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On the Galois group of generalized Laguerre

polynomials

par Farshid HAJIR

À Georges Gras, à l’occasion de son 60ème anniversaire

Résumé. En utilisant la théorie des polygones de Newton, on
obtient un critère simple pour montrer que le groupe de Ga-
lois d’un polynôme soit “grand.” Si on fixe α ∈ Q − Z<0, Fi-
laseta et Lam ont montré que le Polynôme Generalisé de Laguerre
L

(α)
n (x) =

∑n
j=0

(
n+α
n−j

)
(−x)j/j! est irréductible quand le degré n

est assez grand. On utilise notre critère afin de montrer que, sous
ces hypothèses, le groupe de Galois de L

(α)
n (x) est soit le groupe

alterné, soit le groupe symétrique, de degré n, généralisant des
résultats de Schur pour α = 0, 1,± 1

2 ,−1− n.

Abstract. Using the theory of Newton Polygons, we formulate
a simple criterion for the Galois group of a polynomial to be
“large.” For a fixed α ∈ Q − Z<0, Filaseta and Lam have shown
that the nth degree Generalized Laguerre Polynomial L

(α)
n (x) =∑n

j=0

(
n+α
n−j

)
(−x)j/j! is irreducible for all large enough n. We

use our criterion to show that, under these conditions, the Ga-
lois group of L

(α)
n (x) is either the alternating or symmetric group

on n letters, generalizing results of Schur for α = 0, 1,± 1
2 ,−1−n.

1. Introduction

It is a basic problem of algebra to compute the Galois group of a given
irreducible polynomial over a field K. If we order the monic degree n poly-
nomials over Z by increasing height, then the proportion which consists of
irreducible polynomials with Galois group Sn tends to 1; for a more pre-
cise statement, see for example Gallagher [6]. Nevertheless, to prove that
the Galois group of a given polynomial of degree n is Sn can be difficult
if n is large. The algorithmic aspects of Galois group computations have
witnessed a number of recent advances, for which an excellent reference is
the special issue [18] of the Journal of Symbolic Computation, especially
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the foreward by Matzat, McKay, and Yokoyama. Currently, for rational
polynomials of degree up to 15, efficient algorithms are implemented, for
instance, in gp-pari and magma. An important piece of any such algo-
rithm is the collection of data regarding individual elements of the Galois
group, for which the standard method is to factor the polynomial modulo
various “good” primes (i.e. those not dividing its discriminant), obtain-
ing the cycle-type of the corresponding Frobenius conjugacy classes in the
Galois group.

Our first goal in this paper is to formulate a criterion which exploits
the behavior of a given polynomial at “bad” primes for bounding the size
of its Galois group from below. The criterion is especially efficacious if
one suspects that a “medium size” prime (roughly between n/2 and n) is
wildly ramified in the splitting field of the polynomial. The criterion we
give (Theorem 2.2) follows quite simply from the theory of p-adic Newton
Polygons; it is used in slightly less general form in Coleman [2] and is
reminiscent of, but distinct from, a criterion of Schur [21, §1].

Our second goal is to illustrate the utility of the criterion by using it
to calculate the Galois group for specializations of a certain one-parameter
family of polynomials, which we now introduce. In the second volume of
their influential and classic work [20], Pólya and Szegő define the General-
ized Laguerre Polynomial (GLP)

L(α)
n (x) =

n∑
j=0

(
n + α

n− j

)
(−x)j

j!
.

The special case α = 0 had appeared much earlier in the work of Abel [1,
p. 284] and Laguerre [17], and the general case can in fact be found in Sonin
[24, p. 41]. Shortly after the publication of [20], the study of the algebraic
properties of this family of orthogonal polynomials was initiated by Schur
[21], [22].

For instance, for the discriminant of the monic integral polynomial

L(α)
n (x) := (−1)nn!L(α)

n (x),

we have the following formula of Schur [22]:

(1.1) ∆(α)
n =

n∏
j=2

jj(α + j)j−1.

In particular, if α is not in [−n,−2]∩Z, L
(α)
n (x) has no repeated roots. For

α = 0,±1/2, 1, Schur [21], [22] established the irreducibility of all L
(α)
n (x)

over Q, and also showed that their Galois groups are as large as possible,
namely An if ∆(α)

n is a rational square, and Sn otherwise.
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A number of recent articles on the algebraic properties of GLP have
appeared, including Feit [3], Coleman [2], Gow [9], Filaseta-Williams [5],
Filaseta-Lam [4], Sell [23], Hajir [10], [11], and Hajir-Wong [12]. In par-
ticular, we have the following theorem of Filaseta and Lam [4] on the irre-
ducibility of GLP.

Theorem. (Filaseta-Lam) If α is a fixed rational number which is not
a negative integer, then for all but finitely many integers n, L

(α)
n (x) is

irreducible over Q.

In this paper, we provide a complement to the theorem of Filaseta and
Lam by computing the Galois group of L

(α)
n (x) when n is large with respect

to α ∈ Q− Z<0. Namely, we prove the following result.

Theorem 1.1. Suppose α is a fixed rational number which is not a negative
integer. Then for all but finitely many integers n, the Galois group of
L

(α)
n (x) is An if ∆(α)

n is a square and Sn otherwise.

Remarks. 1. The hypothesis that α not be a negative integer is necessary,
as in that case, L

(α)
n (x) is divisible by x for n ≥ |α|. For a study of the

algebraic properties of L
(α)
n (x) for α ∈ Z<0, n < |α|, see [10], [23] and [11].

In the latter work, Theorem 2.2 is used to prove that An is contained in the
Galois group of L

(−n−r)
n for all large enough (with respect to n) positive

integers r.
2. Using a different set of techniques, the following companion to Theorem
1.1 is proved in [12]: If we fix n ≥ 5 and a number field K, then for all
but finitely many α ∈ K, L

(α)
n (x) is irreducible and has Galois group An

or Sn over K. For each n ≤ 4, infinitely many Q-reducible specializations
exist, and for n = 4, there are infinitely many specializations which are
irreducible but have D4-Galois group over Q, cf. [11, Section 6].
3. For integral α, some cases where ∆(α)

n is a square (giving Galois group
An) are

• α = 1 and n ≡ 1 (mod 2) or n + 1 is an odd square ([22]),
• α = n, and n ≡ 2 (mod 4) ([9], it is not yet known if all of these

polynomials are irreducible [5]),
• α = −1− n, and n ≡ 0 (mod 4) ([21], [2]),
• α = −2− n, and n ≡ 1 (mod 4) ([10]).
• α = −3− n, and n + 1 is an odd square ([23]).

See [11, §5] as well as the above-cited papers for more details.
4. The proofs of the Filaseta-Lam Theorem in [4] and of Theorem 1.1 are
both effective.



520 Farshid Hajir

Acknowledgements. I would like to thank the organizers, Christian Maire,
Jean-Robert Belliard and Hassan Oukhaba, for having invited me to speak
at the Fall 2003 Conference in honor of Georges Gras at the University of
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2. A criterion for having large Galois group

2.1. Newton Polygons. Let K be a field equipped with a discrete val-
uation v and a corresponding completion Kv. We assume v is normalized,
i.e. v(K∗) = Z, and employ the same letter v to denote an extension of
this valuation to an algebraic closure Kv of Kv.

For a polynomial f(x) = anxn+an−1x
n−1+· · ·+a0 ∈ K[x] with a0an 6= 0,

the v-adic Newton Polygon of f(x), denoted NPv(f), is defined to be the
lower convex hull of the set of points

Sv(f) = {(0, v(a0)), (1, v(a1)), · · · , (n, v(an))}.
It is the highest polygonal line passing on or below the points in Sv(f).
The points where the slope of the Newton polygon changes (including the
rightmost and leftmost points) are called the corners of NPv(f); their x-
coordinates are the breaks of NPv(f).

For the convenience of the reader, we recall the main theorem about v-
adic Newton Polygons; for a proof see, for instance, Gouvêa [8]. A very nice
survey of the uses of the Newton Polygon for proving irreducibility is Mott
[19]. For generalizations to several variables, see Gao [7] and references
therein. For a recent paper on using Newton Polygons to compute Galois
groups, see Kölle-Schmid [15].

Theorem 2.1 (Main Theorem of Newton Polygons). Suppose f(x) ∈ K[x]
is not divisible by x. Let (x0, y0), (x1, y1), . . . , (xr, yr) denote the successive
vertices of NPv(f), with slopes mi = (yi − yi−1)/(xi − xi−1). Then there
exist polynomials f1, . . . , fr in Kv[x] such that

i) f(x) = f1(x)f2(x) · · · fr(x),
ii) for i = 1, . . . , r, the degree of fi is xi − xi−1,
iii) for i = 1, . . . , r, all the roots of fi in Kv have v-adic valuation −mi.

2.2. Newton Index. We now suppose that K is a fixed global field, i.e.
K is a finite extension of Q (number field case) or of F(T ), where F is a
finite field (function field case). A global field K enjoys the property that
for a given element α ∈ K, v(α) = 0 for all but finitely many valuations v
of K.

Definition. Given f ∈ K[x] and λ a linear polynomial in K[x], we define
the v-Newton Index of f at λ, Nv(f, λ), to be the least common multiple of
the denominators (in lowest terms) of all slopes of NPv(f ◦λ). The Newton
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Index of f over K, N (f), is defined to be the least common multiple of all
Nv(f, λ) as v runs over the non-archimedean places of K and λ runs over
the linear polynomials in K[x].

Some comments on this definition are in order. It is clear that, for each
v and λ, Nv(f, λ) is a divisor of lcm(1, 2, . . . , n)|n! where n is the degree of
f , hence the same is true for N (f). Thus, the Newton index of f over K
is a well-defined divisor of n!. It is not clear from its definition, however,
that it is effectively computable; we make some comments on this in the
following Lemma. For the applications we have in mind, it will suffice to
look for a single suitable pair v, λ such that Nv(f, λ) is divisible by a prime
p ∈ (n/2, n − 2), but we have formalized the concept of Newton Index in
order to demonstrate the possibilites and limitations of this approach for
future applications.

Lemma 2.1. Let Kf be a splitting field for f over K, and let Rf be the
(finite) set of non-archimedean places of K that ramify in Kf . Then

N (f) = lcm
v∈Rf

lcm
b∈Kv

Nv(f, x + b).

Proof. Let us first note that for any linear K[x]-polynomial λ, Kf is a
splitting field for f ◦ λ. Now, if an integer d > 1 divides the denominator
of some slope of NPv(f ◦ λ), then v is ramified in Kf/K (see the proof
of Theorem 2.2). This shows that N (f) is the least common multiple of
Nv(f, λ) as v runs over Rf and λ runs over linear K[x]-polynomials.

It remains only to show that for each v, we can restrict this to the least
common multiple over monic Kv[x]-polynomials λ. To see this, suppose
λ(x) = ax + b and λ1(x) = x + b (with a ∈ K∗, b ∈ K) so that (f ◦ λ)(x) =
(f ◦ λ1)(ax). Let h = f ◦ λ1 and g = f ◦ λ. Note that if h(x) =

∑n
j=0 bjx

j

and g(x) = h(ax) =
∑n

j=0 b′jx
j , then the set of slopes of NPv(g) is simply

a shift of that of NPv(h) by v(a), because for all 0 ≤ j < k ≤ n,

v(b′j)− v(b′k)
j − k

= v(a) +
v(bj)− v(bk)

j − k
.

Since v(K∗) = Z, it follows that the slopes of NPv(h) and NPv(g) have
the same denominators. Thus, Nv(f, λ) = Nv(f, λ1), giving the desired
conclusion. �

According to the preceding Lemma, we would have an effective procedure
for calculating N (f) if we could solve the following problem.

Problem. Give an algorithm for calculating

Nv(f) := lcm
b∈Kv

Nv(f, x + b).
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We now formulate a criterion for an irreducible polynomial to have
“large” Galois group. The key idea appears in Coleman’s computation
[2] of the Galois group of the nth Taylor polynomial of the exponential
function, which incidentally is the GLP (−1)nL

(−1−n)
n (x).

Theorem 2.2. Suppose K is a global field and f(x) is an irreducible poly-
nomial in K[x]. Then Nf divides the order of the Galois group of f over
K. Moreover, if Nf has a prime divisor ` in the range n/2 < ` < n − 2,
where n is the degree of f , then the Galois group of f contains An, in which
case, this Galois group is An if disc(f) is a square in K∗ and Sn otherwise.

Proof. Suppose v is a valuation of K, λ is a linear K[x]-polynomial, and q
is an arbitrary divisor of the denominator of some slope s of NPv(g) where
g = f ◦ λ. Clearly, g is irreducible and has the same Galois group as f .
It suffices to show that q divides the order of the Galois group of g over
K. By Theorem 2.1, there exists a root α ∈ Kv of g with valuation −s.
Since q divides the denominator of s, q divides the ramification index e of
Kv(α)/Kv ([8], Proposition 5.4.2). But e divides the degree [Kv(α) : Kv],
which in turn divides the order of the Galois group of g over Kv, hence
also over K. If q = ` is a prime in the interval (n/2, n − 2), then the
Galois group of g contains an `-cycle, so it must contain An by a theorem
of Jordan [14] (or see, for instance, Hall’s book [13, Thm 5.6.2 and 5.7.2]).
It is well-known that the Galois group over K of an irreducible polynomial
of degree n is contained in An if and only if its discriminant is a square in
K∗. �

Remark. Schur proved a similar result ([21, §1, III]), namely, if the dis-
criminant of a number field K of degree n is divisible by pn, then the Galois
closure L of K has degree [L : Q] divisible by p. In general, if p divides
the discriminant of an irreducible polynomial f , it is not easy to determine
the p-valuation of the discriminant of the stem field Q[x]/(f); thus, each of
Theorem 2.2 and Schur’s criterion can be useful depending on whether we
have information about the discriminant of the field or that of the defin-
ing polynomial. Neither criterion is useful when the discriminant of f is
square-free, for example, since in that case, all the non-trivial ramification
indices are 2. On the other hand, over base field Q, irreducible polynomials
with square-free discriminant also have Galois group Sn see e.g. Kondo
[16]; the proof of this fact uses the triviality of the fundamental group of
Q.

3. Proof of Theorem 1.1

We now let K = Q. For a prime p, we write NPp in place of NPv where
v = ordp is the p-adic valuation of Q.
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Lemma 3.1. Suppose p is a prime in the interval (n/2, n−2), and f(x) =∑n
j=0

(
n
j

)
cjx

j ∈ Q[x] is an irreducible polynomial of degree n over Q with
p-integral coefficients, i.e. ordp(cj) ≥ 0 for j = 0, · · · , n. Suppose further
that

i) ordp(c0) = 1,
ii) ordp(cj) ≥ ordp(c0) for 1 ≤ j ≤ n− p,
iii) ordp(cp) = 0.

Then, p divides the order of the Galois group of f over Q. Indeed, this
Galois group is An if disc(f) ∈ Q∗2 and Sn otherwise.

Proof. It is easy to check that
(
n
j

)
is divisible by p if and only if n−p+1 ≤

j ≤ p − 1. The given assumptions then guarantee that (0, ordp(c0)) and
(p, 0) are the first two corners of NPp(f). Therefore, −ordp(c0)/p is a slope
of NPp(f). It follows from i) that p|Nf , and we are done by Theorem 2.2.

�

Remark. It is easy to see that the Lemma holds for p ∈ (1 + n/2, n − 2)
if we replace i) with i’) 1 ≤ ordp(c0) ≤ p/(2p− n− 1).

We are now ready to prove the Main Theorem.

Proof of Theorem 1.1. We write α = λ/µ in lowest terms, i.e. with µ ≥ 1
and gcd(λ, µ) = 1. By assumption, α is not a negative integer. We will
work with the normalized (monic, integral) polynomial

f(x) = µnn!L(λ/µ)
n (

−x

µ
) =

n∑
j=0

(
n

j

)
(nµ+λ)((n−1)µ+λ) · · · ((j+1)µ+λ)xj .

We wish to apply Lemma 3.1 to it, so we let

(3.1) cj =
n∏

k=j+1

(kµ + λ), 0 ≤ j ≤ n,

and seek an appropriate prime p, i.e. one satisfying the conditions of the
Lemma.

By a suitably strong form of Dirichlet’s theorem on primes in arithmetic
progressions, there exists an effective constant D(µ) such that if x ≥ D(µ)
and h ≥ x/(2 log2 x), the interval [x− h, x] contains a prime in the congru-
ence class λ mod µ (see Filaseta-Lam [4, p. 179]). Taking x = n−3 ≥ D(µ),
we find that for some integer ` ∈ [1, n], p = µ` + λ is a prime satisfying

(3.2)
nµ + µ + λ

µ + 1
≤ p ≤ n− 3,

as long as
1− 3/n

2 log2(n− 3)
+

3 + (µ + λ)/(µ + 1)
n

≤ 1
µ + 1

,
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which clearly holds for all n large enough with respect to λ, µ.
We now fix a prime p = µ`+λ satisfying (3.2). For such a prime p, let us

check the hypotheses of Lemma 3.1. We have (nµ + µ + λ)/(µ + 1) > n/2
if and only if

(3.3) n(µ− 1) > −2µ− 2λ.

Since α is not a negative integer, if µ = 1, then λ ≥ 0, so (3.3) holds for
all n. If µ > 1, we simply need to take n > −2(µ + λ)/(µ− 1) in order to
achieve n/2 < p < n−2. Our cj are integral so our polynomial is p-integral
for every prime p. Before we discuss the p-adic valuations of the coefficients
cj , let us note that in the congruence class λ mod µ, the smallest multiple
of p larger than p is (µ+1)p, and, similarly, the largest multiple of p in this
congruence class which is less than p is (−µ + 1)p. Now we claim that, for
n large enough, we have

(−µ + 1)p < λ + µ(3.4)

as well as

λ + µn < (µ + 1)p.(3.5)

Indeed, if µ = 1, then (3.4) holds for all n, while for µ ≥ 2, n ≥ −2λ
implies (3.4); moreover, (3.5) is a direct consequence of (3.2). From (3.4),
(3.5) and (3.1), we then read off that ordp(cj) = 1 for 0 ≤ j ≤ ` − 1, and
ordp(cj) = 0 for ` ≤ j ≤ n. One easily checks that (3.4) and (3.5) give
exactly p > ` − 1 and n − p < `, i.e. conditions ii) and iii) of Lemma
3.1 hold. By Filaseta-Lam [4], there is an effectively computable constant
N(α) such that f(x) is irreducible for n ≥ N(α). Thus, all the conditions
of Lemma 3.1 hold, and the proof of the theorem is complete. �
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