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Kronecker-Weber via Stickelberger

par Franz LEMMERMEYER

Résumé. Nous donnons une nouvelle démonstration du théorème
de Kronecker et Weber fondée sur la théorie de Kummer et le
théorème de Stickelberger.

Abstract. In this note we give a new proof of the theorem of
Kronecker-Weber based on Kummer theory and Stickelberger’s
theorem.

Introduction

The theorem of Kronecker-Weber states that every abelian extension of
Q is cyclotomic, i.e., contained in some cyclotomic field. The most com-
mon proof found in textbooks is based on proofs given by Hilbert [2] and
Speiser [7]; a routine argument shows that it is sufficient to consider cyclic
extensions of prime power degree pm unramified outside p, and this special
case is then proved by a somewhat technical calculation of differents us-
ing higher ramification groups and an application of Minkowski’s theorem,
according to which every extension of Q is ramified. In the proof below,
this not very intuitive part is replaced by a straightforward argument using
Kummer theory and Stickelberger’s theorem.

In this note, ζm denotes a primitive m-th root of unity, and “unramified”
always means unramified at all finite primes. Moreover, we say that a
normal extension K/F

• is of type (pa, pb) if Gal(K/F ) ' (Z/paZ)× (Z/pbZ);
• has exponent m if Gal(K/F ) has exponent m.

1. The Reduction

In this section we will show that it is sufficient to prove the following
special case of the Kronecker-Weber theorem (it seems that the reduction
to extensions of prime degree is due to Steinbacher [8]):

Proposition 1.1. The maximal abelian extension of exponent p that is
unramified outside p is cyclic: it is the subfield of degree p of Q(ζp2).

The corresponding result for the prime p = 2 is easily proved:
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Proposition 1.2. The maximal real abelian 2-extension of Q with exponent
2 and unramified outside 2 is cyclic: it is the subfield Q(

√
2 ) of Q(ζ8).

Proof. The only quadratic extensions of Q that are unramified outside 2
are Q(i), Q(

√
−2 ), and Q(

√
2 ). �

The following simple observation will be used repeatedly below:

Lemma 1.3. If the compositum of two cyclic p-extensions K, K ′ is cyclic,
then K ⊆ K ′ or K ′ ⊆ K.

Now we show that Prop. 1.1 implies the corresponding result for exten-
sions of prime power degree:

Proposition 1.4. Let K/Q be a cyclic extension of odd prime power degree
pm and unramified outside p. Then K is cyclotomic.

Proof. Let K ′ be the subfield of degree pm in Q(ζpm+1). If K ′K is not
cyclic, then it contains a subfield of type (p, p) unramified outside p, which
contradicts Prop. 1.1. Thus K ′K is cyclic, and Lemma 1.3 implies that
K = K ′. �

Next we prove the analog for p = 2:

Proposition 1.5. Let K/Q be a cyclic extension of degree 2m and un-
ramified outside 2. Then K is cyclotomic.

Proof. If m = 1 we are done by Prop. 1.2. If m ≥ 2, assume first that K
is nonreal. Then K(i)/K is a quadratic extension, and its maximal real
subfield M is cyclic of degree 2m by Prop. 1.2. Since K/Q is cyclotomic if
and only if M is, we may assume that K is totally real.

Now let K ′ be the the maximal real subfield of Q(ζ2m+2). If K ′K is
not cyclic, then it contains three real quadratic fields unramified outside 2,
which contradicts Prop. 1.2. Thus K ′K is cyclic, and Lemma 1.3 implies
that K = K ′. �

Now the theorem of Kronecker-Weber follows: first observe that abelian
groups are direct products of cyclic groups of prime power order; this shows
that it is sufficient to consider cyclic extensions of prime power degree pm. If
K/Q is such an extension, and if q 6= p is ramified in K/Q, then there exists
a cyclic cyclotomic extension L/Q with the property that KL = FL for
some cyclic extension F/Q of prime power degree in which q is unramified.
Since K is cyclotomic if and only if F is, we see that after finitely many
steps we have reduced Kronecker-Weber to showing that cyclic extensions
of degree pm unramified outside p are cyclotomic. But this is the content
of Prop. 1.4 and 1.5.

Since this argument can be found in all the proofs based on the Hilbert-
Speiser approach (see e.g. Greenberg [1] or Marcus [6]), we need not repeat
the details here.
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2. Proof of Proposition 1.1

Let K/Q be a cyclic extension of prime degree p and unramified outside
p. We will now use Kummer theory to show that it is cyclotomic. For
the rest of this article, set F = Q(ζp) and define σa ∈ G = Gal(F/Q) by
σa(ζp) = ζa

p for 1 ≤ a < p.

Lemma 2.1. The Kummer extension L = F ( p√µ ) is abelian over Q if and
only if for every σa ∈ G there is a ξ ∈ F× such that σa(µ) = ξpµa.

For the simple proof, see e.g. Hilbert [3, Satz 147] or Washington [9,
Lemma 14.7].

Let K/Q be a cyclic extension of prime degree p and unramified outside
p. Put F = Q(ζp) and L = KF ; then L = F ( p√µ ) for some nonzero
µ ∈ OF , and L/F is unramified outside p.

Lemma 2.2. Let q be a prime ideal in F with (µ) = qra, q - a; if p - r and
L/Q is abelian, then q splits completely in F/Q.

Proof. Let σ be an element of the decomposition group Z(q|q) of q. Since
L/Q is abelian, we must have σa(µ) = ξpµa. Now σa(q) = q implies
qr ‖ ξpµa, and this implies r ≡ ar mod p; but p - r show that this is
possible only if a = 1. Thus σa = 1, and q splits completely in F/Q. �

In particular, we find that (1−ζ) - µ. Since L/F is unramified outside p,
prime ideals p - p must satisfy pbp ‖ µ for some integer b. This shows that
(µ) = ap is the p-th power of some ideal a. From (µ) = ap and the fact that
L/Q is abelian we deduce that σa(a)p = apaξp, where σa(ζp) = ζa

p . Thus
σa(c) = ca for the ideal class c = [a] and for every a with 1 ≤ a < p. Now
we invoke Stickelberger’s Theorem (cf. [4] or [5, Chap. 11]) to show that a
is principal:

Theorem 2.3. Let F = Q(ζp); then the Stickelberger element

θ =
p−1∑
a=1

aσ−1
a ∈ Z[Gal(F/Q)]

annihilates the ideal class group Cl(F ).

From this theorem we find that 1 = cθ =
∏

σ−1
a (c)a = cp−1 = c−1, hence

c = 1 as claimed. In particular a = (α) is principal. This shows that µ =
αpη for some unit η, hence L = F ( p√η ). Now write η = ζtε for some unit ε
in the maximal real subfield of F . Since ε is fixed by complex conjugation
σ−1 and since L/Q is abelian, we see that ζ−tε = σ−1(µ) = ξpµ−1, hence
ζ−tε = ξpζ−tε−1. Thus ε is a p-th power, and we find µ = ζt. But this
implies that L = Q(ζp2), and Prop. 1.1 is proved.

Since every cyclotomic extension is ramified, we get the following special
case of Minkowski’s theorem as a corollary:
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Corollary 2.4. Every solvable extension of Q is ramified.
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