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Restricted set addition in Abelian groups:

results and conjectures

par Vsevolod F. LEV

Résumé. Nous présentons un ensemble de conjectures imbriquées
qui peuvent être considérées comme des analogues pour l’addition
restreinte des théorèmes classiques dûs à Kneser, Kemperman et
Scherk. Les connections avec le théorème de Cauchy-Davenport,
la conjecture d’Erdős-Heilbronn et la méthode polynomiale
d’Alon-Nathanson-Ruzsa sont étudiées.

Cet article ne suppose pas d’expertise de la part du lecteur et
peut servir d’introduction au sujet.

Abstract. We present a system of interrelated conjectures which
can be considered as restricted addition counterparts of classi-
cal theorems due to Kneser, Kemperman, and Scherk. Connec-
tions with the theorem of Cauchy-Davenport, conjecture of Erdős-
Heilbronn, and polynomial method of Alon-Nathanson-Ruzsa are
discussed.

The paper assumes no expertise from the reader and can serve
as an introduction to the subject.

0. Quick start.

Is it true that for any sets A and B of residues modulo a positive inte-
ger, such that A ∩ (−B) = {0}, there are at least |A| + |B| − 3 residues
representable as a + b with a ∈ A, b ∈ B, and a 6= b? We believe that the
answer is “yes”, and there is not much exaggeration in saying that the goal
of this paper is to explain why this conjecture is so exciting, where it came
from, and what it is related to.

In the next section we review three remarkable theorems on set addi-
tion due to Cauchy, Davenport, Kneser, Kemperman, and Scherk; these
theorems are of utmost importance in what follows. In Section 2 we
briefly discuss the conjecture of Erdős-Heilbronn (presently the theorem
of Dias da Silva-Hamidoune) which is the restricted addition analog of
the theorem of Cauchy-Davenport. In Sections 3 and 4 we consider con-
jectural restricted addition counterparts of the theorems of Kneser and
Kemperman-Scherk, respectively.
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1. Historical background, I. Unrestricted set addition.

Additive combinatorial number theory is a branch of mathematics which
can be traced down to its very roots. It is generally believed that the first
result in this area is a well-known theorem due to Cauchy and Davenport.

Let A and B be non-empty sets of residues modulo a prime p, and
denote by A + B the set of all residues representable as a sum a + b with
a ∈ A and b ∈ B. Given the number of elements in A and B (and no
other information on the two sets), how small can A + B be? If A and
B are arithmetic progressions with the same common difference, then it is
immediately seen that either A + B contains all p residues, or otherwise
|A+B| = |A|+ |B|−1. The theorem of Cauchy-Davenport shows that this
is the extremal case.

Theorem 1.1 (Cauchy-Davenport). For any non-empty sets A and B of
residues modulo a prime p we have

|A + B| ≥ min{|A|+ |B| − 1, p}.

This theorem was first established in 1813 by Cauchy (see [C13]) who
used it to give an alternative proof of the result of Lagrange that the con-
gruence ax2 + by2 + c ≡ 0(mod p) is solvable for any non-zero residues
a, b, and c. (Lagrange’s result is actually a lemma in his proof of the
famous four-squares theorem.) In 1935 Theorem 1.1 was independently
re-discovered by Davenport (see [D35, D47]) as a “modulo p analog” of a
conjecture of Landau and Schnirelmann concerning the density of the sum
of integer sequences.

Among numerous generalizations of the theorem of Cauchy-Davenport
the deepest and most powerful is, undoubtedly, an extension onto arbitrary
abelian groups due to Kneser. Loosely speaking, it says that if A and B
are finite, non-empty subsets of an abelian group, then “normally” there
are at least |A|+ |B| − 1 group elements representable as a + b with a ∈ A
and b ∈ B. In other words, letting

(1.1) A + B := {a + b : a ∈ A, b ∈ B}
we have |A + B| ≥ |A| + |B| − 1, unless there are some “special reasons”
for this to fail. To state Kneser’s theorem precisely we have to introduce
some notation.

Throughout the paper, for subsets A and B of an abelian group G we
define the sum set A + B by (1.1). (For an element b ∈ G we write A + b
instead of A+{b}.) Notice, that if H is a subgroup of G and if for C ⊆ G we
denote by C the image of C under the canonical homomorphism G → G/H,
then A + B = A + B for any A,B ⊆ G. The period (or stabilizer) of a set
C ⊆ G is defined by H(C) := {g ∈ G : C + g = C}, and C is said to be
periodic or aperiodic according to whether H(C) 6= {0} or H(C) = {0}.
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The following properties of the period are almost immediate and yet worth
to be recorded explicitly:

(i) H(C) is a subgroup of G;
(ii) H(C) = G if and only if C = ∅ or C = G;
(iii) C is a union of cosets of H(C). Indeed, for a subgroup H ≤ G the

set C is a union of H-cosets if and only if H ≤ H(C);
(iv) C/H(C) (the image of C under the canonical homomorphism G →

G/H(C)) is an aperiodic subset of the quotient group G/H(C);
(v) if C is finite, then so is H(C) and |C| = |C/H(C)| |H(C)|;
(vi) for any B ⊆ G we have H(C) ≤ H(B + C).

Theorem 1.2 (Kneser, [Kn53, Kn55]; see also [Ma65]). Suppose that A
and B are finite non-empty subsets of an abelian group satisfying

(1.2) |A + B| ≤ |A|+ |B| − 1.

Then letting H := H(A + B) we have

|A + B| = |A + H|+ |B + H| − |H|.

Corollary 1.1. Let A and B be finite non-empty subsets of an abelian
group. If |A + B| < |A|+ |B| − 1, then A + B is periodic.

Notice that Kneser’s theorem implies readily the theorem of Cauchy-
Davenport: for the only non-empty periodic subset of a group of residues
modulo a prime is the group itself.

Theorem 1.2 shows that any pair of subsets A,B of an abelian group
G, satisfying (1.2), can be obtained by “lifting” subsets A,B of a quotient
group such that

(1.3) |A + B| = |A|+ |B| − 1.

Indeed, let H := H(A+B) and denote by A and B the images of A and B,
respectively, under the canonical homomorphism G → G/H. Then (1.3)
holds by Theorem 1.2, and furthermore,

(|A + H| − |A|) + (|B + H| − |B|) = |H|+ (|A + B| − |A| − |B|) < |H|.

Thus A and B are obtained from A + H and B + H (which are the full
inverse images of A and B in G) by removing less than |H| elements totally.

It is not difficult to see that Theorem 1.2 is equivalent to Corollary 1.1 in
the sense that the former can be easily deduced from the latter. We leave
the deduction as an exercise to the interested reader.

The third result we discuss in this section will be referred to as the
theorem of Kemperman-Scherk. It relates the size of the sum set A + B to
the number of representations of group elements as a + b with a ∈ A and
b ∈ B.
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Assuming that finite subsets A and B of an abelian group G are fixed
and implicit from the context, for every c ∈ G we write

ν(c) := |{(a, b) : c = a + b, a ∈ A, b ∈ B}|,

the number of representations of c as a sum of an element of A and an
element of B. (A more precise but heavier notation would be νA,B(c).)
Evidently, ν(c) > 0 if and only if c ∈ A + B. The theorem of Kemperman-
Scherk shows that if A + B is small, then any c ∈ A + B has many repre-
sentations in the above indicated form.

Theorem 1.3 (Kemperman-Scherk). Let A and B be finite non-empty
subsets of an abelian group. Then ν(c) ≥ |A| + |B| − |A + B| for any
c ∈ A + B. In other words,

|A + B| ≥ |A|+ |B| − min
c∈A+B

ν(c).

The history of Theorem 1.3 dates back to 1951 when Moser proposed
in the American Mathematical Monthly ([Mo51]) a problem which can be
formulated as follows:

For finite subsets A and B of the torus group R/Z such that
0 ∈ A∩B and ν(0) = 1, prove that |A + B| ≥ |A|+ |B| − 1.

In 1955 (see [S55]) Scherk published a solution which actually assumed
A and B to be subsets of an arbitrary abelian group (not necessarily the
torus group). The argument of Scherk requires very minor modifications to
yield the proof of Theorem 1.3, but it was not until Kemperman’s papers
[Ke56, Ke60] that the full version of the theorem has been stated. Indeed,
in the second of the two papers Kemperman ascribes the theorem to Scherk;
on the other hand, in his solution of Moser’s problem Scherk indicates that
the argument follows the ideas of his earlier joint paper with Kemperman.
With this in mind, we believe that the theorem should bear both names.

Here is a short proof of the theorem of Kemperman-Scherk based on
Kneser’s theorem.

Proof of Theorem 1.3. If |A + B| ≥ |A| + |B| − 1, the assertion is trivial;
suppose that |A + B| = |A| + |B| − k with some k ≥ 2 and show that
ν(c) ≥ k for any c ∈ A + B. Let H := H(A + B) and fix a representation
c = a0 + b0 with a0 ∈ A and b0 ∈ B. By Kneser’s theorem we have

|(A− a0) ∩H|+ |(b0 −B) ∩H| = |A ∩ (a0 + H)|+ |B ∩ (b0 + H)|
= 2|H| − |(a0 + H) \A| − |(b0 + H) \B|
≥ 2|H| − |(A + H) \A| − |(B + H) \B|
= |H|+ (|A|+ |B| − |A + B|)
= |H|+ k
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and by the boxing principle, (A− a0) ∩H and (b0 −B) ∩H share at least
k common elements. However, each pair (a, b) such that a ∈ A, b ∈ B,
and a − a0 = b0 − b yields a solution to a + b = c, whence ν(c) ≥ k as
claimed. �

2. Historical background, II. Restricted set addition.

Return for a moment to the theorem of Cauchy-Davenport, but instead
of counting all sums a + b consider only those with a 6= b. How many are
there? This question was asked by Erdős and Heilbronn in the mid sixties
(of the twentieth century).

For subsets A and B of an abelian group G write

A+̇B := {a + b : a 6= b, a ∈ A, b ∈ B}.
In contrast with the regular sum set A+B, the sum set A+̇B is often called
“restricted”. Suppose that G is the group of residues modulo a prime p.
If A and B coincide and form an arithmetic progression modulo p with
at least two terms, then either A+̇B contains all residues (this holds if
|A| = |B| ≥ (p + 3)/2), or |A+̇B| = |A| + |B| − 3. Erdős and Heilbronn
conjectured that in fact, for any non-empty sets A and B of residues modulo
a prime p one has

|A+̇B| ≥ min{|A|+ |B| − 3, p}.
This conjecture was frequently mentioned by Erdős in his talks, but it seems
that it was first published in [EG80] only. It took about 30 years until
Dias da Silva and Hamidoune, using advanced linear algebra tools, proved
the conjecture; see [DH94]. Analyzing their proof, Alon, Nathanson, and
Ruzsa proposed in [ANR95, ANR96] an elegant and powerful “polynomial
method” which has simplified the original argument drastically. Moreover,
their method, further developed by Alon in [A99], allows one to handle a
variety of unrelated combinatorial problems. The basic idea of the method,
as applied to the problem of Edős-Heilbronn, is to consider the polynomial
P (x, y) := (x−y)

∏
c∈A+̇B(x+y−c) over the field GF(p). We have P (a, b) =

0 for any pair (a, b) such that a ∈ A and b ∈ B, and since the polynomial
has “many roots” its degree (which is |A+̇B|+ 1) is to be large.

Another approach is pursued in [FLP99, L00a] where combinatorial con-
siderations are combined with the character sum technique. For instance,
in [L00a, Theorem 2] we were able to establish the structure of sets A
of residues modulo a prime p such that 200 ≤ |A| ≤ p/50 and |A+̇A| ≤
2.18|A| − 6.

3. Restricted set addition and Kneser’s theorem

Once we have a restricted set addition analog of the Cauchy-Davenport
theorem, it is most natural to ask for such an analog for Kneser’s theorem.
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Let G be an abelian group. For two finite non-empty subsets A,B ⊆ G,
how large can the restricted sum set A+̇B be given that it is aperiodic?
Set G0 := {g ∈ G : 2g = 0}, the subgroup of G consisting of zero and all
elements of order two. For brevity we write LG := |G0|. In connection with
restricted addition problems this invariant of the group G was introduced in
[L00a, L00b, L01]; its importance stems from the fact that for any c ∈ A+B
such that ν(c) > LG we have c ∈ A+̇B. Fix an integer n ≥ 2 and an element
d ∈ G of order at least 2n− 1 and let A = B := {0, d, . . . , (n− 1)d}+ G0.
Then A+B = {0, d, . . . , 2(n−1)d}+G0 and A+̇B = (A+B)\{0, 2(n−1)d}
so that |A+̇B| = (2n−1)|G0|−2 = |A|+ |B|− (LG +2); on the other hand,
it is easily verified that A+̇B is aperiodic. Based on numerical evidence
and several particular cases which we can settle, we conjectured in [L00a]
that if |A+̇B| < |A| + |B| − (LG + 2) holds for finite non-empty subsets
A,B ⊆ G, then A+̇B is periodic and indeed, we have A+̇B = A + B.

Conjecture 3.1. Let G be an abelian group, and let A and B be finite
non-empty subsets of G satisfying

(3.1) |A+̇B| < |A|+ |B| − (LG + 2).

Then A+̇B = A + B.

For some partial results towards the proof of Conjecture 3.1 the reader is
referred to [L00a, L00b, L01]. In particular, [L00b, Theorem 4] implies that
for any finite non-empty subsets A,B ⊆ G such that A+̇B 6= A+B one has
|A+̇B| > (1−δ)(|A|+ |B|)−(LG+2), where δ = |A||B|/(|A|+ |B|)2 ≤ 0.25.
Also, we have verified computationally Conjecture 3.1 for all cyclic groups
G = Zl with l ≤ 25, and in the case A = B with l ≤ 36. The reader
will check easily that the conjecture is valid for all cyclic groups of prime
order (when it is equivalent to the Erdős-Heilbronn conjecture); for the
infinite cyclic group (then |A+̇B| ≥ |A|+ |B| − 3 for any finite, non-empty
A,B ⊆ G) and as one can deduce from it, for all torsion-free abelian groups;
and for elementary 2-groups (in which case the assertion is trivial).

In fact, Conjecture 3.1 is not an analog, but rather a counterpart of
Kneser’s theorem. It shows that either the restricted sum set A+̇B is
“large”, or it coincides with the regular sum set A + B and then the well-
established machinery of Kneser’s theorem can be used to study it.

Remark. The conditions
(i) A+̇B = A + B

and
(ii) ν(c) ≥ 2 for any c ∈ A + B

are not to be confused with each other. It is not difficult to see that if
A = B, then (i) implies (ii); on the other hand, if G has no elements
of even order, then (ii) implies (i). However, in general none of the two
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conditions follows from another one: consider, for instance, the subsets
A = {0, 1, 2}, B = {10, 11, 12} of the additive group of integers (where (i)
holds but (ii) does not), and the subsets A = B = {1, 2, 4, 5} of the group
of residues modulo 6 (here (ii) holds but (i) fails).

In conjunction with the theorems of Kneser and Kemperman-Scherk,
Conjecture 3.1 readily implies

Corollary 3.1. Let G be an abelian group, and let A and B be finite non-
empty subsets of G satisfying (3.1). Then

(i) minc∈A+B ν(c) ≥ 3 + LG;
(ii) |H(A+̇B)| ≥ 3 + LG;
(iii) |A+̇B| = |A + H|+ |B + H| − |H|, where H := H(A+̇B).

Proof. (i) If there were c ∈ A + B such that ν(c) ≤ 2 + LG, then by the
theorem of Kemperman-Scherk we had |A + B| ≥ |A| + |B| − (2 + LG).
However, |A + B| = |A+̇B| < |A|+ |B| − (2 + LG) by Conjecture 3.1.
(ii) Follows from (iii) and the trivial estimates |A+H| ≥ |A|, |B+H| ≥ |B|.
(iii) Immediate from Kneser’s theorem and since |A + B| = |A+̇B| <
|A|+ |B| − 1. �

Each one of conditions (i)–(iii) of the last corollary, along with assump-
tion (3.1), implies that A+̇B is periodic. For (ii) and (iii) this is obvious;
as to (i), it gives A+̇B = A + B, and periodicity of this sum follows from
Kneser’s theorem. This allows us to state yet another corollary of Conjec-
ture 3.1, which is parallel to Corollary 1.1.

Corollary 3.2. Let G be an abelian group, and let A and B be finite non-
empty subsets of G satisfying (3.1). Then A+̇B is periodic.

Just as Corollary 1.1 is equivalent to Kneser’s theorem, Corollary 3.2 is
equivalent to Conjecture 3.1.

Proposition 3.1. Corollary 3.2 implies Conjecture 3.1.

Proof. Suppose that Corollary 3.2 holds true and let A and B be finite non-
empty subsets of an abelian group G, satisfying (3.1). We use induction by
|A+̇B| to prove that A+̇B = A + B. The case |A+̇B| = 1 is easy in view
of |A+̇B| ≥ max{|A|, |B|} − 1, and we assume that |A+̇B| ≥ 2.

Write D := {d ∈ A ∩ B : 2d /∈ A+̇B} so that A + B = (A+̇B) ∪
{2d : d ∈ D}, the two sets at the right-hand side being disjoint. Our goal
is to show that D = ∅. Assuming the opposite, we set n := |{2d : d ∈ D}|
and k := mind∈D ν(2d), so that 1 ≤ k ≤ LG and |D| ≥ kn. Notice, that
by the theorem of Kemperman-Scherk we have |A + B| ≥ |A| + |B| − k,
whence n = |A + B| − |A+̇B| ≥ LG + 3− k.

Let H := H(A+̇B), so that |H| > 1 by Corollary 3.2. We claim that
(d + H) ∩ A = (d + H) ∩ B = {d} for any d ∈ D. Indeed, assuming, say,
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a ∈ d + H, a ∈ A \ {d}, we get d ∈ a + H, whence 2d ∈ a + d + H ⊆ A+̇B
(in view of a + d ∈ A+̇B), a contradiction. This shows that for all d ∈ D
the sets (d +H) \ {d} are disjoint with A. Moreover, they are disjoint with
each other: for if (d′ + H) ∩ (d′′ + H) 6= ∅, then d′′ ∈ (d′ + H) ∩ A, hence
d′′ = d′. Thus

|A + H| ≥ |A|+ (|H| − 1)|D| ≥ |A|+ (|H| − 1)kn,

and similarly |B + H| ≥ |B| + (|H| − 1)kn. Therefore, if A,B, and A+̇B
denote the images of A,B, and A+̇B, respectively, under the canonical
homomorphism G → G/H, then

|A+̇B||H| ≤ |A+̇B||H|
= |A+̇B|
≤ |A|+ |B| − (LG + 3)

≤ |A + H|+ |B + H| − 2kn(|H| − 1)− (LG + 3)

= (|A|+ |B| − (LG + 3))|H| − (2kn− LG − 3)(|H| − 1)

< (|A|+ |B| − (LG + 3))|H|,
the last inequality following from

2kn ≥ 2k(LG + 3− k) ≥ 2(LG + 2) > LG + 3.

As LG ≥ LG/H , it follows that |A+̇B| < |A| + |B| − (LG/H + 3), hence
A+̇B = A + B by the induction hypothesis. However, for any d ∈ D its
image d ∈ G/H satisfies 2d ∈ (A + B) \ (A+̇B), a contradiction. �

In fact, it suffices to prove Conjecture 3.1 (or Corollary 3.2 to which it
is equivalent) in the particular case B ⊆ A only.

Conjecture 3.1′. Let G be an abelian group, let A and B be finite non-
empty subsets of G, satisfying (3.1), and suppose that B ⊆ A. Then
A+̇B = A + B.

Corollary 3.2′. Let G be an abelian group, let A and B be finite non-
empty subsets of G, satisfying (3.1), and suppose that B ⊆ A. Then A+̇B
is periodic.

Proposition 3.2. Corollary 3.2 ′ implies Conjecture 3.1 ′, which implies
Conjecture 3.1, which implies Corollary 3.2. Thus, all four results are
equivalent in the sense that each of them implies the other three.

Proof. Exactly as in the proof of Proposition 3.1, one can see that Conjec-
ture 3.1′ follows from Corollary 3.2′. We show that Conjecture 3.1 follows
from Conjecture 3.1′.

To this end, suppose that Conjecture 3.1′ is true, and let A and B be
finite non-empty subsets of an abelian group G, satisfying (3.1). We want
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to show that A+̇B = A + B. Set A∗ := A ∪ B and B∗ := A ∩ B; we can
assume that B∗ 6= ∅, for otherwise the assertion is immediate. Plainly,
we have |A∗| + |B∗| = |A| + |B| and A∗+̇B∗ ⊆ A+̇B, whence |A∗+̇B∗| <
|A∗|+ |B∗| − (LG + 2). From Conjecture 3.1′ we derive A∗+̇B∗ = A∗ + B∗,
and this shows that for any d ∈ B∗ there exist a∗ ∈ A∗, b∗ ∈ B∗ such that
a∗ 6= b∗ and 2d = a∗ + b∗. Since a∗ + b∗ ∈ A∗+̇B∗ ⊆ A+̇B, it follows that
A+̇B = A + B, as required. �

Remark. It is easily seen that, without loss of generality, one can assume
0 ∈ A ∩ B, 0 /∈ A+̇B in Conjectures 3.1 and 3.1′ and Corollaries 3.2 and
3.2′. In fact, it is the last corollary with this extra assumption that has
been verified computationally for cyclic groups of small order. Some further
reformulations are possible. For instance, Conjecture 3.1 is equivalent to
the assertion that if A,B ⊆ G satisfy 0 ∈ A ∩ B and 0 /∈ A+̇B, then
|A+̇B| ≥ |A|+ |B| − (LG + 2).

4. Restricted set addition and the theorem of
Kemperman-Scherk

What is the restricted addition analog of the theorem of Kemperman-
Scherk? That is, how small can minc∈A+B ν(c) be for |A|, |B|, and |A+̇B|
given? Consider an example similar to that constructed in Section 3. Fix
a subgroup H ≤ G such that 2h = 0 for any h ∈ H, an integer n ≥
2, and an element d ∈ G of order at least 2n − 1, and let A = B :=
{0, d, . . . , (n − 1)d} + H. Then |A+̇B| = |A| + |B| − (|H| + 2) whence
ν(0) = |H| = |A|+ |B| − 2− |A+̇B|.

Conjecture 4.1. Let A and B be finite non-empty subsets of an abelian
group. Then ν(c) ≥ |A| + |B| − 2 − |A+̇B| for any c ∈ A + B. In other
words,

|A+̇B| ≥ |A|+ |B| − 2− min
c∈A+B

ν(c).

As it is the case with Conjecture 3.1, we have verified Conjecture 4.1
computationally for all cyclic groups Zl with l ≤ 25, and in the case A = B
with l ≤ 36. Also, Conjecture 4.1 is true for torsion-free abelian groups
(then |A+̇B| ≥ |A|+ |B|− 3 for any finite non-empty A and B), for groups
of residues modulo a prime (when it is equivalent to the conjecture of Erdős-
Heilbronn), and for elementary abelian 2-groups (follows from the theorem
of Kemperman-Scherk and the observation that A+̇B = (A + B) \ {0} for
these groups).

Corollary 4.1. Let A and B be finite non-empty subsets of an abelian
group. If there exists an element c ∈ A + B with a unique representation
as c = a + b (a ∈ A, b ∈ B), then

|A+̇B| ≥ |A|+ |B| − 3.
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Proposition 4.1. Corollary 4.1 implies Conjecture 4.1.

Proof. Suppose that Corollary 4.1 holds true, and let A and B be finite
non-empty subsets of an abelian group. We fix arbitrarily c ∈ A + B and
show that |A+̇B| ≥ |A|+ |B| − 2− ν(c).

Write k := ν(c) and let c = a1 + b1 = · · · = ak + bk, where ai ∈
A, bi ∈ B (i = 1, . . . , k), be the k representations of c. Define B′ :=
B \ {b1, . . . , bk−1}. Then c has a unique representation as c = a + b′ with
a ∈ A and b′ ∈ B′ (namely, c = ak + bk), whence by Corollary 4.1

|A+̇B| ≥ |A+̇B′| ≥ |A|+ |B′| − 3 = |A|+ |B| − 2− k,

as required. �

The following immediate corollary of Conjecture 4.1, as we will see
shortly, is equivalent to Conjecture 3.1. The former conjecture, therefore,
is a strengthening of the latter.

Corollary 4.2. Let A and B be finite non-empty subsets of an abelian
group G. If there exists an element c ∈ A + B such that ν(c) ≤ LG, then

|A+̇B| ≥ |A|+ |B| − (LG + 2).

Proposition 4.2. Corollary 4.2 is equivalent to Conjecture 3.1.

Proof. It is clear that Corollary 3.1 (i), and therefore Conjecture 3.1, implies
Corollary 4.2. On the other hand, if Corollary 4.2 holds true and if A and B
are finite non-empty subsets of an abelian group G such that |A+̇B| < |A|+
|B|−(LG+2), then ν(c) > LG for any c ∈ A+B, whence A+̇B = A+B. �

Remark. It is not clear whether Corollary 4.2 implies Conjecture 4.1; in
other words, whether Conjectures 3.1 and 4.1 are equivalent.

Corollary 4.2 can be reduced to the case B ⊆ A.

Corollary 4.2′. Let A and B be finite non-empty subsets of an abelian
group G, satisfying B ⊆ A. If there exists an element c ∈ A + B such that
ν(c) ≤ LG, then

|A+̇B| ≥ |A|+ |B| − (LG + 2).

Proposition 4.3. Corollary 4.2′ is equivalent to Corollary 4.2.

First proof. Consider the implications

(Corollary 4.2′) ⇒ (Conjecture 3.1′)

⇒ (Conjecture 3.1) ⇒ (Corollary 4.2).

�
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Second proof. We follow the proof of Proposition 3.2. Suppose that Corol-
lary 4.2′ is true and let A and B be finite non-empty subsets of an abelian
group G. Assuming that minc∈A+B ν(c) ≤ LG and |A+̇B| < |A| + |B| −
(LG + 2) we will obtain a contradiction.

We observe that |A+B| ≥ |A|+ |B|−LG by the theorem of Kemperman-
Scherk, whence A+̇B 6= A + B. Set A∗ := A ∪ B and B∗ := A ∩ B. We
have B∗ 6= ∅, for otherwise A+̇B = A + B. In view of A∗+̇B∗ ⊆ A+̇B we
obtain

|A∗+̇B∗| ≤ |A+̇B| < |A|+ |B| − (LG + 2) = |A∗|+ |B∗| − (LG + 2),

hence by Corollary 4.2′ every c ∈ A∗+B∗ has at least LG+1 representations
as c = a∗ + b∗ with a∗ ∈ A∗, b∗ ∈ B∗. Thus A∗+̇B∗ = A∗ + B∗ and (as in
the proof of Proposition 3.2) we conclude that A+̇B = A + B, the sought
contradiction. �

The reader is urged to compare our next corollary with the question we
started our paper with.

Corollary 4.3. Suppose that A and B are finite subsets of an abelian group
satisfying A ∩ (−B) = {0}. Then

|A+̇B| ≥ |A|+ |B| − 3.

Proof. From A∩ (−B) = {0} it follows that ν(0) = 1 (the only representa-
tion of 0 being 0 = 0 + 0). �

Remark. It is not difficult to see that if LG = 1, then Conjectures 3.1 and
4.1 are equivalent to each other and to Corollary 4.3. Indeed, in this case
Corollaries 4.1 and 4.2 coincide; however, we saw that the former of them is
equivalent to Conjecture 4.1 and the latter is equivalent to Conjecture 3.1.
To verify that Corollary 4.3 implies Conjecture 3.1 for groups G satisfying
LG = 1, observe that if A+̇B 6= A+B then there exists c ∈ A∩B such that
2c /∈ A+̇B; letting A′ := A − c and B′ := B − c we get A′ ∩ (−B′) = {0}
whence |A+̇B| = |A′+̇B′| ≥ |A′|+ |B′|−3 = |A|+ |B|−3 by Corollary 4.3.

In conclusion, we note that for restricted set addition it may be natural
to replace ν(c) by the “restricted representation function”

ν̇(c) := |{(a, b) : c = a + b, a 6= b, a ∈ A, b ∈ B}|.

From Conjecture 4.1 it is not difficult to derive

Corollary 4.4. Let A and B be finite non-empty subsets of an abelian
group G. Then

|A+̇B| ≥ |A|+ |B| − LG − 1− min
c∈A+̇B

ν̇(c).
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Proof. If minc∈A+B ν(c) ≤ LG then, assuming Conjecture 4.1, we get

|A+̇B| ≥ |A|+ |B| − 2− LG ≥ |A|+ |B| − 1− LG − min
c∈A+̇B

ν̇(c).

Otherwise we have A+̇B = A + B whence by the theorem of Kemperman-
Scherk

|A+̇B| = |A + B| ≥ |A|+ |B| − min
c∈A+B

ν(c).

The result now follows from

min
c∈A+B

ν(c) ≤ min
c∈A+̇B

ν(c) ≤ min
c∈A+̇B

(ν̇(c) + LG).

�

5. A unifying conjecture

When this paper was essentially completed we were able to state a rather
general conjecture which is somewhat simpler, yet stronger than Conjec-
tures 3.1 and 4.1.

Conjecture 5.1. For any finite non-empty subsets A and B of an abelian
group we have

|A+̇B| ≥ min{|A + B|, |A|+ |B| − 1} − 2.

In other words, if |(A + B) \ (A+̇B)| ≥ 3, then |A+̇B| ≥ |A|+ |B| − 3.

We make several remarks:
(i) It is easily seen that Conjecture 5.1 implies Conjectures 3.1 and 4.1.

Moreover, if LG = 1 then all three conjectures are equivalent to each
other.

(ii) The general case reduces easily to the case 0 ∈ B ⊆ A, 0 /∈ A+̇B.
(iii) We have verified Conjecture 5.1 (in fact its special case described in

(ii)) for all cyclic groups Zl of order l ≤ 25, and assuming equal set
summands (A = B) of order l ≤ 36.

(iv) Conjecture 5.1 is valid for torsion-free abelian groups (in this case
|A+̇B| ≥ |A|+ |B| − 3 holds for any finite non-empty subsets A and
B).

(v) It is valid also for groups of residues modulo a prime (when it is
equivalent to Erdős-Heilbronn).

(vi) It is valid also for elementary abelian 2-groups (in these groups we
have A+̇B = (A + B) \ {0} for any A and B).

(vii) Perhaps, using Kemperman’s results it is feasible to prove Conjec-
ture 5.1 in the case |A+B| ≤ |A|+ |B|−1. This would show that the
conjecture is equivalent to the assertion that if |A+̇B| < |A|+B|−3,
then |A + B| < |A|+ |B| − 1.



Restricted set addition in Abelian groups 193

References
[A99] N. Alon, Combinatorial Nullstellensatz. Recent trends in combinatorics (Mt́rahźa,
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