lg g, generated
by all Z such that Z —o0Z € My(w, j*). One can easily verify that

Mi(w, 5%) C Liey(j0) + L(%4)2.50p + Co(Lasep),
0

(3
where K(5°) = K;gep, by using that
Y (a,p"bg — b*(g — 1),a") € K2(j") mod pOnr11(Kzsep)

if p"b < bo, and that pr+1D(a*/pr,b)7m € L(jo—i-)k + Co(Lg).
For 0 < r < M and (a,b) € B°(w), denote by X, (a,b) the element of
L3 sep such that

X,(a,b) — o0X,(a,b) = A-(a,b).

Directly from the preceding lemma we obtain the following property.

Lemma 5.4. If M —r+ s < N*, then

M w 154
X (a,b) € L) Ky + 17 T LO04) 0y +
17V Loy + Mi(w,5%) + Ca(Lasep).

Lemma 5.5. For 0 < nj,ng < N*, 0 < r < M and (a1,b1), (az,b2) €
B°(w), there exists € > 0 such that

[0™ Ay, (a1,b1), 0™ Ay, (a2, b2)] € 15 Loy + L(5°+) ks + [L(5°), L] K1

Proof. This lemma follows from estimates of Lemma 5.3. We only notice
that

[L(0+>K2,scp7Mo(w’j*)] C L<a0+)K2,scp
by Prop. 4.2, and for 0 <n < N*,

*(g—1 . ’
t7 V" Mo(w, ) € 65 Loy,

where ¢’ = a*(¢ —q/p—1) > 0. O
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Remark. We note that if Z € Lk, ., is such that with the notation of the
above lemma one has

Z —oZ =[c""A (a1,b1),0™ Ay, (az2,b2)],
then Z € t{ Loy + {L(5°+) + [L(5°), L] }27sep.

Lemma 5.6. If for any 0 < ri,r9 < M, 0 < n < N*, (a1,b1), (az,b2) €
B°(w), an element Z € La sep satisfies the relation

Z 07 = [U"Arl(al, b1), o™ X, (az, bg)] :

.0 .0 .0 F(jo)
then Z € Ly, (jo) + {L(°+) + [L( )’L]}Z,sep (where K»(j°) = Ky, )-

Proof. 1t is sufficient to use the estimates from Lemmas 5.3 and 5.4 and
that o is nilpotent on ¢{ (q_l)aN**l./\/ll(w, Jj*) C Ly, 0y, what follows from
the embedding o™ T M (w, 5*) € oV My (w, 5*) + tl_a*qLO/Q. O

Lemma 5.7. In the notation of nn. 5.3-5.4 for some € > 0, it holds
[.A, UM+N*€1:| =— Z [JM_T+SAr(a, b), oM+ N e1 | mod tiLoy-

r,(a,b)
M—r4+s<N*

(w)

Proof. This follows from Lemma 5.2 because e; € tl_I Loy, O

Lemma 5.8. In the notation of nn.5.3-5.4 if Z € Lk, ,, is such that

[O—X7 O'M+N*el:| = Z [o”Ar(a, b), oMt Ne | +Z - 02,

r,(a,b)
M—r4+s<n<N*

then Z € Ly, (joy + {L(j°+) + [L(5°), L] }5 o0p-
Proof. We notice first that for some ¢ > 0, it holds

cX =— Z oA (a,b) — Z o™ X, (a,b)

r,(a,b) r,(a,b)
M—r+s<u<N*

M
mod t({p I(w)+6L0/2 +02(L2’Sep).

This is implied by the relation

X =— Z oM=r$ X (a,b) mod t?pMI(wHELO/Z,

r,(a,b)
M—r+s<N*

which follows from Lemma 5.2.
So, it is sufficient to prove that if Z.(a,b) € L gp is such that

Zl(a,b) — 0 Z.(a,b) = [X,(a,b),0Me1]
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then Z(a,b) € L, jo) + {L(5°+) + [L(j°), L]}, - By Lemma 5.4 this
can be reduced to the following property: if U € Lo s is such that
U-oUe [./\/ll(w,j*),aMel] ,
then U € L, joy + {L(j0+) + [L(j0)>L]}2,sep' By Prop. 4.2 we have
[Mi(w,7%), L(04) gy] C L(5+)2,sep-
We have also
p [Mi(@,5), Ligy] € [L(a™+)2eps Lasep] © LG*+)2.500-

So, the proof of lemma is reduced to the following statement.

— let V,\WW € Warp1(Kagep) be such that V — oV = ﬂTl_blpMW and

W —oW = aTl_bpqurb*(q_l)tfa, where (0,b1), (a*/p",b) € B(w) and bp" <
Vs then V € pWari1(Kasep) + Wars1(K2(5%))

In other words, cf. n. 3.4, jo(V modp/K3) < j¥ or, equivalently,
7'(Vmodp/K') < qj° — (¢ — 1)j* = (a°, gb’ — (¢ = 1)b").
The case M = 0 of Prop. 3.6 gives
7'(Vmodp/K') = (a® bip™ + bp"q — b (¢ — 1)).
It remains only to notice that
bip™ +0p"g < pM Jo(w) + q(b° = 83(w, 7)) < gb°,

because gdz(w, b°) > pMJy(w), cf. n.5.3. The lemma is proved. O
5.5. Simplification of relation (13). Consider S = S1 + S2 € Lggep,
with
Si=— Y Anla,b),
n?(a7b)
Sp= Y (i —sing - s) [Am(al, bi), i Dy
n1,n2,71,j2

where the first sum is taken for 0 < n < M and (a,b) € B°(w) such that
M —n+s < N* with s = s(a); and the second sum is taken for all
0<n <M, ny>—-N*+M — s9, j1 = (a1,b1), j2 = (ag,b2) € Bo(w) with
s1 = s(a1) and s = s(ag) (cf. the definition of n(ni,ng) in n. 4.2).

Proposition 5.9. Suppose X € Lo satisfies relation (13). Then there
is X' € Logep such that

X' = X mod LK2(]'0) + {L(j0+) + [L(j0)7 L] }2,sep

and

X' —oX'=8. (14)
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Proof. From Lemmas 5.2, 5.7 and 5.8, we conclude that the right-hand
side of the relation (13) is equivalent modulo

(O’ — id)LKQ(jO) + {L(]0+) + [L(jo)’ L]}2,sep

to the expression

- Z M= A, (a, b)+
r,(a,b)

Z n(ua 0) |:0—M_7’1+51+UAT1 (ala bl)a O—M+N*€1] 5

r1,(a1,b1),u

where the summation indexes satisfy the conditions 0 < r,ry < M,
(a,b), (a1,b1) € B(w), u € Zg, M —7+5 < N*and 0 < u < N* —
(M — 71+ s1) (with s = s(a) and s1 = s(a2)).

By changing the above expression modulo (0 —id) L K and setting r1 = ny
and ng = (s2 — u) — (s1 — r1) we transform it to S. The proposition is
proved. O

By the use of the identity 1 = n(n1, n2) 4+ n(n2, n1) we obtain the decom-
position So = S21 + S92, where So; =

Z 77(”1 — 81,2 — 52)77(”17 n2) [ATH (ala bl)? T;bzp”thlfazp”Qth’nz} ’
n1,n2,J1,J2
and Sag is given by the same expression with n(n1, n2) replaced by n(n2, n1).
By the use of the decomposition, cf. the proof of Lemma 5.3, &,,(b1) =
bip™ O* + pMO* 2y, 1, (%), set Say = Sy + 54, where Sb; is given by the
expression

Z n(n1 — s1,n2 — s2)n(n1, n2)p" by x
n1,N2,J1,J2

—(P"1b1+p"2b2)q,—(p"la1+p"2a2)q o«
1 tl S/ [Djmejznz]'

Prove that
S5 € 15 Loy + {L(5°+) + [L(5°), L1} 4, -
2

It is sufficient to verify that the element of the form
—(a1p™ +azp™2 2
t (ap™ azp )qg* p™ [Djlm ) Djz,nz]

belongs to t{Lo, + {L3G+) + [L(jo),L]}Ké if ny > ngo.

If p™a; > a®, then our element belongs to [L(j°), L. Let p™tay = a’.
If ag > 0, then our element belongs to L(j0+)Ké by Prop. 4.2; if as = 0,
then it belongs to t(llo(qd)LOé.

The case p™ay > a® can be considered similarly.
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If p™aq, p™as < a’, then it remains to note that
(P" a1 + p"az)q < (p™ a1+ p™ag)g < 2a°q — 261 (w, a”)g < 2a°(g - 1),

because qd1(w,a’) > a°, cf. n. 5.3.
Thus we have obtained

So1 = Sy mod t7 Loy + {L(5°+) + [L(5), L1}, -
For ngy > ny, b = by and b/ = p"2~™by, consider the identity from n. 5.4

gnl (bl) = gnl (bl + pn2_n1 b2) - gn1 (pn2_nl b2)_

Z O‘ignlfi(bl)djgmfj(an_nlbg).

i,J
With respect to three summands of the right-hand side of the above identity
decompose Sos in the form Soo; + S299 4+ S993. Then

Spps=— Y nni—s1,nz — s2)n(ng,n1)

n1,n2,j1,j2

(0" Ay, —i(a1,b1), 07 Ap,—j(p™ " by)]

belongs to t{Lo, + {L("+) 4+ [L(j°), L]} ;, by Lemma 5.5, because one
2

can repeat the arguments of the proof of Lemma 5.3 to obtain its estimate

for the element given by the expression

no—n —agp™2~Iq_—bypn2=iq
g”l—j (p 2 1b2>t1 T D(027bz)7n2—j'

By the use of the identity
Eny (P27 by) = p"2b20" + P20 Py, np iy, (O)

and the arguments we have used above to estimate S%;, we obtain

Sa99 = — Z n(ny — s1,n2 — s2)n(ng, ni)x
n1,m2,J1,j2
noyp - —(P"1bi+p"2b2)q,—(p"la1+p2a2)q 1y . ,
p bQTl tl © [Dhmv D]2Jl2]

> n(ng = s2,m1 — s1)n(n1, ng)x
n1,12,71,72

n —(p"1b14+p"2b2)q,—(p"1a1+p"2a2)q n*
p 1blTl 12 © [Djln17Dj27n2]‘

Now we notice that

S1+ S221 = — Z An(a) b)ﬁ(a,b),n'
n,(a,b)e B0
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By the use of the decomposition &,(b) = p"bO* + p"O**u, ;,(0*) and
Prop. 4.6 we obtain
S1+ 5291 = — Z pnbebpnqtl_apnq@*ﬁ(ayb),n'
n7(a7b)
We summarize the above relations by the use of the identity
n(n1 — s1,n2 — s2) +n(ng — sg,n1 —51) =1
and expressions for elements ﬁy(w), ~v € Jo,
S=— Y NN E (w).
Y=(71,72)€ )2
In order to simplify this equivalence modulo

(0 —id) Ly (joy + {LG"+) + [L(7), L1} ooy
consider the set
Ga(w) = {,y = a[l)pm1 + agpm2 | a(l),ag € ZN|[0,I(w)],m1,mg € Z} )

It is easy to see the existence of 6(w,a’) € Qg such that if v € Go(w) and
v < a®, then v < a® — 6(w, a).
Now suppose in addition to conditions for ¢ from n. 5.3 that ¢ satisfies
also the equality
¢0(w,a’) > d°. (15)
Notice that F. (w) = 0 if v ¢ Ga(w).
For v = (11, 72) € Ga(w), let X, € Lo gep be such that
X, —0X, =7 U ONF,
If v; < a® then
—v1qg+a*(g—1) > ¢d(w,a’) —a’ > 0
by inequality (15) and, therefore, )27 € Lgy. Ity > a®, then (cf. the
relation (12) in the proof of Prop. 4.5) fv(w) = Fymod [L(a"+)g, Li] and
pFy(w) € L(a®+) (cf. the proof of Prop. 4.6). This implies that
—if 4y = a? vo < B0, then

X’Y € LKz(jO) + [L(]0+)’ L] 2,sep;

— if v > 5°, then
Xy € {L(°H) + (L"), L]}y oop 5
— Xjo = Xjomod {L(j°+) + [L(;°), L]}, > where

_ 10 (o _ -0 *(g—1
Xjo —0Xjo=—1 o+t (g 1)t1a ata’(e ).7'—j0.

With the above notation we obtain the following proposition.
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Proposition 5.10.
X = Xjomod Ly (o) + {L(°4+) + [L(1°), L1}, ., -

5.6. The end of the proof of theorem. It is sufficient to prove that if
LY is a finite Lie algebra and pY is a projection of L to L, then for any
j € J, one has p°(LU)) = p(L(4)).

It is easy to see that the both filtrations {p°(L(j))};es and {p°(LU))} es
are left-continuous, have jumps only in “finite points” j° € J and have
trivial terms for a sufficiently large j. Therefore, we can use in the proof
a transfinite decreasing induction on j, i.e. we can assume the existence of
49 € J such that for all j > 5% it holds

P(L(j)) = p°(L)
and must prove under this assumption that p°(L(j°)) = p°(LU").
By arguments of n.5.1 we can assume that jO = (a”,b°) with a® > 0. By

Prop. 5.10 and inductive assumption, pO(L(jO)) is the minimal ideal in the
family of all ideals I of L° such that

15 p°(L(j%+) + [L(5°), L))
and
j2 (p°(Xjo) mod Ip sep/ K2) < °.
It remains only to note that p’(F) ¢ I if and only if
7" (P°(Xj0) mod Ipsep/K') = qj° — (¢ — 1)5*, and this is equivalent to the
equality 7o (pO(on) mod IQ,Sep/KQ) = 40,
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