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On the ring of p-integers of a cyclic p-extension

over a number field

par Humio ICHIMURA

Résumé. Soit p un nombre premier. On dit qu’une extension
finie, galoisienne, N/F d’un corps de nombres F , à groupe de
Galois G, admet une base normale p-entière (p-NIB en abrégé) si
O′

N est libre de rang un sur l’anneau de groupe O′
F [G] où O′

F =
OF [1/p] désigne l’anneau des p-entiers de F . Soit m = pe une
puissance de p et N/F une extension cyclique de degré m. Lorsque
ζm ∈ F×, nous donnons une condition nécessaire et suffisante pour
que N/F admette une p-NIB (Théorème 3). Lorsque ζm 6∈ F× et
p - [F (ζm) : F ], nous montrons que N/F admet une p-NIB si et
seulement si N(ζm)/F (ζm) admet p-NIB (Théorème 1). Enfin, si
p divise [F (ζm) : F ], nous montrons que la propriété de descente
n’est plus vraie en général (Théorème 2).

Abstract. Let p be a prime number. A finite Galois extension
N/F of a number field F with group G has a normal p-integral
basis (p-NIB for short) when O′

N is free of rank one over the
group ring O′

F [G]. Here, O′
F = OF [1/p] is the ring of p-integers

of F . Let m = pe be a power of p and N/F a cyclic extension
of degree m. When ζm ∈ F×, we give a necessary and sufficient
condition for N/F to have a p-NIB (Theorem 3). When ζm 6∈ F×

and p - [F (ζm) : F ], we show that N/F has a p-NIB if and only if
N(ζm)/F (ζm) has a p-NIB (Theorem 1). When p divides [F (ζm) :
F ], we show that this descent property does not hold in general
(Theorem 2).

1. Introduction

We fix a prime number p throughout this article. For a number field F ,
let OF be the ring of integers, and O′

F = OF [1/p] the ring of p-integers of
F . A finite Galois extension N/F with group G has a normal integral basis
(NIB for short) when ON is free of rank one over the group ring OF [G]. It
has a normal p-integral basis (p-NIB for short) when O′

N is free of rank one
over O′

F [G]. For a cyclic p-extension N/F unramified outside p, several
results on p-NIB are given in the lecture note of Greither [5]. Let N/F
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be such a cyclic extension of degree m = pe. In particular, it is known
(A) that when ζm ∈ F×, it has a p-NIB if and only if N = F (ε1/m) for
some unit ε of O′

F ([5, Proposition 0.6.5]), and (B) that when ζm 6∈ F×,
it has a p-NIB if and only if the pushed-up extension N(ζm)/F (ζm) has a
p-NIB ([5, Theorem I.2.1]). Here, ζm is a fixed primitive m-th root of unity.
These results for the unramified case form a basis of the study of a normal
p-integral basis problem for Zp-extensions in Kersten and Michalicek [12],
[5] and Fleckinger and Nguyen-Quang-Do [2]. The purpose of this article
is to give some corresponding results for the ramified case.

Let m = pe be a power of p, F a number field with ζm ∈ F×. In Section
2, we give a necessary and sufficient condition (Theorem 3) for a cyclic
Kummer extension N/F of degree m to have a p-NIB. It is given in terms
of a Kummer generator of N , but rather complicated compared with the
unramified case. We also give an application of this criterion.

When ζm 6∈ F× and p - [F (ζm) : F ], we show the following descent
property in Section 3.

Theorem 1. Let m = pe be a power of a prime number p, F a number
field with ζm 6∈ F×, and K = F (ζm). Assume that p - [K : F ]. Then, a
cyclic extension N/F of degree m has a p-NIB if and only if NK/K has a
p-NIB.

When p divides [K : F ], this type of descent property does not hold in
general. Actually, we show the following assertion in Section 4. Let Cl′F
be the ideal class group of the Dedekind domain O′

F = OF [1/p].

Theorem 2. Let F be a number field with ζp ∈ F× but ζp2 6∈ F×, and
K = F (ζp2). Assume that there exists a class C ∈ Cl′F of order p which
capitulates in O′

K . Then, there exist infinitely many cyclic extensions N/F
of degree p2 with N ∩ K = F such that (i) N/F has no p-NIB but (ii)
NK/K has a p-NIB.

At the end of Section 4, we see that there are several examples of p and
F satisfying the assumption of Theorem 2.

Remark 1. In Theorem 1, the condition p - [K : F ] means that [K : F ]
divides p− 1. Further, p must be an odd prime as p - [K : F ].

Remark 2. As for the descent property of normal integral bases in the
usual sense, the following facts are known at present. Let F be a number
field with ζp 6∈ F×, and K = F (ζp). For a cyclic extension N/F of degree
p unramified at all finite prime divisors, it has a NIB if and only if NK/K
has a NIB. This was first proved by Brinkhuis [1] when p = 3 and F is an
imaginary quadratic field, and then by the author [7] for the general case.
When p = 3, for a tame cyclic cubic extension N/F ,it has a NIB if and
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only if NK/K has a NIB. This was first proved by Greither [6, Theorem
2.2] when p = 3 is unramified in F/Q, and then by the author [9] for the
general case.

2. A condition for having a p-NIB

In [4, Theorem 2.1], Gómez Ayala gave a necessary and sufficient condi-
tion for a tame Kummer extension of prime degree to have a NIB (in the
usual sense). In [8, Theorem 2], we generalized it for a tame cyclic Kummer
extension of arbitrary degree. The following is a p-integer version of these
results. Let m = pe be a power of a prime number p, and F a number field.
Let A be an m-th power free integral ideal of O′

F . Namely, ℘m - A for all
prime ideals ℘ of O′

F . We can uniquely write

A =
m−1∏
i=1

Ai
i

for some square free integral ideals Ai of O′
F relatively prime to each other.

As in [4, 8], we define the associated ideals Bj of A as follows.

(1) Bj =
m−1∏
i=1

Ai
[ij/m] (0 ≤ j ≤ m− 1).

Here, for a real number x, [x] denotes the largest integer ≤ x. By definition,
we have B0 = B1 = O′

F .

Theorem 3. Let m = pe be a power of a prime number p, and F a number
field with ζm ∈ F×. Then, a cyclic Kummer extension N/F of degree m

has a p-NIB if and only if there exists an integer a ∈ O′
F with N = F (a1/m)

such that (i) the principal integral ideal aO′
F is m-th power free and (ii) the

ideals associated to aO′
F by (1) are principal.

The proof of this theorem goes through exactly similarly to the proof of
[8, Theorem 2]. So, we do not give its proof. (In the setting of this theorem,
the conditions (iv) and (v) in [8, Theorem 2] are not necessary as m is a
unit of O′

F .)
It is easy to see that the assertion (A) mentioned in Section 1 follows

from this theorem. The following is an immediate consequence of Theorem
3.

Corollary 1. Let m and F be as in Theorem 3. Let a ∈ O′
F be an integer

such that the principal integral ideal aO′
F is square free. Then, the cyclic

extension F (a1/m)/F has a p-NIB.

Let HF be the Hilbert class field of F . The p-Hilbert class field H ′
F of F

is by definition the maximal intermediate field of HF /F in which all prime
ideals of OF over p split completely. Let ClF be the ideal class group of
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F in the usual sense, and P the subgroup of ClF generated by the classes
containing a prime ideal over p. Then, we naturally have Cl′F

∼= ClF /P .
Hence, by class field theory, Cl′F is canonically isomorphic to Gal(H′

F/F).
It is known that any ideal of O′

F capitulates in O′
HF

. This is shown exactly
similarly to the classical principal ideal theorem for HF /F given in Koch
[13, pp. 103-104]. Now, we can derive the following “capitulation” result
from Theorem 3.

Corollary 2. Let m and F be as in Theorem 3. Then, for any abelian
extension N/F of exponent dividing m, the pushed-up extension NH ′

F /H ′
F

has a p-NIB. In particular, if h′F = |Cl′F | = 1, any abelian extension N/F
of exponent dividing m has a p-NIB.

Proof. For brevity, we write H = H ′
F . For each prime ideal L of O′

F , we
can choose an integer ωL ∈ O′

H such that LO′
H = ωLO′

H by the principal
ideal theorem mentioned above. Let ε1, · · · , εr be a system of fundamental
units of O′

H , and ζ a generator of the group of roots of unity in H. Let
N/F be an arbitrary abelian extension of exponent dividing m. Then, we
have

N = F (a1/m
1 , · · · , a1/m

s )
for some ai ∈ O′

F . We see that NH is contained in

Ñ = H
(
ζ1/m, ε

1/m
i , ω

1/m
L

∣∣ 1 ≤ i ≤ r, L|a1 · · · as

)
.

Here, L runs over the prime ideals of O′
F dividing a1 · · · as. As H/F is

unramified, the principal ideal LO′
H = ωLO′

H is square free. Hence, by
Corollary 1, the extensions

(2) H(ζ1/m)/H, H(ε1/m
i )/H, H(ω1/m

L )/H with L|a1 · · · as

have a p-NIB. As the ideal ωLO′
H = LO′

H is square free, the extension
H(ω1/m

L )/H is fully ramified at the primes dividing L and unramified at
other prime ideals of O′

H . Therefore, we see from the choice of ζ and εi

that the extensions in (2) are linearly independent over H and that the
ideal generated by the relative discriminants of any two of them equals
O′

H . Therefore, the composite Ñ/H has a p-NIB by a classical theorem on
rings of integers (cf. Fröhlich and Taylor [3, III (2.13)]). Hence, NH/H

has a p-NIB as NH ⊆ Ñ . �

Remark 3. For the ring of integers in the usual sense, a result correspond-
ing to this corollary is obtained in [8, Theorem 1].

3. Proof of Theorem 1

The “only if” part follows immediately from [3, III, (2.13)].
Let us show the “if” part. Let m = pe, F , K be as in Theorem 1. Here,
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p is an odd prime number (see Remark 1). Let N/F be a cyclic extension
of degree m, L = NK, and G = Gal(L/K) = Gal(N/F). Assume that
O′

L = O′
K [G] · ω for some ω ∈ O′

L. To prove that N/F has a p-NIB, it
suffices to show that we can choose W ∈ O′

N such that O′
L = O′

K [G] ·W .
Actually, when this is the case, we easily see that O′

N = O′
F [G] · W . Let

∆F = Gal(L/N) = Gal(K/F) and ` = |∆F | (≥ 2). As p - [K : F ], ` divides
p− 1 (see Remark 1). We fix a primitive m-th root of unity: ζ = ζm. Let
σ be a fixed generator of the cyclic group ∆F of order `, and let κ ∈ Z be
an integer with ζσ = ζκ, which is uniquely determined modulo m. For an
integer x ∈ Z, let [x]pf be the class in Z/pf = Z/pfZ represented by x. For
1 ≤ f ≤ e, the class [κ]pf in the multiplicative group (Z/pf )× is of order `.
We put

tf = pf−1(p− 1)/` (∈ Z).

For each 1 ≤ f ≤ e, we choose integers rf,1, · · · , rf,tf ∈ Z so that their
classes modulo pf form a complete set of representatives of the quotient
(Z/pf )×/〈[κ]pf 〉. Then, we have

(3) {[0]m, [pe−frf,iκ
j−1]m

∣∣ 1 ≤ f ≤ e, 1 ≤ i ≤ tf , 1 ≤ j ≤ `} = Z/m.

For brevity, we put
a(f, i, j) = pe−frf,iκ

j−1.

Fixing a generator g of G, we define the resolvents α0 and αf,i,j of ω by

α0 =
m−1∑
λ=0

ωgλ
and αf,i,j =

m−1∑
λ=0

ζ−a(f,i,j)λωgλ
,

for each 1 ≤ f ≤ e, 1 ≤ i ≤ tf and 1 ≤ j ≤ `. By (3), we see that the
determinant of the m×m matrix of the coefficients of ωgλ

in the above m
equalities is divisible only by prime ideals of OK dividing p. Hence, it is a
unit of O′

K . Therefore, from the assumption O′
L = O′

K [G] · ω, we obtain

(4) O′
L = O′

Kα0 +
∑
f,i,j

O′
Kαf,i,j .

Let O′
L

(0) = O′
K , and let O′

L
(f,i,j) be the additive group of integers x ∈ O′

L

such that xg = ζa(f,i,j)x. As ζσ = ζκ, we see that

(5) O′
L

(f,i,j) = (O′
L

(f,i,1))σj−1
.

As is easily seen, we have α0 ∈ O′
K and αf,i,j ∈ O′

L
(f,i,j). From O′

L =
O′

K [G] · ω, we see that

O′
L

(0) = O′
K = O′

Kα0 and O′
L

(f,i,j) = O′
Kαf,i,j = O′

Kασj−1

f,i,1 .
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Here, the last equality holds by (5). Therefore, from (4), we obtain

(6) O′
L = O′

K +
∑
f, i, j

O′
Kασj−1

f,i,1 .

Now, we put

W = 1 +
∑
f,i,j

ασj−1

f,i,1 = 1 +
∑
f, i

TrL/N (αf,i,1) ∈ O′
N .

Here, TrL/N denotes the trace map. As ασj−1

f,i,1 ∈ O′
L

(f,i,j), we have

W gλ
= 1 +

∑
f, i, j

ζa(f,i,j)λασj−1

f,i,1

for 0 ≤ λ ≤ m − 1. We see that the determinant of the m × m matrix of
the coefficients of ασj−1

f,i,1 in the above m equalities is a unit of O′
K . Hence,

by (6), we obtain O′
L = O′

K [G] · W . Therefore, as W ∈ O′
N , N/F has a

p-NIB. �

4. Proof of Theorem 2

Let F , K be as in Theorem 2, and ∆F = Gal(K/F). As ζp ∈ F×, we can
choose a generator σ of the cyclic group ∆F of order p so that ζσ

p2 = ζκ
p2

with κ = 3 or 1 + p according to whether p = 2 or p ≥ 3. When p ≥ 3, we
put

D =
p−1∑
i=0

κiσp−1−i (∈ Z[∆F ]).

The following lemma is an exercise in Galois theory.

Lemma. Under the above setting, let x be a nonzero element of K. We
put

(7) a =
{

xx3σ, for p = 2,

xD = xσp−1
xκσp−2 · · ·xκp−2σxκp−1

, for p ≥ 3.

Let L = K(a1/p2
). Assume that a 6∈ (K×)p. Then, L/F is an abelian

extension of type (p, p2). Hence, there exists a cyclic extension N/F of
degree p2 with N ∩K = F and L = NK.

Proof of Theorem 2. Let C be as in Theorem 2, and Q a prime ideal of
O′

F contained in C. By the assumption of Theorem 2, QO′
K = βO′

K is a
principal ideal. Let P = αO′

K be an arbitrary principal prime ideal of O′
K

of degree one in K/F relatively prime to Q, and let ℘ = P ∩ O′
F . Then, ℘

is a prime ideal of O′
F splitting completely in K. Let x = αβ, and define

an integer a by (7). As QO′
K = βO′

K is invariant under the action of σ, we
have

aO′
K = αα3σβ4O′

K or ασp−1
ασp−2κ · · ·ασκp−2

ακp−1
βTO′

K
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according to whether p = 2 or p ≥ 3. Here,

T = 1 + κ + · · ·+ κp−1.

For p ≥ 3, since κi ≡ 1 + ip, T ≡ p mod p2, the last term equals
p−1∏
i=0

ασp−1−i(1+ip)βpXp2O′
K

for some X ∈ O′
K . We may as well replace a with a/β4 (resp. a/Xp2

) for
p = 2 (resp. p ≥ 3). Then, it follows that

(8) aO′
K = αα3σO′

K or
p−1∏
i=0

ασp−1−i(1+ip)βpO′
K

according to whether p = 2 or p ≥ 3. In particular, we see that a 6∈ (K×)p

as ℘ splits completely in K and P = αO′
K is a prime ideal of O′

K over ℘.
Then, by the lemma, L = K(a1/p2

) is of degree p2 over K, and there exists
a cyclic extension N/F of degree p2 with N ∩K = F and NK = L. We see
from (8) and Theorem 3 that L/K has a p-NIB. Let us show that N/F has
no p-NIB. For this, assume that it has a p-NIB. Let N1 be the intermediate
field of N/F of degree p. By the assumption, N1/F has a p-NIB. We see
from (7) and κ ≡ 1 mod p that N1K = K(b1/p) with

b = xxσ · · ·xσp−1
.

As b ∈ O′
F and ζp ∈ F×, it follows that N1 = F ((ζs

pb)1/p) for some 0 ≤
s ≤ p − 1. Since xO′

K = PQO′
K , we have bO′

F = ℘Qp. As N1/F has
a p-NIB, it follows from Theorem 3 that there exists an integer c ∈ O′

F

with N1 = F (c1/p) such that cO′
F is p-th power free. Hence, c = (ζs

pb)ryp

for some 1 ≤ r ≤ p − 1 and y ∈ F×. We have cO′
F = ℘r(yQr)p. As the

integral ideal cO′
F is p-th power free, we must have yQr = O′

F . This is a
contradiction as the class C containing Q is of order p. �

We see in the below that there are many examples of p and F satisfying
the assumption of Theorem 2.

Let p = 2. Let q1, q2 be prime numbers with q1 ≡ q2 ≡ −1 mod 4 and
q1 6= q2, and let F = Q(

√
−q1q2). Then, the imaginary quadratic field F

satisfies the assumption of Theorem 2. The reason is as follows. Let Q be
the unique prime ideal of O′

F over q1. We see that the class C = [Q] ∈
Cl′F is of order 2 from genus theory. Let K = F (

√
−1) = F (

√
q1q2) and

k = Q(
√

q1q2). By genus theory, the class number of k in the usual sense
is odd. Hence, we have q1Ok = (αOk)2 for some integer α. Therefore,
QO′

K = αO′
K , and the class C capitulates in O′

K .
Let us deal with the case p ≥ 3. Let p be an odd prime number, k a real

quadratic field in which p remains prime, F = k(ζp), and K = F (ζp2). Let
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B1/Q be the unique cyclic extension of degree p unramified outside p, and
k1 = kB1. Clearly, we have K = FB1. In the tables in Sumida and the
author [10, 11], we gave many examples of p and k having an ideal class
C ∈ Clk of k which is of order p and capitulates in k1. (More precisely, real
quadratic fields in the rows “n0 = 0” and “n0 = 1” of the tables satisfy the
condition.) For such a class C, the lift CF ∈ ClF to F is of order p and it
capitulates in K. As p remains prime in k, there is only one prime ideal of
F (resp. K) over p, and it is a principal ideal. Hence, we have ClF = Cl′F
and ClK = Cl′K . Thus, we obtain many examples of p ≥ 3 and F satisfying
the assumption of Theorem 2.
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