
Journal de Théorie des Nombres
de Bordeaux 16 (2004), 705–732

S-expansions in dimension two

par Bernhard SCHRATZBERGER

Résumé. Nous généralisons en dimension deux la méthode de sin-
gularisation développée par C. Kraikamp au cours des années 90
dans ses travaux sur les systèmes dynamiques associées aux frac-
tions continues, en relation avec certaines propriétés d’approxi-
mations diophantiennes. Nous appliquons la méthode à l’algo-
rithme de Brun en dimension 2 et montrons comment utiliser
cette technique et d’autres analogues pour transférer des pro-
priétés métriques et diophantiennes d’un algorithme à l’autre. Une
conséquence de cette étude est la construction d’un algorithme qui
améliore les propriétés d’approximations par comparaisons avec
celles de l’algorithme de Brun.

Abstract. The technique of singularization was developped by
C. Kraaikamp during the nineties, in connection with his work on
dynamical systems related to continued fraction algorithms and
their diophantine approximation properties. We generalize this
technique from one into two dimensions. We apply the method
to the the two dimensional Brun’s algorithm. We discuss, how
this technique, and related ones, can be used to transfer certain
metrical and diophantine properties from one algorithm to the
others. In particular, we are interested in the transferability of the
density of the invariant measure. Finally, we use this method to
construct an algorithm which improves approximation properties,
as opposed to Brun’s algorithm.

1. Introduction

The technique of singularization, as described in details by M. Iosifescu
and C. Kraaikamp [7] (see also [9]), was introduced to improve some dio-
phantine approximation properties of the regular one-dimensional contin-
ued fraction algorithm in the following sense: Let {p(t)/q(t)}∞t=1 be the
sequence of convergents of an arbitrary real number x in (0, 1), produced
by the regular continued fraction algorithm. Singularization methods allow
to transform the original (regular continued fraction) algorithm into new
ones (depending on the actual setting of the applications), such that the

Manuscrit reçu le 5 juin 2003.

706 Bernhard Schratzberger

sequences of convergents built from the new algorithms are subsequences
of the previous one. This technique also allows to transfer the underlying
ergodic properties of one algorithm to the other.

A large family of semi-regular continued fraction algorithms, called S-
expansions, can be related to each other via singularizations (e.g. the near-
est integer continued fraction [14], Hurwitz’ singular continued fraction [6],
Minkowski’s diagonal expansion [13], Nakada’s α-expansions [15, 16] or
Bosma’s optimal continued fraction [2]).

In this paper, we show that similar techniques can be applied in di-
mension two. We describe singularization processes, based on the two-
dimensional Brun’s algorithm, and analyze how to use singularizations to
transfer certain statistical and approximation properties towards the re-
sulting algorithm. In particular, using natural extensions of the underlying
ergodic dynamical systems, we are interested in how to deduce the corre-
sponding invariant measure of the new algorithms from the density of the
invariant measure of the original algorithm. This is of a special interest with
respect to recent investigations by the author on similar relations between
Brun’s algorithm and the Jacobi-Perron algorithm in two dimensions [19] .

Finally, we present an algorithm T q with improved approximation prop-
erties, as opposed to the underlying Brun’s algorithm.

2. Definitions

We recall some basic definitions and results on fibered systems. For an
extensive summary, we refer to a monograph of F. Schweiger [23].

Definition. Let X be a set and T : X → X. If there exists a partition
{X(i) : i ∈ I} of X, where I is finite or countable, such that the restriction
of T to X(i) is injective, then (X,T) is called a fibred system.

I is the set of digits, and the partition {X(i) : i ∈ I} is called the
time-1-partition.

Definition. A cylinder of rank t is the set

X(i(1), . . . , i(t)) := {x : i(x) = i(1), . . . , i(T t−1(x)) = i(t)} .

A block of digits (i(1), . . . , i(t)) is called admissible, if

X(i(1), . . . , i(t)) 6= ∅ .

Since T : X(i) → TX(i) is bijective, there exists an inverse map V (i) :
TX(i) → X(i) which will be called a local inverse branch of T . Define
V (i(1), i(2), . . . , i(t)) := V (i(1)) ◦ V (i(2), . . . , i(t)); then V (i(1), i(2), . . . , i(t)) is
a local inverse branch of T t.

S-expansions 707

Definition. The fibred system (X,T) is called a multidimensional contin-
ued fraction algorithm if

(1) X is a subset of the Euclidean space Rn

(2) For every digit i ∈ I, there is an invertible matrix α = α(i) = ((akl)),
0 ≤ k, l ≤ n, such that x(1) = Tx(0), x(0) ∈ X, is given as

x
(1)
k =

ak0 +
∑n

l=1 aklx
(0)
l

a00 +
∑n

l=1 a0lx
(0)
l

.

In this paper, the process of singularization will be applied to the follow-
ing algorithm:

Definition (Brun 1957). Let M := {(b0, b1, b2) : b0 ≥ b1 ≥ b2 ≥ 0}. Brun’s
Algorithm is generated by the map τS : M →M , where

τS(b0, b1, b2) =

 (b0 − b1, b1, b2), b0 − b1 ≥ b1 (j = 0) ,
(b1, b0 − b1, b2), b1 ≥ b0 − b1 ≥ b2 (j = 1) ,
(b1, b2, b0 − b1), b2 ≥ b0 − b1 (j = 2) .

Let XB := {(x1, x2) : 1 ≥ x1 ≥ x2 ≥ 0}; using the projection map
p : M → XB, defined by

p(b0, b1, b2) =
(b1
b0
,
b2
b0

)
,

we obtain the corresponding two-dimensional map TS : XB → XB,

TS(x1, x2) =


(x1
1−x1

, x2
1−x1

), 1− x1 ≥ x1 (j = 0) ,
(1−x1

x1
, x2

x1
), x1 ≥ 1− x1 ≥ x2 (j = 1) ,

(x2
x1
, 1−x1

x1
), x2 ≥ 1− x1 (j = 2) .

We refer to j as the type of the algorithm. Denote

XB(0) := {(x1, x2) ∈ XB : j(x1, x2) = 0} ,
XB(1) := {(x1, x2) ∈ XB : j(x1, x2) = 1} ,
XB(2) := {(x1, x2) ∈ XB : j(x1, x2) = 2} .

Further, for t ≥ 1, define j(t) = j(t)(x(0)
1 , x

(0)
2) := j(T t−1

S (x(0)
1 , x

(0)
2)).

The cylinders XB(j(1), . . . , j(t)) of the fibred system (XB, TS) are full, i.e.,
T t

SXB(j(1), . . . , j(t)) = XB. The algorithm is ergodic and conservative with
respect to Lebesgue measure (see Theorem 21 in [23], p. 50).

Let t ≥ 1; the matrices α(t)
S := αS(j(t)) of Brun’s Algorithm are given as

αS(0) =

 1 −1 0
0 1 0
0 0 1

 , αS(1) =

 0 1 0
1 −1 0
0 0 1

 , αS(2) =

 0 1 0
0 0 1
1 −1 0

 .

708 Bernhard Schratzberger

0
0 0.5

1

1

j=0 j=1

j=2

Figure 1. The time-1-partition of Brun’s Algorithm TS

The inverses β(t)
S := βS(j(t)) of the matrices of the algorithm with

βS(0) =

 1 1 0
0 1 0
0 0 1

 , βS(1) =

 1 1 0
1 0 0
0 0 1

 , βS(2) =

 1 0 1
1 0 0
0 1 0

 ,

produce a sequence of convergence matrices {Ω(s)
S }∞s=0 as follows:

Definition. Let E be the identity matrix. Then

Ω
(0)
S =

 q(0) q(0
′) q(0

′′)

p
(0)
1 p

(0′)
1 p

(0′′)
1

p
(0)
2 p

(0′)
2 p

(0′′)
2

 := E

Ω
(t)
S =

 q(t) q(t
′) q(t

′′)

p
(t)
1 p

(t′)
1 p

(t′′)
1

p
(t)
2 p

(t′)
2 p

(t′′)
2

 := Ω
(t−1)
S β

(t)
S .

Hence, for k = 1, 2, (x(t)
1 , x

(t)
2) = T t

S(x(0)
1 , x

(0)
2),

x
(0)
k =

p
(t)
k + x

(t)
1 p

(t′)
k + x

(t)
2 p

(t′′)
k

q(t) + x
(t)
1 q(t′) + x

(t)
2 q(t′′)

.

The columns of the convergence matrices produce Diophantine approxima-
tions (p(t)

1 /q(t), p
(t)
2 /q(t)) to (x(0)

1 , x
(0)
2). Similar to the above, j is referred

to as the type of a matrix βS(j)

3. The process of Singularization

The basic idea of singularization, as introduced by C. Kraaikamp [9],
was to improve approximation properties of the (one-dimensional) regular
continued fraction algorithm. In particular, C. Kraaikamp was interested in

S-expansions 709

semi-regular continued fraction algorithms, whose sequences of convergents
{p(t)/q(t)}∞t=1 were subsequences of the sequence of regular convergents of x.
To construct these algorithms, he introduced the process of singularization,
which further led to the definition of a new class of semi-regular continued
fraction algorithms, the S-expansions.

The process is defined by a law of singularization which, to a given
continued fraction algorithm (or a class of such algorithms), determines
in an unambiguous way the convergents to be singularized by using some
specific matrix identities.

We give an example for Brun’s Algorithm in two dimensions. The fol-
lowing matrix identities are easily checked (for an arbitrary t, φt and ψt

are defined such that either φt = 1 and ψt = 0, or φt = 0 and ψt = 1):
type M1:  1 A1 0

0 1 0
0 0 1

  1 A2 0
0 1 0
0 0 1

 =

 1 A1 +A2 0
0 1 0
0 0 1

 ,

type M2:  1 A1 0
0 1 0
0 0 1

  A2 φ2 ψ2

1 0 0
0 ψ2 φ2

 =

 A1 +A2 φ2 ψ2

1 0 0
0 ψ2 φ2

 .

Based on these identities, we remove any matrix β
(t)
S from the sequence

of inverse matrices if j(t) = 0. The matrix β(t+1) should then be replaced
according to the above rule. Thus a new sequence of convergence matri-
ces {Ω∗(s)S }∞s=0 is obtained by removing Ω(t)

S from {Ω(s)
S }∞s=0. Clearly, the

sequence of Diophantine approximations {(p∗(s)1 /q∗(s), p
∗(s)
2 /q∗(s))}∞s=0 ob-

tained from the new convergence matrices is a subsequence of the original
one.

Now we apply the same procedure to any remaining matrix of type 0,
and continue until all such matrices have been removed. That way, a new
algorithm is defined. This transformation of the original algorithm into a
new one is called a singularization. We put this into a more general form:

Definition. A transformation σt, defined by a matrix identity that removes
the matrix β(t) from the sequence of inverse matrices (which changes an
algorithm into a new form such that the sequence of Diophantine approxi-
mations {(p∗(s)1 /q∗(s), p

∗(s)
2 /q∗(s))}∞s=0 obtained from the new algorithm is a

subsequence of the original one) is called a singularization. We say we have
singularized the matrix β(t).

By the definition, the sequence of convergents of the singularized algo-
rithm is a subsequence of the sequence of convergents of the original one.
Therefore, if the original algorithm converges to (x1, x2) so does the new
one. Now we define the exponent of convergence as the supremum of real

710 Bernhard Schratzberger

numbers d such that for almost all (x1, x2) and all t large enough, the
inequalities ∣∣∣∣∣xk −

p
(t)
k

q(t)

∣∣∣∣∣ ≤ 1
(q(t))1+d

(k = 1, 2)

hold. Notice that the exponent of convergence of the singularized algorithm
is always larger or equal to the one of the original algorithm.

We generalize the definition of matrices βS(j), j = 0, 1, 2, to

βM (0, A) =

 1 A 0
0 1 0
0 0 1

 , βM (1, A) =

 A 1 0
1 0 0
0 0 1

 ,

βM (2, A) =

 A 0 1
1 0 0
0 1 0

 .

We may thus define a law of singularization LM* for Brun’s Algorithm, to
obtain its multiplicative acceleration TM (a different, but equivalent rule
LM will be introduced Section 4).
Law of singularization LM*: Singularize every matrix βM (0, A), using
identities M1 and M2.

Consider a block of successive matrices of type 0. Note that matrix
identitiesM1 andM2 allow singularizations of these matrices in an arbitrary
order, yielding the same algorithm, as long as we remove every such matrix.

The resulting algorithm is the well-known multiplicative acceleration of
Brun’s Algorithm TM : XB → XB,

TM (x1, x2) =
{

(1
x1
−A, x2

x1
), 1

x1
−A ≥ x2

x1
(j = 1)

(x2
x1
, 1

x1
−A), x2

x1
≥ 1

x1
−A (j = 2)

, A := [
1
x1

]

(compare [23], p. 48ff). All matrices of type 0 have been removed, and
the new partition is defined by the types j = 1, 2 and the partial quotients
A ∈ N of the algorithm.

In particular, we denote

XM (1) := {(x1, x2) ∈ XB : j(x1, x2) = 1} ,
XM (2) := {(x1, x2) ∈ XB : j(x1, x2) = 2} .

Similarly to the above, for t ≥ 1, j(t) := j(T t−1
M (x(0)

1 , x
(0)
2)) and A(t) :=

A(T t−1
M (x(0)

1 , x
(0)
2)). The cylinders are defined by the pairs (j(t), A(t)), while

the inverses β(t)
M := βM (j(t), A(t)), as well as the convergence matrices Ω(t)

M ,
are defined as above.

S-expansions 711

0
0

1

1

1
11

2

2
2

A=1A=2A=3

...
...

Figure 2. The time-1-partition of the multiplicative accel-
eration of Brun’s Algorithm

4. The natural extension (X,T)

Following [7], we may describe the law of singularization in defining a
singularization area i.e., a set S such that every x ∈ S specifies a matrix β
to be singularized. To describe S we use the natural extension of a fibred
system, introduced by Nakada, Ito and Tanaka [16] (see also [15] and [3])
but we follow F. Schweiger ([23], p. 22f).

Definition. Let (X,T) be a multidimensional continued fraction algo-
rithm. A fibred system (X#, T#) is called a dual algorithm if

(1) (i(1), . . . , i(t)) is an admissible block of digits for T if and only if
(i(t), . . . , i(1)) is an admissible block of digits for T#;

(2) there is a partition X#(i) such that the matrices α#(i) of T# re-
stricted to X#(i) are the transposed matrices of α(i).

Similar to the above, let V #(i) : T#X#(i) → X#(i) denote the local
inverse branches of T#.

Definition. For any x ∈ X, the polar set D(x) is defined as follows:

D(x) := {y ∈ X# : x ∈
∞⋂

t=1

T tX(i(t)(y), . . . , i(1)(y))} .

Let y ∈ X#(i(1), . . . , i(t)). By the definition, y ∈ D(x) if and only if
V (i(t), . . . , i(1))(x) is well defined for all t. In particular, if all cylinders are
full, then D(x) = X#.

712 Bernhard Schratzberger

Definition. The dynamical system (X,T), where X := {(x, y) : x ∈ X,
y ∈ D(x)} and

T : X → X, T (x, y) = (T (x), V #(i(x))(y))

is called a natural extension of (X,T).

Definition. Let t ≥ 1. A singularization area is a set S ⊂ X such that,
for some fixed k, β(t+k) should be singularized if and only if (x(t), y(t)) ∈ S.

Remark. In theory, the singularization area could be chosen arbitrarily.
However, since the process is based on some matrix identities which have
an effect on the remaining matrices, there are some restrictions similar to
the ones described in [7] (section 4.2.3). Since we are more ’liberal’ in the
sense that, throughout this paper, several matrix identities will be used,
there is no such general description of these restraints.

In case of Brun’s Algorithm, we consider the fibred system (XB, TS) from
above. A dual system can be described as follows. Let

X#
S := {(y1, y2) : 0 ≤ y1; 0 ≤ y2 ≤ 1}

and set in particular

X#
S (0) := {(y1, y2) ∈ X#

S : 1 ≤ y1} ,

X#
S (1) := {(y1, y2) : 1 ≥ y1 ≥ y2 ≥ 0} ,

X#
S (2) := {(y1, y2) : 1 ≥ y2 ≥ y1 ≥ 0} .

Define V #
S : X#

S → X#
S ,

V #
S (j)(y1, y2) =


(1 + y1, y2) (j = 0) ,
(1
1+y1

, y2

1+y1
) (j = 1) ,

(y2

1+y1
, 1

1+y1
) (j = 2) ,

XS := XB ×X#
S , and finally TS : XS → XS ,

TS(x1, x2, y1, y2) = (TS(x1, x2), V
#
S (j(x1, x2))(y1, y2)).

Then (XS , TS) is a natural extension of (XB, TS). We now define the
singularization area

SM := XB × ([1,∞)× [0, 1]),

and thus restate the law of singularization LM*:

Law of singularization LM: Singularize β
(t)
S if and only if

(x(t)
1 , x

(t)
2 , y

(t)
1 , y

(t)
2) ∈ SM ,

using matrix identities M1 and M2.
By the definition of SM , the laws of singularization LM and LM* are

equivalent.

S-expansions 713

XB XS
#

0
0

0
0

1

1

1

1 2 3

Figure 3. The singularization area SM

Remark. The matrix identities M1 and M2, and thus the law of singular-
ization LM, slightly differ from the process of singularization described in [7]
and [9] (compare matrix identity 11 given in Section 5). Nevertheless, there
exists a relation similar to LM between the one-dimensional regular contin-
ued fraction algorithm and the Lehner expansions [11]. Lehner expansions
are generated by a map isomorphic to Brun’s Algorithm TB : [0, 1) → [0, 1),

TB(x) =
{

x
1−x , 0 ≤ x < 1

2 ;
1−x

x , 1
2 ≤ x < 1 .

This relation, again based on ideas similar to singularization, is described
in Dajani and Kraaikamp [5] (see also Ito [8]).

5. Eliminating partial quotients A(t) = 1, where j(t) = 1

From now on, we assume that the law of singularization LM has already
been applied to Brun’s Algorithm TS i.e., in the following, we consider the
resulting multiplicative acceleration of Brun’s Algorithm TM .

We are now going to define another singularization process: The Singu-
larization of matrices βM (1, 1), which will lead to a new algorithm T1 with
better approximation properties (as opposed to both TS and TM). We use
the following identities:
type 11:  A1 1 0

ε1 0 0
0 0 1

  1 1 0
1 0 0
0 0 1

  A3 φ3 ψ3

1 0 0
0 ψ3 φ3


=

 A1 + 1 1 0
ε1 0 0
0 0 1

  A3 + 1 φ3 ψ3

−1 0 0
0 ψ3 φ3

 .

type 12:  A1 0 1
ε1 0 0
0 1 0

  1 1 0
1 0 0
0 0 1

  A3 φ3 ψ3

1 0 0
0 ψ3 φ3


=

 A1 0 1
ε1 0 0
1 1 0

  A3 + 1 φ3 ψ3

−1 0 0
0 ψ3 φ3

 .

714 Bernhard Schratzberger

Remark. The matrix identity 11 corresponds to the identity used in [7]
and [9] to define the singularization process for the one-dimensional (regu-
lar) continued fraction algorithm.

Define, for ε ∈ {−1, 1}, the matrices β1(j, A, ε, C) as

β1(1, A, ε, C) =

 A 1 0
ε 0 0
C 0 1

 , β1(2, A, ε, C) =

 A 0 1
ε 0 0
C 1 0

 .

Consider a block of pairs of digits ((j(t), A(t)), (1, 1), (j(t+2), A(t+2))). If we
singularize β(t+1)

M , then β(t)
M will be replaced by β1(1, A(t) +1, 1, 0) (if j(t) =

1), or by β1(2, A(t), 1, 1) (if j(t) = 2). The matrix β
(t+2)
M will be replaced

by β1(j(t+2), A∗(t+2) + 1,−1, 0). Hence, even if A(t) = 1 and j(t) = 1,
or A(t+2) = 1 and j(t+2) = 1, we cannot singularize one of the resulting
matrices using the above identities. In other words, from every block of
consecutive matrices βM (1, 1) we can only singularize every other matrix.

We thus have to specify which of the matrices of such blocks should be
singularized, and this choice determines the outcome, as it can be seen easily
with the following example: Let {β(s)

M }∞s=0 be a sequence of matrices spec-
ified by the pairs of digits ((j(1), A(1)), . . . , (j(t), A(t)), (1, 1), (1, 1), (1, 1),
(j(t+4), A(t+4))), where both A(t) 6= 1 and A(t+4) 6= 1. Singularizing β(t+2)

M

obviously yields a different subsequence of {β(s)
M }∞s=0, and thus a differ-

ent algorithm, than singularizing both β
(t+1)
M and β

(t+3)
M . The class of

S-expansions for the regular one-dimensional continued fraction algorithm
was obtained in giving different laws of singularization i.e., different choices
of matrices to be singularized, for one single matrix identity. For example,
the following law of singularization can be considered:

Law of singularization L1*: From every block of n consecutive matrices
βM (1, 1), singularize the first, the third,. . .matrices, using identities 11 and
12.

Remark. Due to the nature of matrix identities 11 and 12, we may not
apply L1* until the first index s with j(s) 6= 1 or A(s) 6= 1. Strictly speaking,
L1* is only valid for matrices β(t)

M (1, 1) where t > t0, and t0 := min {s :
j(s) = 2 or A(s) > 1}. Similar restrictions will be true for all laws of
singularization proposed from now on.

Using the natural extension (XM , TM) of (XB, TM), where

X#
M := {(y1, y2) : 0 ≤ y1 ≤ 1; 0 ≤ y2 ≤ 1} ,

S-expansions 715

X#
M (1) := {(y1, y2) ∈ X#

M : y1 ≥ y2} ,

X#
M (2) := {(y1, y2) ∈ X#

M : y2 ≥ y1} ,

XM := XB ×X#
M ,

and V #
M : X#

M → X#
M ,

V #
M (j, A)(y1, y2) :=

{
(1

A+y1
, y2

A+y1
) (j = 1) ,

(y2

A+y1
, 1

A+y1
) (j = 2) ,

such that TM : XM → XM is defined by

TM (x1, x2, y1, y2) = (TM (x1, x2), V
#
M (j(x1, x2), A(x1, x2))(y1, y2)) .

Again, we may restate L1* in terms of a singularization area S1 ⊂ XM .
We use V #

M to control the preceding pairs of digits (j(t−1), A(t−1)), (j(t−2),
A(t−2)), . . . Denote fi the ith term of Fibonacci’s sequence with initial terms
f0 = 0, f1 = 1, and let ∆(P1, P2, P3) be the triangle defined by the vertices
P1, P2 and P3. Then

S1 := XB(1)×
(∞⋃

i=0

∆((
f2i

f2i+1
, 0), (

f2i

f2i+1
,

1
f2i+1

), (
f2i+1

f2i+2
,

1
f2i+2

))

∪
∞⋃
i=0

∆((
f2i

f2i+1
, 0), (

f2i+2

f2i+3
, 0), (

f2i+2

f2i+3
,

1
f2i+3

))
)
.

Law of singularization L1: Singularize β
(t)
M if and only if

(x(t−1)
1 , x

(t−1)
2 , y

(t−1)
1 , y

(t−1)
2) ∈ S1 ,

using identities 11 or 12, accordingly.

XB XM
#

0
0

0
0

0.5

0.5

0.5

0.5 g

1

1

1

1

Figure 4. The singularization area S1 (g =
√

5−1
2)

716 Bernhard Schratzberger

Thus L1 is equivalent to L1*. The singularization yields a new algorithm,
which acts on the following set (compare Figure 5):

X1 := {(x1, x2) : 0 ≤ x2 ≤ |x1| ≤ 1/2}
∪ {(x1, x2) : 1/2 ≤ x1 ≤ 1, 1− x1 ≤ x2 ≤ x1 }

or, more precisely,

X1(1) := {(x1, x2) ∈ X1 :
x2

|x1|
≤ 1
|x1|

−A ≤ 1
2
}

∪

{
(x1, x2) ∈ X1 :

max {1
2 ,

x2
|x1|} ≤

1
|x1| −A

A+ 1− 1
|x1| ≤

x2
|x1|

}
,

X1(2) := {(x1, x2) ∈ X1 :
1
|x1|

−A ≤ x2

|x1|
≤ 1

2
}

∪ {(x1, x2) ∈ X1 : max {1
2
,

1
|x1|

−A , (A+ 1)− 1
|x1|

} ≤ x2

|x1|
} ,

X1(3) := {(x1, x2)∈ X1 : max{1
2
,
x2

|x1|
} ≤ 1

|x1|
−A&

x2

|x1|
≤ A+ 1− 1

|x1|
}

=
∞⋃

A=2

∆((
1

A+ 1
, 0), (

2
2A+ 1

, 0), (
2

2A+ 1
,

1
2A+ 1

))

∪
∞⋃

A=2

∆((− 1
A+ 1

, 0), (− 2
2A+ 1

, 0), (− 2
2A+ 1

,
1

2A+ 1
)) ,

X1(4) := {(x1, x2) ∈ X1 : max {1
2
,

1
|x1|

−A} ≤ x2

|x1|
≤ A+ 1− 1

|x1|
}

=
∞⋃

A=1

∆((
1
A
,

1
A

), (
1
A
,

1
2A

), (
2

2A+ 1
,

1
2A+ 1

))

∪
∞⋃

A=2

∆((− 1
A
,

1
A

), (− 1
A
,

1
2A

), (− 2
2A+ 1

,
1

2A+ 1
)) .

The resulting algorithm T1 : X1 → X1 (the one defined by the new matrices
β

(t)
1) can be described as follows:

T1(x1, x2) =


(1
|x1| −A, x2

|x1|) (j = 1) ,
(x2
|x1| ,

1
|x1| −A) (j = 2) ,

(1
|x1| − (A+ 1), x2

|x1|) (j = 3) ,
(x2
|x1| − 1, 1

|x1| −A) (j = 4) ,

(x1, x2) ∈ X1(j), A := [
1
|x1|

] .

S-expansions 717

We may further define an algorithm V #
1 : X#

1 → X#
1 , where

X#
1 (1) := {(y1, y2) : 0 ≤ y2 ≤ y1 ≤

1
2
} ,

X#
1 (2) := X#

M (2) ,

X#
1 (3) := {(y1, y2) : 0 ≤ y2 ≤ −y1 ≤

1
3
}

∪
∞⋃
i=1

∆((−f2i+2

f2i+4
, 0), (−f2i+2

f2i+4
,

1
f2i+4

), (− f2i

f2i+2
, 0))

∪
∞⋃
i=1

∆((−f2i+1

f2i+3
,

1
f2i+3

), (− f2i

f2i+2
,

1
f2i+2

), (− f2i

f2i+2
, 0)) ,

X#
1 (4) := {(y1, y2) : 0 ≤ −y1 ≤ min {y2, 1− y2}& y2 ≤ 1},

X#
1 :=

4⋃
i=1

X#
1 (i),

V #
1 (j, A)(y1, y2) =


(1

A+y1
, y2

A+y1
) (j = 1) ,

(y2

A+y1
, 1

A+y1
) (j = 2) ,

(− 1
A+1+y1

, y2

A+1+y1
) (j = 3) ,

(− y2

A+y1+y2
, 1

A+y1+y2
) (j = 4) .

Since the cylinders of the new algorithm are not full, we verify that

D1(x1, x2) =

{
X#

1 (1) ∪X#
1 (2) if 0 ≤ x1,

X#
1 (3) ∪X#

1 (4) if x1 ≤ 0

i.e., whenever x1 ≤ 0, so is y1 (and conversely). Thus D1(x1, x2) is not
empty. Finally, we put (see Figure 5):

X1 := {(x1, x2) ∈ X1 : 0 ≤ x1} × (X#
1 (1) ∪X#

1 (2))

∪ {(x1, x2) ∈ X1 : x1 ≤ 0} × (X#
1 (3) ∪X#

1 (4))

and

T 1(x1, x2, y1, y2) = (T1(x1, x2), V
#
1 (j(x1, x2), A(x1, x2))(y1, y2))

to obtain the system (X1, T 1).

6. The ergodic system connected with the natural extension

Consider the fibred system (XB, TM) and its natural extension (XM ,
TM). Let ΣM be the σ-algebra generated by the cylinders of XM . The
multiplicative acceleration of Brun’s Algorithm is known to be ergodic and

718 Bernhard Schratzberger

X1 X #
1

0
0

0
0

0.5

-0.5 0.5

0.5

-0.5 0.5g-

1

1

1

1
1

1 1
1

12

2 2

2

2

2

2

3 3
3

4 4

4
4

A=1

A=1

A=2 A=2 A=2

A=2

A=2

Figure 5. The set X1 (g− = g − 1)

conservative, and it admits an invariant probability measure µM , whose
density is given as

1
CM

1
(1 + x1y1 + x2y2)3

(see e.g. Schweiger [20] or Arnoux and Nogueira [1]), where CM ≈ 0, 19.
Define

SC
1 := XM \ S1 ,

S+
1 := SC

1 \ TMS1 ,

N1 := T 1 T
−1
M S1 .

Note that, by the definitions N1 ∩XM = ∅ and X1 = S+
1 ∪ N1. Next we

define a transformation ς1 that ’jumps’ over the singularization area S1.

Definition. The transformation ς1 : SC
1 → SC

1 is defined by

ς1(x1, x2, y1, y2) =

{
TM (x1, x2, y1, y2), (x1, x2, y1, y2) ∈ SC

1 \ T−1
M S1 ,

T
2
M (x1, x2, y1, y2), (x1, x2, y1, y2) ∈ T

−1
M S1 .

Using the theory of jump transformations (see e.g. [22]), this yields an
ergodic system (SC

1 ,ΣSC
1
, µSC

1
, ς1), where ΣSC

1
is the restriction of ΣM to

SC
1 and µSC

1
is the probability induced by µM on ΣSC

1
. Notice that CSC

1
:=

µM (SC
1) ≈ 0, 78. Now we may identify the set N1 with TMS1 by a bijective

map M1 : SC
1 → X1, where M1TMS1 = N1, while M1 is the identity on

S+
1 :

Definition. The map M1 : SC
1 → X1 is defined by,

M1(x1, x2, y1, y2) =
{

(x1, x2, y1, y2), (x1, x2, y1, y2) ∈ S+
1 ,

(− x1
1+x1

, x2
1+x1

, y1 − 1, y2), (x1, x2, y1, y2) ∈ TMS1 .

S-expansions 719

We may illustrate the relations between S1, TMS1 and M1TMS1 with
two sets E1 ∈ S1, E2 ∈ S1, where E1 is defined by the block of pairs of
digits ((1, 2), (1, 1), (1, 2)) (i.e., E1 = {(x1, x2, y1, y2) : (j(0), A(0)) =
(1, 2), (j(1), A(1)) = (1, 1), (j(2), A(2)) = (1, 2)}), while E2 is defined by ((2,
2), (1, 1), (2, 2)).

X1 X #
1

0
0

0
0

0.5

-0.5 0.5

0.5

-0.5 0.5

1

1

1

1

E1

E2

VM
#E1

VM
#E2

M1 VM
#E1

M1 VM
#E2

E1

E2

TM E1

TM E2

M 1TM E1

M1TM E2

Figure 6. Evolution of the sets E1 ⊂ S1 and E2 ⊂ S1

We get the following

Theorem 6.1. Consider τ1 : X1 → X1, τ1(x1, x2, y1, y2) = M1ς1M
−1
1 .

Then (X1,Σ1, µ1, τ1) is an ergodic dynamical system, where Σ1 is the σ-
algebra generated by the cylinders of X1, µ1 is the probability measure with
density function

1
C1

1
(1 + |x1|y1 + x2y2)3

,

C1 = CMCSC
1
≈ 0, 15, and for all (x1, x2, y1, y2) ∈ X1,

τ1(x1, x2, y1, y2) = T 1(x1, x2, y1, y2).

7. A cyclic version of the algorithm

Consider the multiplicative acceleration of Brun’s Algorithm TM as de-
scribed above and, for t large enough, the convergence matrix

Ω
(t)
M =

 q(t) q(t
′) q(t

′′)

p
(t)
1 p

(t′)
1 p

(t′′)
1

p
(t)
2 p

(t′)
2 p

(t′′)
2


i.e., the approximations (p(t)

1 /q(t), p
(t)
2 /q(t)), (p(t′)

1 /q(t
′), p

(t′)
2 /q(t

′)) and
(p(t′′)

1 /q(t
′′), p

(t′′)
2 /q(t

′′)) to some (x(0)
1 , x

(0)
2) ∈ XB generated by the algo-

rithm. Define P (s)
M := (p(s)

1 /q(s), p
(s)
2 /q(s)), then

(x(0)
1 , x

(0)
2) ∈ ∆(P (t)

M , P
(t′)
M , P

(t′′)
M).

720 Bernhard Schratzberger

X
P t

P t'

P t''

P t +1
P t +2

Figure 7. Example for an approximation where j(t+1) = 1

Let Γ(P1, P2) be defined as the line segment between the points P1 and
P2. We observe that, by construction of the approximations, P (t+1)

M ∈
Γ(P (t)

M , P
(t′)
M). Further, as long as j(t+1) = 1, . . . , j(t+i) = 1 for some i ≥

1, then P
(t+2)
M , . . . , P

(t+i+1)
M lie on that same line segment. In particular,

P
(t+i+1)
M ∈ Γ(P (t+i)

M , P
(t+i−1)
M) ⊂ Γ(P (t)

M , P
(t′)
M). Thus the approximation

triangles ∆(P (t+i+1)
M , P

((t+i+1)′)
M , P ((t+i+1)′′)

M) get very ’long’ i.e., the vertex
P

(t′′)
M is not replaced until some j(t+l) = 2, l > i (Fig. 7).
On the other hand, if j(t+1) = 2, then P (t+2)

M ∈ Γ(P (t+1)
M , P

(t′′)
M), and both

P
(t′)
M and P (t′′)

M have been replaced with P (t+1)
M and P (t+2)

M , respectively. We
call this a cyclic approximation.

We are now going to construct an algorithm that ’jumps’ over the ’bad’
(in the above sense) types j = 1. The following matrix identity (and thus
the corresponding law of singularization) somewhat is a generalization of
the identity type 12:
type Q:  A1 0 1

B1 0 0
C1 1 0

  A2 1 0
B2 0 0
0 0 1

  A3 φ3 ψ3

1 0 0
0 ψ3 φ3



=

 A1A2 0 1
B1A2 0 0

B1 + C1A2 1 0

  A3 + 1
A2

φ3 ψ3

−B2
A2

0 0

0 ψ3 φ3

 .

S-expansions 721

Similar to the above, we further generalize the definition of the matrices
βM (j, A) (j ∈ {1, 2}) to

β(1, A,B,C) =

 A 1 0
B 0 0
C 0 1

 , β(2, A,B,C) =

 A 0 1
B 0 0
C 1 0

 ,

where βM (j, A) = β(j, A, 1, 0), and define a law of singularization as fol-
lows:
Law of singularization LQ*: From any block of matrices (β(t), ..., β(t+i)),
where j(t) = 1, ..., j(t+i) = 1, and both j(t−1) = 2 and j(t+i+1) = 2, singu-
larize the first, the second, ... the last matrix, using identity type Q.

Or equivalently, in terms of the singularization area SQ := XM (1)×X#
M ,

Law of singularization LQ: Singularize β(t) if and only if

(x(t−1)
1 , x

(t−1)
2 , y

(t−1)
1 , y

(t−1)
2) ∈ SQ,

using matrix identity type Q.
Similar to LM and LM*, the order of singularizing matrices in LQ* only

is of a certain technical importance, and we could define matrix identities
which would allow singularization independent of the order. The resulting
algorithm, a ’cyclic’ acceleration of Brun’s Algorithm, would be the same.
Therefore LQ, where the order is not determined, is equivalent to LQ*.

Let [A1, A2, . . . , As] denote the regular one-dimensional continued frac-
tion expansion with partial quotients A1, A2, . . . , As i.e.,

[A1, A2, . . . , As] =
1

A1 +
1

A2 +
1

. . .
+

1
As

.

Consider some t > 0 with j(t) = 2. Let k ≥ 0, i ≥ 0 be such that j(t−1) =
1, . . . , j(t−k) = 1, j(t−k−1) = 2, and j(t+1) = 1, . . . , j(t+i) = 1, j(t+i+1) = 2.
The integers A(t−k−1), . . . , A(t), . . . , A(t+i+1) are the corresponding partial
quotients obtained by the multiplicative acceleration of Brun’s Algorithm
(the original algorithm).

Further, let the corresponding t∗ ≤ t be such that P (t∗)
Q is the t∗th con-

vergent obtained by the new algorithm, where P (t∗)
Q = P

(t)
M . By induction,

we get the inverse matrices of the resulting algorithm

β
(t∗)
Q (x

(0)
1 , x

(0)
2) =


A

(t∗)
L A

(t∗)
R 0 1

(−1)i

A
(t∗−1)
R

A
(t∗)
R 0 0

C(t∗) 1 0

 ,

722 Bernhard Schratzberger

where

A
(t∗)
L = A

(t∗)
L (x(0)

1 , x
(0)
2) = [A(t), . . . , A(t−k)] ,

A
(t∗)
R = A

(t∗)
R (x(0)

1 , x
(0)
2) =

{
1 if i = 0 ,
[A(t+i), . . . , A(t+1)] · · · [A(t+1)] if i > 0 ,

C(t∗) = C(t∗)(x(0)
1 , x

(0)
2) =


0 if i = 0 ,
1 if i = 1 ,
[A(t+i), . . . , A(t+2)] · · · [A(t+2)] if i > 1 .

Now let i ≥ 0, A1 ≥ 1, . . . , Ai+1 ≥ 1 and define

E1 = E1(i;A1, . . . , Ai, Ai+1) :=
((−1)i

[Ai+1, . . . , A1] · · · [A1]
, 0
)
,

E2 = E2(i;A1, . . . , Ai, Ai+1) :=
((−1)i

[Ai+1, . . . , A1] · · · [A1]
,

1
[Ai+1, . . . , A1]

)
,

E3 = E3(i;A1, . . . , Ai, Ai+1) :=((−1)i

[Ai+1 + 1, Ai, . . . , A1] · [Ai, . . . , A1] · · · [A1]
,

1
[Ai+1 + 1, Ai, . . . , A1]

)
.

Then

XQ =
∞⋃
i=1

∞⋃
A1=1

· · ·
∞⋃

Ai+1=1

∆(E1, E2, E3) ⊂ [−1, 1]× [0, 1].

Remark. As above, i is the length of a block of consecutive matrices of
type j = 1, and A1, . . . , Ai are the corresponding partial quotients (result-
ing from the original algorithm). Ai+1 is the partial quotient correspond-
ing to the first type ji+1 = 2. If i = 0, then ∆(E1, E2, E3) reduces to
∆((1

A1
, 0), (1

A1
, 1

A1
), (1

A1+1 ,
1

A1+1)), and

∞⋃
A1=1

∆((
1
A1
, 0), (

1
A1
,

1
A1

), (
1

A1 + 1
,

1
A1 + 1

)) = XM (2).

In principle, the resulting algorithm is defined by the inverse matrices
β

(t)
Q . However, the actual construction yields the difficulty that the defini-

tions of A(t∗)
L and A

(t∗−1)
R depend on the explicit knowledge of the partial

quotients A(t−1), ..., A(t−k). We may overcome this problem in using the

S-expansions 723

natural extension: For i ≥ 1, define

E#
1 = E#

1 (i;A1, . . . , Ai) :=
(1
[Ai, . . . , A1]

, 0
)
,

E#
2 = E#

2 (i;A1, . . . , Ai) :=
(1
[Ai, . . . , A1]

,
1

[Ai, . . . , A1] · · · [A1 + 1]
)
,

E#
3 = E#

3 (i;A1, . . . , Ai) :=(1
[Ai, . . . , A2, A1 + 1]

,
1

[Ai, . . . , A2, A1 + 1] · · · [A1 + 1]
)
.

If i = 0, then E#
1 = (0, 0), E#

2 = (0, 1) and E#
3 = (1, 1). Let

XQ =
∞⋃
i=0

∞⋃
A1=1

· · ·
∞⋃

Ai+1=1

∆(E1, E2, E3)×∆(E#
1 , E

#
2 , E

#
3).

We may define a cyclic acceleration of Brun’s Algorithm TQ : XQ → XQ,

TQ(x1, x2, y1, y2) =
(A+

R

A−R|x1|
−ALA

+
R,

A+
Rx2

A−R|x1|
− C, V #

M

k++1
(y1, y2)

)
where

k− := min{t : V t+1
M ∈ XM (2)} ,

k+ := min{t : T t+1
M

(A∗LA
−
R|x1|

A∗L −A−R|x1|
,

A∗Lx2

A∗L −A−R|x1|
)
∈ XM (2)} ,

AL := [A1, . . . , A1−k−],

A∗L := [AL]−AL,

A+
R :=

{
1 if k+ = 0,
[Ak++1, . . . , A2] · · · [A2] if k+ > 0 .

A−R :=
{

1 if k− = 0,
[A1, . . . , A2−k−] · · · [A2−k−] if k− > 0 .

C :=

 0 if k+ = 0,
1 if k+ = 1 .
[Ak++1, . . . , A3] · · · [A3] if k+ > 1 .

Ai :=

 A
(
T i−1

M (A∗
LA−

R |x1|
A∗

L−A−
R |x1|

,
A∗

Lx2

A∗
L−A−

R |x1|
)
)

if k+ ≥ i ≥ 1,

[1

V #
M

i
(y1,y2)

] if 0 ≥ i ≥ −k− .

724 Bernhard Schratzberger

Finally, we define

k(t) := k+
(
T t−1

Q (x(0)
1 , x

(0)
2)
)

= k−
(
T t

Q(x(0)
1 , x

(0)
2)
)
,

A
(t)
L := AL

(
T t−1

Q (x(0)
1 , x

(0)
2)
)
,

A
(t)
R := A+

R

(
T t−1

Q (x(0)
1 , x

(0)
2)
)

= A−R
(
T t

Q(x(0)
1 , x

(0)
2)
)
,

and

C(t) := C
(
T t−1

Q (x(0)
1 , x

(0)
2)
)
.

8. Convergence properties

In constructing the cyclic acceleration of the algorithm, we avoid more
than three partial convergents lying on a line. Alas, the method yields
another problem: While for k(t) even, (x(0)

1 , x
(0)
2) ∈ ∆(P (t)

Q , P
(t−1)
Q , P

(t−2)
Q),

this is not true if k(t) is odd (Fig. 8). To overcome this problem, we have

XP t +1

P t' P t''

P t

P t +2

Figure 8. Example for an approximation after singulariza-
tion, where j(t+1) = 2 and j(t+2) = 1

to accept single matrices of type j = 1. We propose the following law of
singularization:
Law of singularization Lq*: Let (β(t), . . . , β(t+i)) be a block of matrices

such that j(t) = 1, . . . , j(t+i) = 1, and both j(t−1) = 2 and j(t+i+1) = 2.
If i is even, then singularize the first, the second,. . . the last matrix, using
identity type Q. If i is odd, and i ≥ 3, then singularize the first, the

S-expansions 725

second,. . . matrix until (including) the first matrix before the last, using
identity type Q.

Denote

F1 = F1(A1, A2) :=
(1
A2 + 1

A1

, 0
)
,

F2 = F2(A1, A2) :=
(1
A2 + 1

A1+1

, 0
)
,

F3 = F3(A1, A2) :=
(1
A2 + 1

A1

,
1

A1(A2 + 1
A1

)

)
F4 = F4(A1, A2) :=

(1
A2 + 1

A1+1

,
1

(A1 + 1)(A2 + 1
A1+1)

)
.

Setting

Sq :=
∞⋃

A1=1

∞⋃
A2=1

∆(F1, F2, F3)×X#
M

∪
∞⋃

A1=1

∞⋃
A2=1

∆(F1, F3, F4)×
∞⋃
i=0

∞⋃
A1=1

· · ·
∞⋃

A2i+2=1

∆(E#
1 , E

#
2 , E

#
3) ,

we find Lq as an equivalent law of singularization:
Law of singularization Lq: Singularize β(t) if and only if

(x(t−1)
1 , x

(t−1)
2 , y

(t−1)
1 , y

(t−1)
2) ∈ Sq,

using matrix identity type Q.
Define

E4 = E4(i;A1, ..., Ai, Ai+1)

:=
((−1)i

[Ai+1 + 1, Ai, . . . , A1] · [Ai, . . . , A1] · · · [A1]
, 0
)
,

Xq(1) :=
∞⋃
i=0

∞⋃
A1=1

· · ·
∞⋃

A2i+1=1

∆(E1, E2, E3)×∆(E#
1 , E

#
2 , E

#
3) ,

Xq(2) :=
∞⋃
i=1

∞⋃
A1=1

(∆(E1, E2, E3)×
∞⋃

A1=2

· · ·
∞⋃

A2i+2=1

(1)∆(E#
1 , E

#
2 , E

#
3))

∪
∞⋃
i=1

∞⋃
A1=0

· · ·
∞⋃

A2i+1=1

∆(E1, E3, E4)×∆(E#
1 , E

#
2 , E

#
3) ,

and consequently,
Xq := Xq(1) ∪Xq(2) .

726 Bernhard Schratzberger

The resulting algorithm T q : Xq → Xq can be defined similarly as above:

T q(x1, x2, y1, y2) = (x2

A−
R |x1|

, 1
A−

R |x1|
−AL, V

#
M (y1, y2)) if j = 1 ,

(A+
R

A−
R |x1|

−ALA
+
R,

A+
Rx2

A−
R |x1|

− C, V #
M

k++1
(y1, y2)) if j = 2 ,

where

j :=
{

1 if (x1, x2, y1, y2) ∈ Xq(1) ,
2 if (x1, x2, y1, y2) ∈ Xq(2) .

The integers k− and k+ are defined as above,

k1 :=
{
k− if k− is even ,
1 if k− is odd ,

k2 :=
{
k+ if k+ is even ,
k+ − 1 if k+ is odd ,

and AL, A∗L, A+
R, A−R, C and Ai are defined as in Section 7, in fine, replacing

k− by k1 and k+ by k2, respectively.
Define j(t), k(t), A(t)

L , A(t)
R and C(t) as above. Note that, by construction

A
(t)
R and C(t) are integers, and A

(t)
R > C(t). An invariant measure can

be found, although requiring a certain technical effort, using the method
described in Section 6. The inverse matrices of the algorithm are given by

β(t)
q (1) =

 A
(t)
L 1 0
1

A
(t−1)
R

0 0

0 0 1

 , β(t)
q (2) =


A

(t)
L A

(t)
R 0 1

1

A
(t−1)
R

A
(t)
R 0 0

C(t) 1 0

 ,

where A(t−1)
R = 1 if j(t−1) = 1. The convergence matrices, and thus the

sequences of Diophantine approximations, are defined as above. To esti-
mate the exponent of convergence, we use the modified method of Paley
and Ursell [17], as described in Schweiger [22]. It is based on the following
quantities:

Definition. For i = 1, 2, set

[t, s] := q(t)p
(s)
i − q(s)p

(t)
i

and

ρt+3 :=


max

{
[t+3,t+2]

q(t+3) , [t+3,t]

q(t+3)

}
if j(t+2) = 1,

max
{

[t+3,t+2]

q(t+3) , [t+3,t+1]

q(t+3)

}
if j(t+2) = 2.

S-expansions 727

It is known that ∣∣∣∣∣xi −
p
(t)
i

q(t)

∣∣∣∣∣ ≤ 2ρt

q(t)

(see e.g. [18]), thus exponential decay of ρt yields exponential convergence
to (x1, x2). We have the following recursion relations (since the results hold
for both p(.)

1 and p(.)
2 , we write p(.) instead):

if j(t+2) = 1 :

q(t+4) = A
(t+4)
L A

(t+4)
R q(t+3) +

A
(t+4)
R

A
(t+3)
R

q(t) + C(t+4)q(t+2) ,

if j(t+3) = 1 :

q(t+4) = A
(t+4)
L A

(t+4)
R q(t+3) +A

(t+4)
R q(t+2) + C(t+4)q(t+1) ,

if j(t+2) = j(t+3) = 2 :

q(t+4) = A
(t+4)
L A

(t+4)
R q(t+3) +

A
(t+4)
R

A
(t+3)
R

q(t+1) + C(t+4)q(t+2) ,

if j(t+2) = 1 :

[t+ 4, t+ 3] = −
A

(t+4)
R

A
(t+3)
R

[t+ 3, t]− C(t+4)[t+ 3, t+ 2] ,

[t+ 4, t+ 2] = A
(t+4)
L A

(t+4)
R [t+ 3, t+ 2]−

A
(t+4)
R

A
(t+3)
R

[t+ 2, t] ,

if j(t+3) = 1 :

[t+ 4, t+ 3] = −A(t+4)
R [t+ 3, t+ 2]− C(t+4)[t+ 3, t+ 1] ,

[t+ 4, t+ 1] = A
(t+4)
L A

(t+4)
R [t+ 3, t+ 1] +A

(t+4)
R [t+ 2, t+ 1] ,

if j(t+2) = j(t+3) = 2 :

[t+ 4, t+ 3] = −
A

(t+4)
R

A
(t+3)
R

[t+ 3, t+ 1]− C(t+4)[t+ 3, t+ 2] ,

[t+ 4, t+ 2] = A
(t+4)
L A

(t+4)
R [t+ 3, t+ 2]−

A
(t+4)
R

A
(t+3)
R

[t+ 2, t+ 1] .

From these relations, we deduce the following

728 Bernhard Schratzberger

Lemma 8.1.∣∣[t+ 4, t+ 3]
∣∣ ≤ (q(t+4) − q(t)) max{ρt+3, ρt+2, ρt+1} .

Proof. We only show the cyclic case j(t+1) = j(t+2) = j(t+3) = 2. The other
cases are similar. We use the above recursion relations. If C(t+4) = 0, then
A

(t+4)
R = 1. We get

∣∣[t+ 4, t+ 3]
∣∣ = ∣∣− 1

A
(t+3)
R

[t+ 3, t+ 1]
∣∣

≤ 1

A
(t+3)
R

q(t+3)ρt+3

≤ (q(t+4) − ((A(t+4)
L − 1

A
(t+3)
R

)q(t+3) +
1

A
(t+3)
R

q(t+1)))ρt+3

≤ (q(t+4) − q(t+1))ρt+3 .

Now let C(t+4) ≥ 1, hence A(t+4)
R ≥ 2. If [t+ 3, t+ 1][t+ 3, t+ 2] ≤ 0, then

∣∣[t+ 4, t+ 3]
∣∣ = ∣∣− A

(t+4)
R

A
(t+3)
R

[t+ 3, t+ 1]− C(t+4)[t+ 3, t+ 2]
∣∣

≤ A
(t+4)
R q(t+3)ρt+3

≤ (q(t+4) − q(t+2))ρt+3 .

If [t+ 3, t+ 1][t+ 3, t+ 2] ≥ 0, C(t+3) = 0 and A(t+3)
R = 1, then

∣∣[t+ 4, t+ 3]
∣∣ = ∣∣− A

(t+4)
R

A
(t+3)
R

[t+ 3, t+ 1]− C(t+4)[t+ 3, t+ 2]
∣∣

=
∣∣−A

(t+4)
R [t+ 3, t+ 1] +

C(t+4)

A
(t+2)
R

[t+ 2, t]
∣∣

≤ (A(t+4)
R q(t+3) + C(t+4)q(t+2)) max{ρt+3, ρt+2}

≤ (q(t+4) − q(t+1)) max{ρt+3, ρt+2} .

If [t + 3, t + 1][t + 3, t + 2] ≥ 0, C(t+3) ≥ 1, and thus A(t+3)
R ≥ 2, we have

two cases: [t+ 2, t][t+ 2, t+ 1] ≤ 0 yields

S-expansions 729

∣∣[t+ 4, t+ 3]
∣∣ = ∣∣− A

(t+4)
R

A
(t+3)
R

[t+ 3, t+ 1]− C(t+4)[t+ 3, t+ 2]
∣∣

=
∣∣−A

(t+3)
L A

(t+4)
R [t+ 2, t+ 1] +

A
(t+4)
R

A
(t+2)
R

[t+ 1, t]

+
A

(t+3)
R C(t+4)

A
(t+2)
R

[t+ 2, t] + C(t+4)C(t+3)[t+ 2, t+ 1]
∣∣

≤
(
(A(t+3)

L A
(t+4)
R A

(t+3)
R − 1)q(t+2) +A

(t+4)
R q(t+1)

+ C(t+4)q(t+2)
)
max{ρt+2, ρt+1}

≤ (q(t+4) − q(t+2)) max{ρt+2, ρt+1} ,

while if [t+ 2, t][t+ 2, t+ 1] ≥ 0, then [t+ 3, t+ 2][t+ 2, t+ 1] ≤ 0 and

∣∣[t+ 4, t+ 3]
∣∣ = ∣∣− A

(t+4)
R

A
(t+3)
R

[t+ 3, t+ 1]− C(t+4)[t+ 3, t+ 2]
∣∣

=
∣∣−A

(t+3)
L A

(t+4)
R [t+ 2, t+ 1]

+
A

(t+4)
R

A
(t+2)
R

[t+ 1, t]− C(t+4)[t+ 3, t+ 2]
∣∣

≤
(
A

(t+4)
R q(t+3) +

A
(t+4)
R

A
(t+3)
R

q(t+1)
)
max{ρt+3, ρt+2, ρt+1}

≤ (q(t+4) − q(t+2)) max{ρt+3, ρt+2, ρt+1} .

�

Similarly, we have

Lemma 8.2. Let j(t+3) = 2, then∣∣[t+ 4, t+ 2]
∣∣ ≤ (q(t+4) − q(t)) max{ρt+3, ρt+2, ρt+1, ρt} .

Lemma 8.3. Let j(t+4) = 1, then∣∣[t+ 5, t+ 2]
∣∣ ≤ (q(t+5) − q(t)) max{ρt+3, ρt+2, ρt+1, ρt} .

Now define τt := max {ρt+4, ρt+3, ρt+2, ρt+1, ρt}. Using Lemmata 8.1 -
8.3 and the above definitions, we estimate

τt+5 ≤

(
1−min

{
q(t)

q(t+5)
,
q(t+1)

q(t+6)
,
q(t+2)

q(t+7)
,
q(t+3)

q(t+8)
,
q(t+4)

q(t+9)

})
τt .

730 Bernhard Schratzberger

Since
q(t)

q(t+5)
> 0

almost everywhere, we may define a function

g(x1, x2, y1, y2) := log

(
1−min

{
q(1)

q(6)
,
q(2)

q(7)
,
q(3)

q(8)
,
q(4)

q(9)
,
q(5)

q(10)

})

to apply the ergodic theorem

lim
t→∞

t−1∑
s=0

g
(
T

s
q(x1, x2, y1, y2)

)
=
∫

Xq

g(x1, x2, y1, y2)dµ =: log K < 0

almost everywhere. Thus τt ≤ cK
t
5 , and ρt goes down exponentially. We

state the following

Theorem 8.4. For the algorithm Tq, there exists a constant dq such that,
for almost all (x1, x2, y1, y2) in Xq, there exist an integer t(x1, x2, y1, y2),
such that the inequality ∣∣∣∣∣xi −

p
(t)
i

q(t)

∣∣∣∣∣ ≤ 1
(q(t))1+dq

.

hold for any t ≥ t(x1, x2, y1, y2).

Remark. Exponential convergence of T q follows directly from exponential
convergence of the multiplicative acceleration of Brun’s Algorithm. How-
ever, the proof of Theorem 8.4 is interesting for a different reason: Hitherto,
proofs for exponential convergence of Brun’s algorithm were based on con-
sidering a special subset of XB i.e., the set where j(1) = · · · = j(t) = 2
for some t ≥ 3, and the induced transformation on this set (compare R.
Meester [12] or [18]). We may now (with respect to the measure of the
singularization area Sq) transfer the above result, especially the estimate
of the decay using the function g(x1, x2, y1, y2), to the multiplicative ac-
celeration of Brun’s algorithm using standard techniques, which essentially
were described in the original work of Paley and Ursell [17]. We immedi-
ately see that not only these special sets, but all cylinders contribute to
the exponential approximation. However, the estimate of the approxima-
tion speed depends on the size of the quantities q(t+5) − q(t). The smaller
this difference, the better the estimate. Thus the estimate gets worse if a
large number of non-cyclic convergents with suitable partial quotients has
been singularized, which essentially leads to the counterexample for cyclic
algorithms in [17].

S-expansions 731

Acknowledgements

This paper is part of research done in connection with the project P15132
(Multidimensional Continued Fractions) of the Austrian Science Founda-
tion FWF. I would especially like to thank Prof. F. Schweiger for numerous
valuable suggestions and comments. I also want to thank the anonymous
referee for his careful revision, which considerably improved the exposition
of the paper.

References
[1] P. Arnoux, A. Nogueira, Mesures de Gauss pour des algorithmes de fractions continues

multidimensionnelles. Ann. Sci. Ec. Norm. Supér., IV. Sér. 26 (1993), 645–664.

[2] W. Bosma, Optimal continued fractions, Indag. Math. 49 (1987), 353–379.
[3] W. Bosma, H. Jager, F. Wiedijk, Some metrical observations on the approximation by

continued fractions. Indag. Math. 45 (1983), 281–299.

[4] V. Brun, Algorithmes euclidiens pour trois et quatre nombres. 13 Skand Mat-Kongr,
Helsinki (1957), 45–64.

[5] K. Dajani, C. Kraaikamp, The mother of all continued fractions. Colloq. Math. 84-85

(2000), Pt. 1, 109–123.

[6] A. Hurwitz, Über eine besondere Art des Kettenbruch-Entwicklung reeller Grössen, Acta

Math. 12 (1889), 367–405.
[7] M. Iosifescu, C. Kraaikamp, Metrical Theory of Continued Fractions. Kluwer Academic

Publishers, Dordrecht (2002).

[8] S. Ito, Algorithms with mediant convergents and their metrical theory. Osaka J. Math. 26
(1989), No.3, 557–578.

[9] C. Kraaikamp, Metric and Arithmetic Results for Continued Fraction Expansions, Aca-

demic Thesis, Univ. Amsterdam (1991), pp. 185.
[10] C. Kraaikamp, A new class of continued fraction expansions.. Acta Arith. 57 (1991), 1–39.

[11] J. Lehner, Semiregular continued fractions whose partial denominators are 1 or 2. In:

The Mathematical Legacy of Wilhelm Magnus: Groups, Geometry and Special Functions
(Brooklyn, NY, 1992), pp. 407-410. Contemporary Mathematics 169, Amer. Math. Soc.,

Providence, RI 169 (1992), 407–410.

[12] R. Meester, A simple proof of the exponential convergence of the modified Jacobi-Perron
algorithm. Erg. Th. Dyn. Sys. 19 (1999), 1077–1083.

[13] H. Minkowski, Über dis Annäherung an eine reelle Grösse durch rationale Zahlen, Math.
Ann., 54 (1901), 91–124.

[14] B. Minnigerode, Über eine neue Methode, die Pell’sche Gleichung aufzulösen, Nachr.
König. Gesellsch. Wiss. Göttingen Math.-Phys. Kl. 23 (1873), 619–652.

[15] H. Nakada, Metrical theory for a class of continued fraction transformations and their

natural extensions. Tokyo J. Math. 4 (1981), 399–426.
[16] H. Nakada, S. Ito, S. Tanaka, On the invariant measure for the transformations associ-

ated with some real continued fractions. Keio Eng. Rep. 30 (1977), 159–175.

[17] R.E.A.C. Paley, H.B. Ursell, Continued Fractions in Several Dimensions. Proc. Camb.
Phil. Soc. 26 (1930), 127–144.

[18] B.R. Schratzberger, The Exponent of Convergence for Brun’s Algorithm in two Dimen-

sions. SBer. Österr. Akad. Wiss. Math.-naturw. Kl. Abt. II, 207 (1998), 229–238.
[19] B.R. Schratzberger, On the Singularization of the two-dimensional Jacobi-Perron Algo-

rithm. Preprint Universität Salzburg.
[20] F. Schweiger, Invariant measures for maps of continued fraction type. J. Number Theory

39 (1991), No.2, 162–174.

[21] F. Schweiger, Ergodic Theory of Fibred Systems and Metric Number Theory. Clarendon
Press, Oxford (1995).

732 Bernhard Schratzberger

[22] F. Schweiger, The exponent of convergence for the 2-dimensional Jacobi-Perron Algo-

rithm. Nowak, W.G. & Schoissengeier, J. (eds), Proceedings of the Conference of Analytic
and Elementary Number Theory Vienna, 207–213.

[23] F. Schweiger, Multidimensional Continued Fractions. Univ Press, Oxford (2000).

Bernhard Schratzberger

Universität Salzburg

Institut für Mathematik
Hellbrunnerstraße 34

5020 Salzburg, Austria

E-mail : bernhard.schratzberger@sbg.ac.at

