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Character sums in complex half-planes

par Sergei V. KONYAGIN et Vsevolod F. LEV

Résumé. Soit A un sous-ensemble fini d’un groupe abélien G et
P un demi-plan fermé du plan complexe contenant zéro. Nous
montrons qu’il existe un coefficient de Fourier non-trivial de la
fonction indicatrice de A qui appartient à P (si A ne possède
pas une structure spéciale explicite). Autrement dit, il existe un
caractère non-trivial χ ∈ Ĝ tel que

∑
a∈A χ(a) ∈ P .

Abstract. Let A be a finite subset of an abelian group G and
let P be a closed half-plane of the complex plane, containing zero.
We show that (unless A possesses a special, explicitly indicated
structure) there exists a non-trivial Fourier coefficient of the in-
dicator function of A which belongs to P . In other words, there
exists a non-trivial character χ ∈ Ĝ such that

∑
a∈A χ(a) ∈ P .

1. Summary of results

Let G be an abelian group and let Ĝ denote the dual group. For a finite
subset A ⊆ G and a character χ ∈ Ĝ we write

SA(χ) :=
∑
a∈A

χ(a);

that is, SA(χ) are Fourier coefficients of the indicator function of A.
Fix A and let χ run over all characters of G. How are the numbers

SA(χ) distributed on the complex plane? What can be said about A if
SA(χ) exhibit an “irregular” behavior? For instance, when are all SA(χ)
situated in the same half-plane? The following theorem is our main result.

Theorem 1.1. Let P be a closed complex half-plane with zero on its bound-
ary, and let A be a finite subset of an abelian group G. Then either there
exists a non-trivial character χ ∈ Ĝ such that SA(χ) ∈ P , or at least one
of the following holds:

i) A = {0, g}, where g ∈ G is a non-zero element of odd order;
ii) G is finite and A = G \ {0, g}, where g ∈ G is a non-zero element of

odd order;
iii) A ∩ (−A) = {0}, and A ∪ (−A) is a finite subgroup of G;
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iv) G is finite, A ∪ (−A) = G \ {0}, and A ∩ (−A) is the complement of
a subgroup of G.

For cyclic groups of prime order and torsion-free abelian groups we were
able to drop the assumption that P is closed. This yields additional ex-
ceptional cases; however, specific features of the groups allow us to put
conditions i)–iv) of Theorem 1.1 in a more explicit form.

Theorem 1.2. Let P be an open complex half-plane with zero on its bound-
ary and such that P ∩R 6= ∅. Suppose that G is a cyclic group of odd prime
order, and let A be a non-empty proper subset of G. Then either there ex-
ists a non-trivial character χ ∈ Ĝ such that SA(χ) ∈ P , or at least one of
the following holds:

i) 0 ∈ A and |A| ≤ 2;
ii) 0 /∈ A and |A| ≥ |G| − 2;
iii) A ∩ (−A) = {0}, and A ∪ (−A) = G;
iv) A ∪ (−A) = G \ {0}, and A ∩ (−A) = ∅.

Theorem 1.3. Let P be an open complex half-plane with zero on its bound-
ary and such that P∩R 6= ∅. Suppose that G is a torsion-free abelian group,
and let A be a finite non-empty subset of G. Then either there exists a non-
trivial character χ ∈ Ĝ such that SA(χ) ∈ P , or 0 ∈ A and |A| ≤ 2.

Remark. Conditions given in Theorems 1.1–1.3 are easily seen to be not
only necessary, but also sufficient for a half-plane P to exist so that SA(χ) /∈
P for any non-trivial character χ ∈ Ĝ. For instance, if A satisfies either of
conditions i) and iii) of Theorem 1.1 and if P = {z ∈ C : <(z) ≤ 0} (the left
closed half-plane), then SA(χ) /∈ P for any χ ∈ Ĝ. Indeed, this is obvious
for condition i). As to condition iii), suppose that L is a finite subgroup of
G and that A ⊆ L satisfies A ∩ (−A) = {0} and A ∪ (−A) = L. Then

2<(SA(χ)) = SA(χ) + S−A(χ) = 1 + SL(χ) ≥ 1,

whence SA(χ) /∈ P . Similarly, it is not difficult to verify that if A satisfies
either of conditions ii) and iv) of Theorem 1.1 and if P = {z ∈ C : <(z) ≥ 0}
(the right closed half-plane), then SA(χ) /∈ P for any non-trivial character
χ ∈ Ĝ. We notice also that the sets {0} and G \ {0} satisfy conditions iii)
and iv) of Theorem 1.1.

Remark. The assumption P ∩ R = ∅ of Theorems 1.2 and 1.3 excludes
the situation when P is either the upper or the lower complex half-plane,
and A = −A, implying that SA(χ) is real for any χ ∈ Ĝ. In fact, it is
easy to see that the condition A = −A is necessary and sufficient for all
character sums SA(χ) (χ ∈ Ĝ) to be real.
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We derive Theorems 1.1–1.3 from a particular case of the first of these
theorems — the case that refers to the left closed half-plane and finite
abelian groups. We state it separately.

Proposition 1.4. Let A be a subset of a finite abelian group G. Then we
have <(SA(χ)) > 0 for all χ ∈ Ĝ if and only if one of the following holds:

i) A = {0, g}, where g ∈ G \ {0} is of odd order;
ii) A ∩ (−A) = {0}, and A ∪ (−A) is a subgroup of G.

We prove Proposition 1.4 in Section 3 (this presents the major difficulty),
and then derive Theorems 1.1–1.3 in Section 4. The proofs are mostly
of combinatorial nature. Two auxiliary geometry of numbers results are
established in the Appendix.

Before we turn to the proofs, we discuss some consequences of
Theorems 1.1–1.3.

2. Applications

For certain groups G the property in question has a transparent “geo-
metric” interpretation. Say, if A is a subset of the elementary 2-group Zr

2

(where r is a positive integer), then letting H = kerχ we get SA(χ) =
|A ∩ H| − |A \ H| = 2(|A ∩ H| − |A|/2). As χ runs over all non-trivial
characters of Zr

2, the kernel ker χ runs over all index two subgroups of Zr
2.

Thus, |A ∩ H| > |A|/2 for any index two subgroup H if and only if there
is no character χ such that SA(χ) lies in the left closed half-plane, and
|A ∩ H| < |A|/2 for any index two subgroup if and only if there is no
non-trivial character χ such that SA(χ) lies in the right closed half-plane.
Applying Theorem 1.1 we obtain the following corollary.

Corollary 2.1. Let r ≥ 1 be an integer, and let A ⊆ Zr
2.

i) If A 6= {0} then there exists an index two subgroup H ≤ Zr
2 such that

|A ∩H| ≤ |A|/2;
ii) if A 6= Zr

2 \ {0} then there exists an index two subgroup H ≤ Zr
2 such

that |A ∩H| ≥ |A|/2.

(In fact, it can be shown that there exists an index two subgroup H ≤ Zr
2

such that |A ∩ H| < |A|/2, unless A is a subgroup itself, and there exists
an index two subgroup H ≤ Zr

2 such that |A ∩H| > |A|/2, unless A is the
complement of a subgroup.)

Consider now the elementary 3-group Zr
3. We have <(SA(χ)) = |A ∩

H| − |A \ H|/2 = 3
2(|A ∩ H| − |A|/3), where H = ker χ. As χ runs over

all non-trivial characters of Zr
3, the kernel kerχ runs over all index three

subgroups of Zr
3. Applying Theorem 1.1 we get

Corollary 2.2. Let r ≥ 1 be an integer, and let A ⊆ Zr
3.



590 Sergei V. Konyagin, Vsevolod F. Lev

i) If |A ∩ H| > |A|/3 for all index three subgroups H ≤ Zr
3, then there

exists a subgroup L ≤ Zr
3 such that A∩(−A) = {0} and A∪(−A) = L;

ii) if |A ∩ H| < |A|/3 for all index three subgroups H ≤ Zr
3, then there

exists a subgroup L ≤ Zr
3 such that A ∪ (−A) = Zr

3 \ {0} and A ∩
(−A) = Zr

3 \ L.

Characters of the additive group of integers are of the form χ : a 7→ e2πiaz,
where z ∈ [0, 1). Consequently, applied to this group and the left open half-
plane, Theorem 1.3 yields

Corollary 2.3. Let T (z) = cos(2πa1z)+ · · ·+cos(2πanz), where n ≥ 2 and
a1, . . . , an are pairwise distinct integers. Then minz∈[0,1) T (z) < 0, unless
n = 2 and a1a2 = 0.

It should be pointed out that Corollaries 2.1–2.3 can be established di-
rectly, without appealing to Theorems 1.1 and 1.3. However, application
of these theorems to other groups (like finite cyclic groups) leads to results
which we cannot prove in another way.

The problem of estimating the minimum value of the polynomial T (z)
of Corollary 2.3 in terms of n is well-known and is far from being solved;
see [2]. If the absolute values of a1, . . . , an are pairwise distinct, the best
known result for large n is

min
z∈[0,1]

T (z) ≤ −e(ln n)δ

(where δ is an absolute positive constant), obtained by Bourgain [1]. For
arbitrary integers a1, . . . , an it is known that

min
z∈[0,1]

T (z) ≤ −δ lnn,

see [3, 5, 6]. To our knowledge, for abelian groups other than the additive
group of integers this problem has never been considered.

Some problems concerning the distribution of character sums for cyclic
groups of prime order were studied in [4].

3. Proof of Proposition 1.4

Throughout this section we assume that G is a finite non-trivial abelian
group. (Notice, that Proposition 1.4 is immediate for the trivial group
G = {0}.) By A we denote a non-empty subset of G. We say that A is
positive if <(SA(χ)) > 0 for any χ ∈ Ĝ. We want to establish the structure
of positive subsets A ⊆ G.

Lemma 3.1. If A ⊆ G is positive, then 0 ∈ A.
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Proof. If χ0 denotes the principal character of G, then

|A| = SA(χ0) ≤
∑
χ

<(SA(χ)) = <

(∑
a

∑
χ

χ(a)

)
=

{
0 if 0 /∈ A,

|G| if 0 ∈ A.

�

Notice that the above computation gives

min
χ

<(SA(χ)) ≤ (|G| − |A|)/(|G| − 1) ≤ 1,

while our goal is to prove that

min
χ

<(SA(χ)) ≤ 0

(unless A possesses some special structure).
Observing that for any element g ∈ G of either infinite or even order

there exists a character χ ∈ Ĝ such that χ(g) = −1, we obtain

Corollary 3.2. Suppose that A ⊆ G is positive.
i) If |A| = 1, then A = {0};
ii) if |A| = 2, then A = {0, g}, where g ∈ G \ {0} is of odd order.

We say that A ⊆ G is antisymmetric if A ∩ (−A) ⊆ {0}. If A is anti-
symmetric and A ∪ (−A) is a finite subgroup of G then we say that A is
maximal antisymmetric.

Proposition 1.4 essentially states that any positive set A of cardinality
|A| > 2 is maximal antisymmetric. Though maximality is subtle, the fact
that positive sets are antisymmetric is easy to establish.

In the proof of the following lemma and henceforth, we denote by δA the
indicator function of A.

Lemma 3.3. If A ⊆ G is positive, then it is antisymmetric.

Proof. Fix b ∈ G \ {0}. We have

0 <
1
|G|

∑
χ

<(SA(χ)) |1− χ(b)|2

=
1
|G|

<
(∑

χ

SA(χ) (2− χ(b)− χ(−b))
)

= 2− δA(b)− δA(−b),

hence either b /∈ A, or b /∈ −A. �

Corollary 3.4. If A ⊆ G is positive, then A ∩ (−A) = {0}. In particular,
A does not contain elements of order two.
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Lemma 3.5. Suppose that B ⊆ G is symmetric, contains zero (that is,
0 ∈ B = −B) and satisfies kSB(χ) + 1 ≥ 0 for some fixed integer k ≥ 2
and all characters χ ∈ Ĝ. Then B is a subgroup of G.

Proof. We assume that k = 2, which yields the weakest restriction on B.
If |B| = 2 then B = {0, b} where b is of order two and the assertion is

trivial.
If |B| = 3 then B = {0,−b, b} where b is of order m ≥ 3. Indeed, the

case m = 3 is trivial, while otherwise there exists an mth root of unity,
say ζ, such that <(ζ) ≤ cos 4π/5 < −3/4. Accordingly, there exists a
character χ ∈ Ĝ such that χ(b) = ζ and then 2SB(χ) + 1 = 4<(ζ) + 3 < 0,
a contradiction.

Suppose now that |B| ≥ 4. Let b, c ∈ B \ {0}, b 6= ±c. Then

0 ≤ 1
|G|

∑
χ

(2SB(χ) + 1)
∣∣1− χ(b)

∣∣2∣∣1− χ(c)
∣∣2(∗)

=
1
|G|

∑
χ

(2SB(χ) + 1)
(
2− χ(b)− χ(−b)

)(
2− χ(c)− χ(−c)

)
= 12− 8δB(b)− 8δB(c) + 4δB(b + c) + 4δB(b− c)

= 4δB(b + c) + 4δB(b− c)− 4.

This shows that b± c ∈ B, unless each summand in the right-hand side of
(∗) equals zero. But in this case we would have

0 =
1
|G|

∑
χ

(2SB(χ) + 1) (1− χ(b))(1− χ(c))

=
1
|G|

∑
χ

(2SB(χ) + 1) (1− χ(b)− χ(c) + χ(b + c))

= 3− 2δB(b)− 2δB(c) + 2δB(b + c)

= 2δB(b + c)− 1

which is impossible.
We see that b + c ∈ B for any b, c ∈ B, provided that c 6= b. To

conclude the proof it suffices to show that 2b ∈ B for any b ∈ B. For
this, fix arbitrarily c ∈ B \ {0,±b}; such c exists as |B| ≥ 4. By the above,
b−c, b+c ∈ B. If 2c 6= 0 then b+c 6= b−c whence 2b = (b+c)+(b−c) ∈ B.
Now suppose that 2c = 0. Since b+c ∈ B and thus also 2b+c = (b+c)+b ∈
B, we have 2b = (2b + c) + c ∈ B unless 2b + c = c. But in this case
2b = 0 ∈ B. �

We now introduce some more notation. Given a set A ⊆ G, we put
A∗ := A ∪ (−A) and denote by S∗(χ) the Fourier coefficients, and by
δ∗ the indicator function of A∗; this allows us to avoid bulky expressions



Character sums in complex half-planes 593

like SA∗ and δA∗ . Clearly, if A is antisymmetric and contains zero then
|A∗| = 2|A| − 1 and moreover, 2<(SA(χ)) = SA(χ) + S−A(χ) = S∗(χ) + 1.
It follows that if A ∩ (−A) = {0}, then for A to be positive it is necessary
and sufficient that S∗(χ) + 1 > 0 for any χ ∈ Ĝ.

Lemma 3.6. Suppose that A ⊆ G is positive. Then for any b, c ∈ A∗ at
least one of the two elements b + c and b− c belongs to A∗.

Proof. We can assume that b, c, b± c 6= 0. Then∑
χ

(1− χ(b))(1− χ(c)) = |G| > 0,

hence there is a character χ such that both χ(b) and χ(c) are distinct from
one. Thus

0 <
1
|G|

∑
χ

(S∗(χ) + 1)
∣∣1− χ(b)

∣∣2∣∣1− χ(c)
∣∣2

=
1
|G|

∑
χ

(S∗(χ) + 1)
(
2− χ(b)− χ(−b)

)(
2− χ(c)− χ(−c)

)
= 8− 4δ∗(b)− 4δ∗(c) + 2δ∗(b + c) + 2δ∗(b− c)

= 2δ∗(b + c) + 2δ∗(b− c)

implying the result. �

Lemma 3.7. Suppose that A ⊆ G is positive, and let b − c, b, b + c ∈ A∗.
Then c ∈ A∗.

Proof. We can assume that b, c, b ± c 6= 0. Then, as in the proof of the
previous lemma,

0 <
1
|G|

∑
χ

(S∗(χ) + 1)
∣∣1− χ(b)

∣∣2∣∣1 + χ(c)
∣∣2

=
1
|G|

∑
χ

(S∗(χ) + 1)
(
2− χ(b)− χ(−b)

)(
2 + χ(c) + χ(−c)

)
= 8− 4δ∗(b) + 4δ∗(c)− 2δ∗(b + c)− 2δ∗(b− c)

= 4δ∗(c)

and the result follows. �
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Lemma 3.8. Suppose that A ⊆ G is positive. If there exists a non-zero
element h ∈ G such that A∗ + h = A∗ (that is, if A∗ is periodic), then A is
maximal antisymmetric.

Proof. Let H be the set of all h ∈ G satisfying A∗ + h = A∗. Clearly, H is
a non-zero subgroup of G, and we denote by A∗/H the image of A∗ under
the canonical homomorphism G → G/H. If χ̃ is a character of G/H and
χ is the induced character of G, then

|H|SA∗/H(χ̃) + 1 = S∗(χ) + 1 > 0.

Plainly, 0 ∈ A∗/H and A∗/H is symmetric. By Lemma 3.5, the set A∗/H
is a subgroup of G/H, whence A∗ is a subgroup of G, as wanted. �

Lemma 3.9. Suppose that A ⊆ G is positive. If A∗ contains a non-zero
subgroup H ⊆ G, then A is maximal antisymmetric.

Proof. We fix arbitrarily b ∈ A∗ and h ∈ H \ {0} and show that b + h ∈
A∗; the result will follows then from Lemma 3.8. Assume the opposite:
b + h /∈ A∗. Denote by T the set of all those non-negative integers t
satisfying b− th ∈ A∗. Clearly, 0 ∈ T . Furthermore, if t ∈ T then applying
Lemma 3.6 to b−th, (t+1)h ∈ A∗ we conclude that 2t+1 ∈ T . Moreover, if
t−1, t+1 ∈ T then applying Lemma 3.7 to b−(t−1)h, h,−b+(t+1)h ∈ A∗

we obtain t ∈ T . This shows that in fact T contains all non-negative
integers: for if t ≥ 1 is the smallest integer which does not belong to T ,
then t is even and t−1, t+1 ∈ T , which is impossible. It remains to observe
that h is of finite order, so that there exists t such that b− ht = b + h. �

Lemma 3.10. Suppose that A ⊆ G is positive. If there exists a ∈ A∗ \ {0}
such that 2a ∈ A∗, then A∗ is maximal antisymmetric.

Proof. By Lemma 3.9, it suffices to show that A∗ contains the cyclic sub-
group generated by a. Assuming that this is false, let k ≥ 3 denote the
smallest positive integer such that ka /∈ A∗.

Suppose first that k ≥ 4. Applying Lemma 3.7 with b = a, c = ka we
see that (k + 1)a /∈ A∗. Applying Lemma 3.7 with b = (k − j)a, c = ka
for j ∈ {1, 2, 3} we see that (2k − j)a /∈ A∗. Applying Lemma 3.7 with
b = (k − 1)a, c = (2k − 2)a we see that (3k − 3)a /∈ A∗. Since

∑
χ

(1− χ((k − 2)a))(1− χ((k − 1)a))(1 + χ(ka)) = |G| > 0,
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it follows that

0 <
1
|G|

∑
χ

(S∗(χ) + 1)
∣∣1− χ((k − 2)a)

∣∣2∣∣1− χ((k − 1)a)
∣∣2∣∣1 + χ(ka)

∣∣2
=

1
|G|

∑
χ

(S∗(χ) + 1)
(
2− χ((k − 2)a)− χ(−(k − 2)a)

)
·
(
2− χ((k − 1)a)− χ(−(k − 1)a)

)(
2 + χ(ka) + χ(−ka)

)
= 16− 4δ∗(2a) + 2δ∗((k − 3)a)− 8δ∗((k − 2)a)− 6δ∗((k − 1)a)

+ 8δ∗(ka) + 2δ∗((k + 1)a) + 4δ∗((2k − 3)a)

− 4δ∗((2k − 2)a)− 4δ∗((2k − 1)a) + 2δ∗((3k − 3)a)
= 16− 4 + 2− 8− 6,

a contradiction.
Now suppose that k = 3. Let l be the smallest positive integer such

that l ≥ 4 and la ∈ A∗. Applying Lemma 3.7 with b = a, c = 3a we
see that 4a /∈ A∗. Applying Lemma 3.7 with b = 2a, c = 3a we see that
5a /∈ A∗. Applying Lemma 3.7 with b = 2a, c = 4a we see that 6a /∈ A∗.
Therefore, l ≥ 7. Applying Lemma 3.6 with b = la, c = a we see that
(l + 1)a ∈ A∗. Applying Lemma 3.6 with b = la, c = 2a we see that
(l + 2)a ∈ A∗. Applying Lemma 3.6 with b = (l + 1)a, c = 2a we see that
(l +3)a ∈ A∗. In view of −3a /∈ A∗ (recall that k = 3) this implies that the
order of a is either l + 2, or at least l + 7. This gives∑

χ

(1− χ(a))(1− χ(2a))(1− χ(la)) ≥ |G| > 0

and it follows that

0 <
1
|G|

∑
χ

(S∗(χ) + 1)
∣∣1− χ(a)

∣∣2∣∣1− χ(2a)
∣∣2∣∣1− χ(la)

∣∣2
=

1
|G|

∑
χ

(S∗(χ) + 1)
(
2− χ(a)− χ(−a)

)
·
(
2− χ(2a)− χ(−2a)

)(
2− χ(la)− χ(−la)

)
= 16− 4δ∗(a)− 8δ∗(2a) + 4δ∗(3a)− 2δ∗((l − 3)a)

+ 4δ∗((l − 2)a) + 2δ∗((l − 1)a)− 8δ∗(la) + 2δ∗((l + 1)a)

+ 4δ∗((l + 2)a)− 2δ∗((l + 3)a)
= 16− 4− 8− 8 + 2 + 4− 2,

a contradiction. �

Corollary 3.11. Any positive set A ⊆ G of cardinality |A| = 3 is maximal
antisymmetric.
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Proof. Let A = {0, b, c}. By Lemma 3.3 we have b + c 6= 0, thus by
Lemma 3.6 at least one of

b + c = −b, b + c = −c, b− c = −b, or b− c = c

holds. In any case we have either 2b = ±c ∈ A∗, or 2c = ±b ∈ A∗, hence A
is maximal antisymmetric by Lemma 3.10. �

We are now in a position to sharpen Lemmas 3.6 and 3.7 considerably.

Lemma 3.12. Suppose that A ⊆ G is positive. Then either A is maximal
antisymmetric, or for any b, c ∈ A∗ \ {0} exactly one of the two elements
b + c and b− c belongs to A∗.

Proof. Assume that both b+ c and b− c belong to A∗. Then by Lemma 3.6
either 2b = (b+c)+(b−c) ∈ A∗, or 2c = (b+c)−(b−c) ∈ A∗. However, if A
is not maximal antisymmetric then any of the two conclusions contradicts
Lemma 3.10. �

Lemma 3.13. Suppose that A ⊆ G is positive and let b− c, b, b + c ∈ A∗.
Then either A is maximal antisymmetric, or b = 0, or c = 0. That is,
either A is maximal antisymmetric, or A∗ contains no three-term arithmetic
progressions, except those centered at zero.

Proof. By Lemma 3.7 we have c ∈ A∗, and by Lemma 3.12 from b+c, b−c ∈
A∗ it follows that either A is maximal antisymmetric, or b = 0, or c = 0. �

Lemma 3.14. Any positive set A ⊆ G of cardinality |A| ≥ 5 is maximal
antisymmetric.

Proof. Suppose that A is not maximal antisymmetric. Fix arbitrarily a ∈
A∗ \ {0} and b ∈ A∗ \ {0,±a} and observe that by Lemma 3.12, either
b + a ∈ A∗, or b− a ∈ A∗. Replacing b by −b, if necessary, we can assume
that b + a ∈ A∗. Notice that b + a /∈ {0,±a,±b}: for if b + a = −a then
2a = −b ∈ A∗ and if b + a = −b then 2b = −a ∈ A∗, contradicting Lemma
3.10. Since |A| ≥ 5, there exists an element c ∈ A∗ \ {0,±a,±b,±(b + a)}.
Similarly to the above, we can assume that c+a ∈ A∗ and verify that c+a /∈
{0,±a,±b,±(b+a),±c}. (Say, if c+a = b then c, c+a, c+2a = b+a ∈ A∗,
contradicting Lemma 3.13; if c + a = −b then c = −(b + a), contradicting
the choice of c; if c + a = −(b + a), then c, c + a, c + 2a = −b ∈ A∗, again,
contradicting Lemma 3.13.) Thus, {0,±a,±b,±(b+a),±c,±(c+a)} ⊆ A∗.

We claim that a+b+c ∈ A∗. Indeed, otherwise we would have (a+c)+b /∈
A∗, hence a + c − b ∈ A∗ by Lemma 3.12, and similarly a + b − c ∈ A∗.
However, a + c− b, a, and a + b− c are in a progression, which contradicts
Lemma 3.13.

The only property of c we used in the above argument is that
{±c,±(c+a)} ⊆ A∗ \{0,±a,±b,±(b+a)}. Since c′ := −c−a also has this



Character sums in complex half-planes 597

property, we conclude that b− c = a + b + c′ ∈ A∗ and therefore b + c /∈ A∗

by Lemma 3.12.
As b− c = (b + a)− (c + a) ∈ A∗, by Lemma 3.12 we have 2a + b + c =

(b + a) + (c + a) /∈ A∗.
We have obtained that a+b+c ∈ A∗, whereas (a+b+c)+a = 2a+b+c /∈

A∗ and (a + b + c) − a = b + c /∈ A∗; this, however, is impossible by
Lemma 3.12. �

The assertion of Proposition 1.4 follows at once from Corollaries 3.2
and 3.11, Lemma 3.14, and our next lemma.

Lemma 3.15. Any positive set A ⊆ G of cardinality |A| = 4 is maximal
antisymmetric.

Proof. The proof is based on two more claims.

Claim 3.16. Let d ≥ 2 be an integer. Suppose that m,n ∈ Z satisfy

m,n,m + n 6≡ 0 (mod d) and gcd(m,n, d) = 1.

Then there exists an integer z such that

cos π
mz

d
cos π

nz

d
cos π

(m + n)z
d

≤ 0,

except if d = 7 and 0,±m,±n,±(m+n) represent all residue classes modulo
d.

Claim 3.17. Let d0, d ≥ 2 be integers such that d0 | d. Suppose that
m0, n0,m, n ∈ Z satisfy

gcd(m,n, d) = gcd(m0n−mn0, d0) = 1.

Then there exist integers z0 and z such that

cos π
(m0z0

d0
+

mz

d

)
cos π

(n0z0

d0
+

nz

d

)
cos π

((m0 + n0)z0

d0
+

(m + n)z
d

)
≤ 0.

Remark. Though this is not obvious, these two claims are actually ge-
ometry of numbers statements. For instance, the former of them asserts
that the cyclic two-dimensional lattice (m,n)Z + dZ2 has a point in the
“butterfly area” formed by the two triangles x, y ≤ d/2, x + y ≥ d/2 and
x, y ≥ d/2, x + y ≤ (3/2)d. This is the idea underpinning the proof of
Claim 3.16.

Postponing the proofs of Claims 3.16 and 3.17 until the Appendix, we
return to the proof of Lemma 3.15. Assume that A ⊆ G is a positive set of
cardinality |A| = 4 which is not maximal antisymmetric. Fix a ∈ A∗ \ {0}
and b ∈ A∗ \ {0,±a}. By Lemma 3.12 we have either b + a ∈ A∗ or
b−a ∈ A∗. Replacing b by −b, if necessary, we can assume that b+a ∈ A∗,
whence A∗ = {0,±a,±b,±(b + a)}. (Observe, that b + a /∈ {0,±a,±b} by
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Lemma 3.10.) Denote by G0 the subgroup of G, generated by a and b.
Clearly, A remains positive when considered as a subset of G0.

Suppose first that G0 is cyclic. Denote by g its generator and let d =
|G0| be the order of g. Choose m,n ∈ Z such that a = mg, b = ng.
Since a, b, a + b 6= 0 we have m,n,m + n 6≡ 0(mod d). Furthermore, if α
and β are integers such that g = αa + βb, then g = (mα + nβ)g whence
mα + nβ ≡ 1(mod d) and consequently, gcd(m,n, d) = 1. This shows that
the assumptions of Claim 3.16 are satisfied.

Given an integer z, consider the character χ ∈ Ĝ0 that maps g into
e2πiz/d. We have

S∗(χ) + 1 = 2 + 2 cos 2π
mz

d
+ 2 cos 2π

nz

d
+ 2 cos 2π

(m + n)z
d

= 4 cos π
(m− n)z

d
cos π

(m + n)z
d

+ 4 cos2 π
(m + n)z

d

= 8 cos π
mz

d
cos π

nz

d
cos π

(m + n)z
d

,

and by Claim 3.16 either there exists χ ∈ Ĝ0 such that S∗(χ)+1 ≤ 0, or we
have d = 7 and {0,±m,±n,±(m+n)}(mod d) = Zd. However, the former
is impossible in view of the assumption that A is positive, and the latter is
impossible for otherwise we would have A∗ = {0,±a,±b,±(b + a)} = G0,
contradicting the assumption that A is not maximal antisymmetric.

Now suppose that G0 is not cyclic, and therefore of rank two. (Recall
that G0 is generated by two elements, a and b.) Fix g0, g ∈ G0 such
that G = 〈g0〉 ⊕ 〈g〉 and that the orders d0 and d of g0 and g satisfy
d0 | d; here 〈g0〉 and 〈g〉 denote the cyclic subgroups, generated by g0 and
g, respectively. Choose m0, n0,m, n ∈ Z satisfying

a = m0g0 + mg, b = n0g0 + ng.

If α0, β0, α, and β are integers such that

g0 = α0a + β0b, g = αa + βb,

then

g0 = (α0m0 + β0n0)g0 + (α0m + β0n)g,(∗)
g = (αm0 + βn0)g0 + (αm + βn)g(∗∗)

implying αm + βn ≡ 1(mod d) and consequently, gcd(m,n, d) = 1. We
observe also that (∗) and (∗∗) can be interpreted as(

g0

g

)
=
(

α0 β0

α β

)(
m0 m
n0 n

)(
g0

g

)
whence (

α0 β0

α β

)(
m0 m
n0 n

)
≡
(

1 0
0 1

)
(mod d0)
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and therefore ∣∣∣∣α0 β0

α β

∣∣∣∣ ∣∣∣∣m0 m
n0 n

∣∣∣∣ ≡ 1 (mod d0),

gcd(m0n−mn0, d0) = 1.

Thus the assumptions of Claim 3.17 are satisfied.
Given integers z0 and z, consider the character χ ∈ Ĝ0 defined by χ(g0) =

e2πiz0/d0 and χ(g) = e2πiz/d. We have

S∗(χ) + 1 = 2 + 2 cos 2π
(m0z0

d0
+

mz

d

)
+ 2 cos 2π

(n0z0

d0
+

nz

d

)
+ 2 cos 2π

((m0 + n0)z0

d0
+

(m + n)z
d

)
= 8 cos π

(m0z0

d0
+

mz

d

)
cos π

(n0z0

d0
+

nz

d

)
cos π

((m0 + n0)z0

d0
+

(m + n)z
d

)
,

which, according to Claim 3.17, contradicts the fact that A is positive. �

4. Proof of Theorems 1.1–1.3

In this section we derive Theorems 1.1–1.3 from Proposition 1.4.
A special role in our argument is played by the half-planes

P− := {z ∈ C : <(z) < 0}, P+ := {z ∈ C : <(z) > 0}

and their closures

P−
0 := {z ∈ C : <(z) ≤ 0}, P+

0 := {z ∈ C : <(z) ≥ 0}.

Indeed, it suffices to prove Theorem 1.1 only for the half-planes P+
0 and

P−
0 , and Theorems 1.2 and 1.3 only for the half-planes P+ and P−. For let

P be an arbitrary closed half-plane with zero on its boundary, and let A be
a finite subset of an abelian group G. Consider the “conjugate” half-plane
P := {z ∈ C : z̄ ∈ P}. If SA(χ) /∈ P for any non-trivial character χ, then
considering conjugate characters we conclude that also SA(χ) /∈ P for any
non-trivial character χ. Therefore SA(χ) /∈ (P ∪ P ). However, the union
P ∪P contains one of the half-planes P+

0 and P−
0 . The situation when P is

open and G is torsion-free or cyclic of prime order is considered similarly.
Theorem 1.1 is a consequence of the two lemmas that follow. The former

of them is identical to Proposition 1.4, except that the group G is not
assumed to be finite.

Lemma 4.1. Let A be a finite subset of an abelian group G. Then we have
<(SA(χ)) > 0 for any χ ∈ Ĝ if and only if one of the following holds:

i) A = {0, g}, where g ∈ G \ {0} is of odd order;
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ii) A ∩ (−A) = {0}, and A ∪ (−A) is a subgroup of G.

Proof. Suppose that <(SA(χ)) > 0 for any χ ∈ Ĝ. Since every character
of a subgroup can be extended to a character of the whole group, A is
a positive subset of 〈A〉, the subgroup that it generates. We can write
〈A〉 = G0 ⊕ G1, where G0 is finite and G1 is freely generated. Let k ≥ 0
be the rank, and {g1, . . . , gk} a free system of generators of G1. Fix an
integer N and a prime number p > Nk and consider the homomorphism
ϕ : 〈A〉 → G0 ⊕ Zp defined by

(g0,m1g1 + · · ·+ mkgk)
ϕ7−→ (g0,m1 + Nm2 + · · ·+ Nk−1mk (mod p))

(for any g0 ∈ G0 and m1, . . . ,mk ∈ Z). Provided that N is large enough,
the restriction of ϕ onto A is one-to-one and moreover, if a /∈ G0 then also
ϕ(a) /∈ G0 for any a ∈ A. Letting Ã = ϕ(A), for any character χ of the
group G0⊕Zp we have SA(χ◦ϕ) = S

Ã
(χ). Thus Ã is a positive subset of the

finite group G0⊕Zp. By Proposition 1.4, either |Ã| ≤ 2 holds, or Ã∪ (−Ã)
is a subgroup of G0 ⊕ Zp. In the former case we have |A| = |Ã| ≤ 2 and
the result follows easily. In the latter case, observing that any subgroup
of G0 ⊕ Zp is actually a subgroup of G0, or otherwise has cardinality at
least p, we conclude that Ã ⊆ G0, and consequently A ⊆ G0. This, again,
reduces the situation to the finite case. �

Next, we consider “negative” sets.

Lemma 4.2. Let A be a finite subset of an abelian group G. Then
<(SA(χ)) < 0 for any non-trivial character χ ∈ Ĝ if and only if G is
finite and moreover, one of the following holds:

i) A = G \ {0, g}, where g ∈ G \ {0} is of odd order;
ii) A ∪ (−A) = G \ {0}, and A ∩ (−A) is the complement of a subgroup

of G.

Proof. Suppose that <(SA(χ)) < 0 for any non-trivial character χ ∈ Ĝ.
Denote by 〈A〉 the subgroup of G, generated by A. If 〈A〉 6= G, we choose
arbitrarily a non-trivial character χ̃ of the factor group G/〈A〉 and lift it
to a non-trivial character χ ∈ Ĝ. As χ contains A in its kernel, we have
SA(χ) = |A| > 0, contradicting the assumption. This shows that 〈A〉 = G
and in particular, G is finitely generated. To simplify the notation we
assume that G = G0 ⊕ Zk where G0 is finite and k ≥ 0. If k ≥ 1, we fix a
real number α > 0 and consider the character χ ∈ Ĝ defined by

χ : (g0,m1, . . . ,mk) 7→ e2πim1α (g0 ∈ G0, m1, . . . ,mk ∈ Z).

If α is small enough then evidently <(χ(a)) > 0 for any a ∈ A, whence
<(SA(χ)) > 0, again, contradicting the assumptions. Thus k = 0 and
G is finite. Since SG\A(χ) = −SA(χ) for any non-trivial character χ,
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the complement G \ A is a positive subset of G, and it remains to apply
Proposition 1.4. �

Theorem 1.1 is an immediate corollary of Lemmas 4.1 and 4.2 and the
observation at the beginning of this section. Theorem 1.2 follows from this
observation, Theorem 1.1, and our next lemma.

Lemma 4.3. Let G be a cyclic group of odd prime order, and let A be
a non-empty proper subset of G. Then <(SA(χ)) 6= 0 for any character
χ ∈ Ĝ.

Proof. Let p = |G| be the order of G. Identifying the elements of G with
residue classes modulo p, we can write any non-trivial character of G in the
form

χ : z 7→ ζz (z ∈ G),
where ζ = ζ(χ) a primitive root of unity of degree p. Consequently,

2<(SA(χ)) =
∑
a∈A

ζa +
∑
a∈A

ζp−a.

If <(SA(χ)) = 0 then
∑

a∈A ta +
∑

a∈A tp−a is a multiple of Pζ(t) = tp−1 +
· · ·+ t + 1, the minimal polynomial of ζ over the field of rational numbers.
(Here we identify the elements of A with their integer representatives in
[0, p−1].) It is immediately seen, however, that this cannot be the case. �

Finally, we turn to torsion-free abelian groups. Theorem 1.3 follows from
the observation at the beginning of this section and Lemmas 4.4 and 4.5
below.

Lemma 4.4. Let A be a finite non-empty subset of a torsion-free abelian
group G. Then <(SA(χ)) ≥ 0 for any χ ∈ Ĝ if and only if 0 ∈ A and
|A| ≤ 2.

Proof. We can assume that G = Zk. Fix an integer N and a prime number
p > Nk, and define a homomorphism ϕ : G → Zp by

(m1, . . . ,mk)
ϕ7−→ m1 + Nm2 + · · ·+ Nk−1mk (mod p)

(for any m1, . . . ,mk ∈ Z). We assume that N is so large that the restriction
of ϕ on A is one-to-one and moreover, no non-zero element of A maps to
zero. Write Ã := ϕ(A) ⊆ Zp. Since for any character χ̃ ∈ Ẑp we have
S

Ã
(χ̃) = SA(χ̃ ◦ϕ), if <(SA(χ)) ≥ 0 for any χ ∈ Ĝ then also <(S

Ã
(χ̃)) ≥ 0

for any χ̃ ∈ Ẑp. By Lemma 4.3, the set Ã is strictly positive and by
Proposition 1.4 we have either Ã = {0}, or Ã = {0, g̃} for some g̃ ∈ Zp.
Accordingly, either A = {0}, or A = {0, g} for some g ∈ G \ {0}. �

Lemma 4.5. For any finite non-empty subset A of a torsion-free abelian
group G there exists a non-trivial character χ ∈ Ĝ such that <(SA(χ)) > 0.
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Proof. As in the proof o Lemma 4.4, we assume that G = Zk. For α > 0
consider the character χ ∈ Ĝ defined by

χ : (m1, . . . ,mk) 7→ e2πiαm1 (m1, . . . ,mk ∈ Z).

We can choose α so small that <(χ(a)) > 0 for any a ∈ A, and then
<(SA(χ)) > 0. �

Appendix. Proof of Claims 3.16 and 3.17

Proof of Claim 3.16. If d is even the assertion follows by taking z = d/2
and observing that at least one of m and n is odd. Below we assume that
d is odd.

Denote the product under consideration by Pm,n(z). Since

Pm,n(z) = Pn,m(z) = P−m,−n(z) = Pm+n,−m(z),

we can assume that

gcd(m, d) ≤ min{gcd(n, d), gcd(m + n, d)}.
We let δ := gcd(m, d) and observe that if δ > 1, then the inequality above
is strict in view of gcd(m,n, d) = 1.

Notice that Pm,n(z) actually depends only on the residue classes of m,n,
and z modulo d. Hence, if u is an integer such that mu ≡ δ (mod d), then
Pm,n(zu) = Pmu,nu(z) = Pδ,nu(z). It is not difficult to see that u can be
chosen to be co-prime with d, and this shows that m = δ can be assumed
without loss of generality.

Next, we can assume that 1 ≤ n ≤ d− 1. In fact we have then δ ≤ n ≤
d− δ, for otherwise

gcd(n, d) = gcd(d− n, d) ≤ min{n, d− n} < δ.

Since Pδ,n(z) = Pδ+n,−δ(z) = Pδ,d−δ−n(z), we can actually assume that

δ ≤ n ≤ d− δ

2
.

Moreover, if n = δ then δ = 1 and it is easy to verify that minz P1,1(z) ≤ 0.
Similarly, if n = (d−δ)/2 then δ |(n, d) whence δ = 1, and minz P1,(d−1)/2(z)
≤ P1,(d−1)/2(1) ≤ 0 in view of

P1,(d−1)/2(1) = cos
π

d
cos π

(d− 1)/2
d

cos π
(d + 1)/2

d

= − cos
π

d
cos2 π

(d− 1)/2
d

.

With the above said in mind, for the rest of the proof we assume that

δ + 1 ≤ n ≤ d− δ

2
− 1

and we notice that this implies δ ≤ d/5.
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If n is odd we set z := (d− 1)/2 and observe that

i) δz = δ−1
2 d + d−δ

2 , whence sign cos π δz
d = (−1)

δ−1
2 ;

ii) nz = n−1
2 d + d−n

2 , whence sign cos π nz
d = (−1)

n−1
2 ;

iii) (δ + n)z = δ+n
2 d − δ+n

2 > δ+n
2 d − d

2 , whence sign cos π (δ+n)z
d =

(−1)
δ+n

2 .

It follows that

signPδ,n(z) = (−1)
δ−1
2

+n−1
2

+ δ+n
2 = −1.

If n is even we fix positive integers k and t such that (2k+1)δ = n+1+2nt
(this is possible as gcd(2δ, 2n) = 2 divides n + 1− δ) and set

z :=
⌈

2k + 1
2n

d

⌉
.

We have then

i) δz > (2k+1)δ
2n d = td + d

2 + d
2n > (t + 1)d− d

2 ,
δz < td + d

2 + d
2n + δ ≤ td + d

2 + d
4 + d

5 < (t + 1)d,
whence sign cos π δz

d = (−1)t+1;
ii) nz > (k + 1)d − d

2 and nz < (k + 1)d − d
2 + n < (k + 1)d, whence

sign cos π nz
d = (−1)k+1;

iii) (δ + n)z = δz + nz >
(
(t + 1)d− d

2

)
+
(
(k + 1)d− d

2

)
= (k + t + 1)d.

To complete the proof it suffices to show that

(∗) (δ + n)z < (k + t + 3/2)d,

as then we obtain sign cos π (δ+n)z
d = (−1)k+t+1 and

signPδ,n(z) = (−1)(t+1)+(k+1)+(k+t+1) = −1.

We multiply (∗) by 2n (for technical reasons) and then consider the differ-
ence between its left-hand and right-hand sides. Denoting this difference
by ∆, we get

∆ := 2n(δ + n)z − 2n(k + t + 3/2)d

≤ (δ + n) ((2k + 1)d + 2n− gcd(n, d))− (2k + 2t + 3)nd

≤ (δ + n)(2k + 1)d + (δ + n)(2n− δ)− (2k + 1)nd− 2(t + 1)nd

= (2k + 1)δd− 2(t + 1)nd + (2n2 + nδ − δ2)

= (1− n)d + (2n2 + nδ − δ2)

≤ (1− n)(2n + δ + 2) + (2n2 + nδ − δ2)

= −δ2 + δ + 2.
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Thus, if δ > 1 then ∆ ≤ 0, proving (∗). (Observe, that ∆ 6= 0 as the left-
hand side of (∗) is an integer, while the right-hand side is not.) Moreover, if
δ = 1 and n ≤ (d−δ)/2−2, then d ≥ 2n+δ+4 and the latter computation
can be strengthened to give

∆ ≤ (1− n)(2n + δ + 4) + (2n2 + nδ − δ2)

= −δ2 + δ + 4− 2n

= −2n + 4
≤ 0.

We can assume, therefore, that δ = 1 (which yields 2k = n + 2nt) and
n = (d− δ)/2− 1 = (d− 3)/2.

If (2k +1)d 6≡ 1(mod 2n), then z ≤ ((2k +1)d+2n− 2)/2n and we have

∆ ≤ (1 + n) ((2k + 1)d + 2n− 2)− (2k + 2t + 3)nd

= −3(n− 1) (verification left to the reader)
< 0.

Finally, suppose that δ = 1, n = (d− 3)/2, and (2k + 1)d ≡ 1(mod 2n).
Then

1 ≡ (2k + 1)d ≡ (n + 1) · 3 ≡ n + 3 (mod 2n),

hence 2n | n+2 implying n = 2 and d = 7. This is the exceptional case. �

Proof of Claim 3.17. If d is even then the result follows easily as in the
proof of Claim 3.16. Suppose that d is odd and consequently, d0 > 2.

If d = 7 then d0 = 7, and the assumptions imply that there exist integers
z0 and z such that

m0z0 + mz ≡ n0z0 + nz ≡ 2 (mod 7).

Plainly, with this choice of z0 and z the product we are interested in is
negative.

Suppose now that d is odd and d 6= 7. If m,n,m + n 6≡ 0(mod d),
then we can disregard z0 (taking it to be zero) and the result follows from
Claim 3.16. Otherwise, we can assume that m + n ≡ 0(mod d): for if, say,
m ≡ 0(mod d), then one verifies readily that

m′
0 := m0 + n0, n′0 := −n0, m′ := m + n, n′ := −n

satisfy the assumptions, and m′ + n′ ≡ 0(mod d). Next, since our product
remains unchanged when n increases by a multiple of d, we can assume
that n = −m. Similarly, the product is invariant under changes of n0 by
multiples of d0, and therefore we can assume that m0 and n0 are of the
same parity.
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In view of gcd(m, d) = gcd(m,−m, d) = gcd(m,n, d) = 1, for any integer
z0 we can find z so that

mz ≡ n0 −m0

2
d

d0
z0 (mod d).

With this choice of z (and under the assumption that n = −m) we have
m0z0

d0
+

mz

d
=

((m0 + n0)/2) z0

d0
+ u

and

n0z0

d0
+

nz

d
=

((m0 + n0)/2) z0

d0
− u

for some u ∈ Z. Thus our product equals

cos2 π
((m0 + n0)/2) z0

d0
cos π

(m0 + n0)z0

d0

and since m0+n0 6≡ 0(mod d0) (along with m+n = 0 this would contradict
the assumptions of the claim), there exists z0 ∈ Z which makes this last
expression negative. �
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