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On the length of the continued fraction for values

of quotients of power sums

par Pietro CORVAJA et Umberto ZANNIER

Résumé. En généralisant un résultat de Pourchet, nous démon-
trons que si α, β sont deux sommes de puissances définies sur Q,
satisfaisant certaines conditions nécessaires, la longueur de la frac-
tion continue pour α(n)/β(n) tend vers l’infini pour n→∞. On
déduira ce résultat d’une inégalité de type Thue uniforme pour les
approximations rationnelles des nombres de la forme α(n)/β(n).

Abstract. Generalizing a result of Pourchet, we show that, if
α, β are power sums over Q satisfying suitable necessary assump-
tions, the length of the continued fraction for α(n)/β(n) tends to
infinity as n→∞. This will be derived from a uniform Thue-type
inequality for the rational approximations to the rational numbers
α(n)/β(n), n ∈ N.

Introduction. The features of the continued fraction of a positive real
number are usually extraordinarily difficult to predict. However, if the
numbers in question run through certain parametrized families, some regu-
larity occasionally appears. For instance, we may recall remarkable results
by Schinzel [S1], [S2], on the lengths of the periods of the continued frac-
tions for

√
f(n), where f is a polynomial with rational coefficients and n

varies through N.
In a similar direction, but in a much more simpler way, one can deal

with the continued fractions of the rational numbers r(n), n ∈ N, where
now r ∈ Q(X) is a rational function; for example, we may now look at
the length of the fraction: in [S2, Lemma 2], Schinzel proves that this
length is bounded as a function of n (see also [M] for a more precise result).
Substantially, the reason for this is that r(X) has a finite expansion as a
simple continued fraction with partial quotients in Q[X].1

More generally, one may inquire about the length of the continued frac-
tion for the rational values of other arithmetical functions. In general, due
to the lack of an Euclid’s algorithm, we have not a suitable “functional

Manuscrit reçu le 4 février 2004.
1Observe however that such continued fraction specialized at X = n may not coincide with

the continued fraction for r(n).
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continued fraction”; this fact makes the situation different from the case of
Q(X) and generally speaking considerably more difficult.

For certain exponential functions, we have an appealing question of
Mendès-France (see [M2, p. 214]), stating that, for coprime integers a, b >
1, the length of the continued fraction for (a/b)n tends to infinity as n→∞,
in marked contrast to the rational function case. This was answered affir-
matively by Pourchet (unpublished) and independently by Choquet (in a
weaker form); we refer to the paper [M3] for a discussion and several ref-
erences. We also mention a paper by Grisel [G] solving a function-field
analogue.

This theorem of Pourchet may be derived from the (deep) lower bound
|(a/b)n − (p/q)| �ε q

−2 exp(−εn) (any positive ε), where p, q are integers
with 0 < q < bn (which follows e.g. from Ridout generalization of Roth’s
Theorem [R]). The estimate is in fact amply sufficient, since it implies
that all the partial quotients of the continued fraction in question are �ε

exp(εn), and the statement about the length follows at once. (See also [Z,
Ex. II.6].)

In this direction, one may consider more general power sums in place of
an, bn. Namely, in analogy to [CZ1] (where the notation is slightly different)
we consider the ring (actually a domain) E made up of the functions on N
of the form

α(n) = c1a
n
1 + . . .+ cra

n
r , (1)

where the coefficients ci are rational numbers, the ai are positive integers
and the number r of summands is unrestricted. (We shall often normalize
(1) so that the ci are nonzero and the ai are distinct; in this case the ai are
called the “roots” of α.)

We then consider the ratio α/β of nonzero elements of E and ask about
the length of the continued fraction for the values α(n)/β(n) (provided
β(n) 6= 0, which is the case for all large n). It turns out (Corollary 2
below) that the length of the relevant continued fraction does not tend
to infinity if and only if α/β admits an expansion as a (finite) continued
fraction over E . Note that E is not euclidean, so in practice this condition
“rarely” holds.

This result plainly generalizes Pourchet’s, but now the Ridout Theo-
rem seems no longer sufficient for a proof. In fact, we shall need the full
force of the Schmidt Subspace Theorem, similarly to [CZ1], where (among
others) the related question of the integrality of the values α(n)/β(n) was
investigated.

Similarly to the above sketched argument for Pourchet’s Theorem, the
conclusions about the continued fraction will be derived from a “Thue-type”
inequality for the rational approximations to the values in question, which
is the content of the Theorem below. Its proof follows [CZ1] in the main



On the length of the continued fraction 739

lines, except for a few technical points; however the present new simple
applications of those principles are perhaps not entirely free of interest.

Preliminary to the statements, we introduce a little more notation.

We let EQ be the domain of the functions of type (1), but allowing the ai

to be positive rationals. If α ∈ EQ is written in the form (1), with nonzero
ci and distinct ai, we set `(α) = max(a1, . . . , ar), agreeing that `(0) = 0.

It is immediate to check that

`(αβ) = `(α)`(β),

`(α+ β) ≤ max(`(α), `(β))

and that `(α)n � |α(n)| � `(α)n for n ∈ N tending to infinity (so in
particular, α(n) cannot vanish infinitely often if α 6= 0).

Theorem. Let α, β ∈ E be nonzero and assume that for all ζ ∈ E ,
`(α − ζβ) ≥ `(β). Then there exist k = k(α, β) > 0 and Q = Q(α, β) > 1
with the following properties. Fix ε > 0; then, for all but finitely many
n ∈ N and for integers p, q, 0 < q < Qn, we have∣∣∣∣α(n)

β(n)
− p

q

∣∣∣∣ ≥ 1
qk

exp(−εn).

We tacitly mean that the alluded finite set of exceptional integers includes
those n ∈ N with β(n) = 0; this finite set may depend on ε.

Remarks. (i) The assumption about α, β expresses the lack of an “Euclid
division” in E for α : β and cannot be omitted. In fact, suppose that
`(α − ζβ) < `(β) for some ζ ∈ E . Then, the values ζ(n) have bounded
denominator and verify |(α(n)/β(n))− ζ(n)| � exp(−ε0n) for large n and
some positive ε0 independent of n, against the conclusion of the Theorem
(with p/q = pn/qn = ζ(n)).

Note that the assumption is automatic if `(α) ≥ `(β) and `(β) does not
divide `(α).

(ii) By the short argument after Lemma 1 below, given α, β, one can test
effectively whether a ζ ∈ E such that `(α−ζβ) < `(β) actually exists. Also,
the proof will show that a suitable Q and “exponent” k may be computed.
On the contrary, the finitely many exceptional n’s cannot be computed
with the present method of proof.

(iii) Naturally, the lower bound is not significant for q larger than
`(β)n/(k−1). So, some upper bound Qn for q is not really restrictive. (Also,
since the dependence of k on α, β is unspecified, and since `(β)1/(k−1) → 1
as k →∞, it is immaterial here to specify a suitable Q in terms of k.)
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Note also that a lower bound � Qn for the denominator of α(n)/β(n)
follows, sharpening [CZ1, Thm. 1]; in this direction, see [BCZ], [CZ3,
Remark 1] and [Z, Thm. IV.3] for stronger conclusions in certain special
cases.

(iv) Like for the proofs in [CZ1], the method yields analogous results for
functions of the form (1), but where ai are any algebraic numbers subject
to the sole (but crucial) restriction that there exists a unique maximum
among the absolute values |ai|. Using the (somewhat complicated) method
of [CZ2], one may relax this condition, assuming only that not all the |ai|
are equal. For the sake of simplicity, we do not give the proofs of these
results, which do not involve new ideas compared to [CZ1], [CZ2] and the
present paper, but only complication of detail.

(v) The Theorem can be seen as a Thue-type inequality with moving tar-
gets (similarly to [C] or [V]). It seems an interesting, but difficult, problem,
to obtain (under suitable necessary assumptions) the “Roth’s exponent”
k = 2, or even some exponent independent of α, β. (As recalled above, this
holds in the special cases of Pourchet’s Theorem.)

Corollary 1. Let α, β be as in the Theorem. Then the length of the
continued fraction for α(n)/β(n) tends to infinity as n→∞.

This corollary is in fact a lemma for the following result, which gives a
more precise description.

Corollary 2. Let α, β ∈ E be nonzero. Then the length of the continued
fraction for α(n)/β(n) is bounded for infinitely many n ∈ N if and only
if there exist power sums ζ0, . . . , ζk ∈ E such that we have the identical
continued fraction expansion

α(n)
β(n)

= [ζ0(n), ζ1(n), . . . , ζk(n)].

If this is the case, the mentioned length is uniformly bounded for all n ∈ N.

It will be pointed out how the condition on α/β may be checked effec-
tively.

The special case α(n) = an− 1, β(n) = bn− 1 appears as [Z, Ex. IV.12].
For completeness we give here this application.

Corollary 3. Let a, b be multiplicatively independent positive integers.
Then the length of the continued fraction for (an − 1)/(bn − 1) tends to
infinity with n.
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Proofs. We start with the following very simple:

Lemma 1. Let α, β ∈ E be nonzero and let t be any positive number. Then
there exists η ∈ EQ such that `(α − ηβ) < t. Such an η may be computed
in terms of α, β, t.

Proof. Write β(n) = cbn(1 − δ(n)), where c ∈ Q∗, b = `(β) and where
δ ∈ EQ satisfies u := `(δ) < 1. In particular, we have |δ(n)| � un, so for a
fixed integer R we have an approximation, for n→∞,

α(n)
β(n)

=
α(n)
cbn

(
R∑

r=0

δ(n)r

)
+O

((
`(α)uR+1

b

)n)
.

Choose R so that uR < t/u`(α) and define η by the first term on the
right. Then η ∈ EQ and |α(n) − η(n)β(n)| � (`(α)uR+1)n. Therefore
`(α− ηβ) ≤ `(α)uR+1 < t, concluding the proof.

We note at once that this argument may be used to check the assumption
for the Theorem. In fact, suppose `(α − ζβ) < `(β) for a ζ ∈ E . Then,
if η is as in the lemma, with t = `(β), it follows that `(η − ζ) < 1. Since
η may be constructed and since the “roots” of ζ are positive integers by
assumption, this inequality determines ζ uniquely; namely, if a suitable ζ
exists, it is just the “subsum” of η made up with the integer roots.

To go on, for the reader’s convenience, we recall a version of Schmidt’s
Subspace Theorem suitable for us; it is due to H.P. Schlickewei (see [Schm2,
Thm.1E, p.178]).

Subspace Theorem. Let S be a finite set of places of Q, including the
infinite one and normalized in the usual way (i.e. |p|v = p−1 if v|p). For
v ∈ S let L0v, . . . , Lhv be h + 1 linearly independent linear forms in h + 1
variables with rational coefficients and let δ > 0. Then the solutions x :=
(x0, . . . , xh) ∈ Zh+1 to the inequality

∏
v∈S

h∏
i=0

|Liv(x)|v ≤ ||x||−δ

where ||x|| := max{|xi|}, are all contained in finitely many proper subspaces
of Qh+1.

For our last lemma we could invoke results by Evertse [E]; for complete-
ness we give a short proof of the special case we need.

Lemma 2. Let ζ ∈ EQ and let D be the minimal positive integer such that
Dnζ(n) ∈ E . Then, for every ε > 0 there are only finitely many n ∈ N such
that the denominator of ζ(n) is smaller than Dn exp(−εn).
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Proof. We may write Dnζ(n) =
∑h

i=0 uie
n
i , where ui ∈ Q∗ and ei are

distinct positive integers with (e0, . . . , eh, D) = 1. Let S be the set of
places of Q made up of the infinite one and of those dividing De0 · · · eh.

Define the linear form L(X) :=
∑h

i=0 uiXi.
For each v ∈ S we define linear forms Liv, i = 0, . . . , h, as follows. If

v does not divide D (including v = ∞), then we put simply Liv = Xi for
i = 0, . . . , h. If v|D, then there exists j = jv such that |ej |v = 1; then we
set Ljv = L and Liv = Xi for i 6= j. The forms Liv, i = 0, . . . , h, are plainly
linearly independent for each fixed v ∈ S.

Suppose now that the conclusion does not hold, so for some positive ε and
for all n in an infinite set Σ ⊂ N the denominator of ζ(n) is ≤ Dn exp(−εn).
For n ∈ Σ, put x = x(n) = (en0 , . . . , e

n
h).

Then, for n ∈ Σ, the numerator of Dnζ(n) has a g.c.d. with Dn which
is ≥ exp(εn). In turn this gives∏

v|D

|L(x(n))|v ≤ exp(−εn), n ∈ Σ.

Also, for n ∈ Σ, we have

∏
v∈S

h∏
i=0

|Liv(x)|v =

∏
v|D

|L(x)|v

∏
v∈S

h∏
i=0

|eni |v =
∏
v|D

|L(x)|v,

where the first equality holds because |ejv |v = 1 for v|D and the second
because the (inner) double product is 1 by the product formula. Hence∏

v∈S

h∏
i=0

|Liv(x)|v ≤ exp(−εn), n ∈ Σ.

Since however ||x(n)|| is bounded exponentially in n, we may apply the
Subspace Theorem (with a suitable positive δ) and conclude that all the
x(n), n ∈ Σ, lie in a finite union of proper subspaces. But e0, . . . , eh are
distinct positive integers, whence each subspace corresponds to at most
finitely many n, a contradiction which concludes the proof.

Proof of Theorem. Let η be as in Lemma 1, with t = 1/9. Write

η(n) = g1(
e1
d

)n + . . .+ gh(
eh
d

)n,

where gi ∈ Q∗ and where ei, d are positive integers with e1 > e2 > . . . > eh.
We define k := h+ 3, Q = exp(1/k), and we assume that for some fixed

ε > 0 (which we may take < 1/6, say) there exist infinitely many triples
(n, p, q) of integers with 0 < q ≤ Qn, n→∞ and∣∣∣∣α(n)

β(n)
− p

q

∣∣∣∣ ≤ 1
qk

exp(−εn). (2)
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We shall eventually obtain a contradiction, which will prove what we want.

We proceed to define the data for an application of the Subspace Theo-
rem. We let S be the finite set of places of Q consisting of the infinite one
and of all the places dividing de1 · · · eh.

We define linear forms in X0, . . . , Xh as follows. For v 6= ∞ or for i 6= 0
we set simply Liv = Xi. We define the remaining form L0∞ by

L0∞(X) = X0 − g1X1 − . . .− ghXh.

Plainly, for each v the forms Liv are independent. For a triple (n, p, q) as
above we set

x = x(n, p, q) = (pdn, qen1 , . . . , qe
n
h) ∈ Zh+1

and we proceed to estimate the double product
∏

v∈S

∏h
i=0 |Liv(x)|v.

For i 6= 0 we have
∏

v∈S |Liv(x)|v =
∏

v∈S |qeni |v ≤ q. In fact, we have∏
v∈S |eni |v = 1 by the product formula, since the ei are S-units; also,∏
v∈S |q|v ≤ |q|, since q is an integer.
Further, we have

∏
v∈S |L0v(x)|v = |L0∞(x)|

|x0|
∏

v∈S |x0|v. As before, we
see that the inner product is bounded by |p|, since dn is an S-unit.

Also, |L0∞(x)| = qdn|η(n)− (p/q)|. Then, using (2) and |(α(n)/β(n))−
η(n)| � (t/`(β))n ≤ tn, we obtain

|L0∞(x)| � qdntn + qdn(q−k exp(−εn)).

Since qk ≤ Qkn = exp(n) and since t = 1/9 < exp(−1 − ε), the first term
on the right does not exceed the second one, whence

|L0∞(x)| � qdn(q−k exp(−εn)).

Combining this with the previous bound we get∏
v∈S

|L0v(x)|v � qdn(q−k exp(−εn))|x0|−1|p| = q−(k−1) exp(−εn).

Finally, for the double product this yields (since k > h+ 1)∏
v∈S

h∏
i=0

|Liv(x)|v � q−(k−h−1) exp(−εn) � exp(−εn).

Now, (2) entails |p| � q`(α)n � (Q`(α))n, whence ||x|| � Cn for some C
independent of n. Hence the double product is bounded by ||x||−δ for some
fixed positive δ and large enough n.

The Subspace Theorem then implies that all the vectors x in question
are contained in a certain finite union of proper subspaces of Qh+1.

In particular, there exists a fixed subspace, say of equation z0X0−z1X1−
. . .−zhXh = 0, containing an infinity of the vectors in question. We cannot
have z0 = 0, since this would entail

∑h
i=1 zie

n
i = 0 for an infinity of n; in
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turn, the fact that the ei are distinct would imply zi = 0 for all i, a
contradiction. Therefore we may assume that z0 = 1, and we find that, for
the n’s corresponding to the vectors in question,

p

q
=

h∑
i=1

zi(
ei
d

)n = ζ(n), (3)

say, where ζ ∈ EQ. We now show that actually ζ lies in E . Assume
the contrary; then the minimal positive integer D so that Dnζ(n) ∈ E
is ≥ 2. But then equation (3) together with Lemma 2 implies that q �
2n exp(−εn). Since this would hold for infinitely many n, we would find
Q ≥ 2 exp(−ε), whence exp((1/k) + ε) ≥ 2, a contradiction. (Recall that
k ≥ 3, ε < 1/6.)

Therefore ζ lies in E ; using (3) to substitute in (2) for p/q we find that,
for an infinity of n, ∣∣∣∣α(n)

β(n)
− ζ(n)

∣∣∣∣ ≤ exp(−εn).

In particular, `((α/β) − ζ) < 1, whence `(α − ζβ) < `(β), contrary to the
assumptions, concluding the proof.

Proof of Corollary 1. For notation and basic facts about continued fractions
we refer to [Schm1, Ch. I] and let pr(n)/qr(n), r = 0, 1, . . ., be the (finite)
sequence of convergents of the continued fraction for α(n)/β(n), where we
may assume that α(n) and β(n) are positive.

As is well-known, pr(n), qr(n) are positive integers, q0(n) = 1, and we
have ∣∣∣∣α(n)

β(n)
− pr(n)
qr(n)

∣∣∣∣ ≤ 1
qr+1(n)qr(n)

. (4)

Suppose the conclusion false, so for some fixed R ∈ N there is an infinite
set Σ ⊂ N such that for n ∈ Σ the continued fraction for α(n)/β(n) has
finite length R+ 1 ≥ 1. By this we mean that pR(n)/qR(n) = α(n)/β(n).

Since α, β satisfy the assumptions for the Theorem, there exist Q > 1,
k ≥ 2 as in that statement.

Define now the sequence c0, c1, . . . by c0 = 0 and cr+1 = (k − 1)cr + 1
and choose a positive number ε < c−1

R logQ, so exp(cRε) < Q; we proceed
to show by induction on r = 0, . . . , R, that, for large n ∈ Σ,

qr(n) ≤ exp(crεn). (5)

We have q0(n) = 1, so (5) is true for r = 0; we shall now show that (if
r ≤ R− 1), for large n, (5) implies the same inequality with r + 1 in place
of r.

Observe first that, by construction, exp(crε) ≤ exp(cRε) < Q, whence
qr(n) ≤ exp(crεn) < Qn for large enough n ∈ Σ. We may then apply the
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Theorem with p = pr(n), q = qr(n) and deduce that for large n ∈ Σ we
have ∣∣∣∣α(n)

β(n)
− pr(n)
qr(n)

∣∣∣∣ ≥ qr(n)−k exp(−εn).

Hence, combining with (4),

qr+1(n) ≤ qr(n)k−1 exp(εn) ≤ exp(((k − 1)cr + 1)εn) = exp(cr+1εn)

by the inductive assumption and the definition of cr+1. This induction
proves (5) for r ≤ R.

Finally, by (5) with r = R, we have qR(n) ≤ exp(cRεn) for large n ∈ Σ,
whence qR(n) < Qn, since exp(cRε) < Q by construction. But then the
Theorem holds for p = pR(n), q = qR(n), leading in particular to 0 =
|(α(n)/β(n)) − (pR(n)/qR(n))| > 0, a contradiction which concludes the
argument.

Proof of Corollary 2. For convenience let us denote by ψ(x) the length of
the continued fraction for the rational number x.

We start with the hardest half of the proof; namely, assuming that
ψ(α(n)/β(n)) is bounded for n in an infinite sequence Σ ⊂ N, we prove
that α/β has a finite continued fraction over E .

Let us argue by induction on `(α) + `(β), the result being trivial when
this number is ≤ 2.

Since |ψ(x) − ψ(1/x)| ≤ 1, we may plainly assume `(α) ≥ `(β). By our
present assumption, the hypothesis of Corollary 1 cannot hold for α, β, so
there exists ζ ∈ E such that, putting η = α− ζβ, we have `(η) < `(β). For
large n, we have β(n) 6= 0 and

η(n)
β(n)

=
α(n)
β(n)

− ζ(n).

Since ζ ∈ E , the rational numbers ζ(n), n ∈ N, have a finite common
denominator D > 0. We now appeal to [S1, Thm. 1], which bounds
ψ((p/q) − r) in terms of ψ(p/q), where r is a rational number with fixed
denominator. Applying this with p/q = α(n)/β(n), r = ζ(n) and noting
that ψ(α(n)/β(n)) is bounded by assumption for n ∈ Σ, we immediately
obtain that the numbers ψ(η(n)/β(n)) are also bounded for n ∈ Σ. Since
`(η) + `(β) < `(α) + `(β), the inductive assumption implies the existence
of a finite continued fraction expansion over E for η/β. In turn, this yields
the same for α/β, proving the conclusion.

The “converse” part of Corollary 2 is again immediate from [S1, Thm.
1].

Like for Corollary 1, the condition that α/β admits a finite continued
fraction over E may be checked effectively. To verify this, observe first that,
if α/β admits a continued fraction over E as in the statement, then it also
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admits an expansion such that `(ζi) ≥ 1 for all i ≥ 1; this claim follows at
once from the continued fraction identity

[A, c,B] = [A+ c−1,−c(cB + 1)],

which allows to absorb all possible “constant” partial quotients c.
With this proviso (but not otherwise) the continued fraction over E is

unique (if it exists); its existence may be checked e.g. by iterating the effec-
tive criterion for checking the assumption of the Theorem (or of Corollary
1), as in the comments after Lemma 1.

Proof of Corollary 3. We could invoke Corollary 2, but it is perhaps simpler
to argue directly, by induction on a + b (the assertion being empty for
a+ b = 2). On exchanging a, b we may assume that a > b > 1.

Now, we may assume that a is divisible by b; in fact, if this does not
hold, we plainly have `(an − 1− ζ(bn − 1)) ≥ a > b for any ζ ∈ E ; in turn,
we may then apply (a fortiori) Corollary 1 to α(n) = an−1, β(n) = bn−1,
yielding the present assertion.

Write then a = bc, where c is a positive integer < a. Note that b, c
are multiplicatively independent (since a, b are such) whence the continued
fraction for (cn−1)/(bn−1) has length tending to infinity, by the inductive
assumption. But then the identity

an − 1
bn − 1

= cn +
cn − 1
bn − 1

immediately implies the sought conclusion.

Final remarks. (a) It seems a very difficult problem to quantify the corol-
laries, namely to prove an explicit lower bound for the length of the relevant
continued fractions. Even in the special case of Pourchet’s Theorem, this
seems to be related with an explicit version of Ridout’s (or Roth’s) Theo-
rem, which presently appears inaccessible.

(b) The methods of proof probably lead to results similar to the Theorem,
where α(n)/β(n) is replaced by some algebraic function of a power sum,
like e.g. the d-th root α(n)1/d. The pattern should combine the arguments
from, say, [CZ1, Cor. 1] (or [CZ4, Thm. 2]) with the above ones.

In case d = 2 it is perhaps possible to obtain corollaries similar to the
present one, but in the direction of Schinzel’s mentioned papers; namely,
under suitable assumptions on the power-sum α ∈ EQ, the length of the
period of the continued fraction for

√
α(n) tends to infinity with n.

After the present paper was referred this problem was approached by A.
Scremin, in the course of his PhD thesis. A paper will soon appear in Acta
Arithmetica. In the meantime F. Luca and Y. Bugeaud have also worked
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on this problem; see their paper “On the period of the continued fraction
expansion of

√
22n+1 + 1”. Indag. Math. (N.S.) 16 (2005), no. 1, 21–35.

Also, the present authors wish to thank prof. Y. Bilu and an anonymous
referee for several references. This also gave to the present authors the
occasion of learning some new questions in the context; for instance we
found that the present methods may be relevant, leading e.g. to an answer
to Problem 6 of [M3]; see our article ”On the rational approximations to
the powers of an algebraic number: Solution of two problems of Mahler
and Mendès France”. Acta Mathematica, 193.
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