On the ring of p-integers of a cyclic p-extension over a number field

par Humio ICHIMURA

Abstract

RÉSumé. Soit p un nombre premier. On dit qu'une extension finie, galoisienne, N / F d'un corps de nombres F, à groupe de Galois G, admet une base normale p-entière (p-NIB en abrégé) si \mathcal{O}_{N}^{\prime} est libre de rang un sur l'anneau de groupe $\mathcal{O}_{F}^{\prime}[G]$ où $\mathcal{O}_{F}^{\prime}=$ $\mathcal{O}_{F}[1 / p]$ désigne l'anneau des p-entiers de F. Soit $m=p^{e}$ une puissance de p et N / F une extension cyclique de degré m. Lorsque $\zeta_{m} \in F^{\times}$, nous donnons une condition nécessaire et suffisante pour que N / F admette une p-NIB (Théorème 3). Lorsque $\zeta_{m} \notin F^{\times}$et $p \nmid\left[F\left(\zeta_{m}\right): F\right]$, nous montrons que N / F admet une p-NIB si et seulement si $N\left(\zeta_{m}\right) / F\left(\zeta_{m}\right)$ admet p-NIB (Théorème 1). Enfin, si p divise $\left[F\left(\zeta_{m}\right): F\right]$, nous montrons que la propriété de descente n'est plus vraie en général (Théorème 2).

Abstract. Let p be a prime number. A finite Galois extension N / F of a number field F with group G has a normal p-integral basis (p-NIB for short) when \mathcal{O}_{N}^{\prime} is free of rank one over the group ring $\mathcal{O}_{F}^{\prime}[G]$. Here, $\mathcal{O}_{F}^{\prime}=\mathcal{O}_{F}[1 / p]$ is the ring of p-integers of F. Let $m=p^{e}$ be a power of p and N / F a cyclic extension of degree m. When $\zeta_{m} \in F^{\times}$, we give a necessary and sufficient condition for N / F to have a p-NIB (Theorem 3). When $\zeta_{m} \notin F^{\times}$ and $p \nmid\left[F\left(\zeta_{m}\right): F\right]$, we show that N / F has a p-NIB if and only if $N\left(\zeta_{m}\right) / F\left(\zeta_{m}\right)$ has a p-NIB (Theorem 1). When p divides $\left[F\left(\zeta_{m}\right)\right.$: $F]$, we show that this descent property does not hold in general (Theorem 2).

1. Introduction

We fix a prime number p throughout this article. For a number field F, let \mathcal{O}_{F} be the ring of integers, and $\mathcal{O}_{F}^{\prime}=\mathcal{O}_{F}[1 / p]$ the ring of p-integers of F. A finite Galois extension N / F with group G has a normal integral basis (NIB for short) when \mathcal{O}_{N} is free of rank one over the group ring $\mathcal{O}_{F}[G]$. It has a normal p-integral basis (p-NIB for short) when \mathcal{O}_{N}^{\prime} is free of rank one over $\mathcal{O}_{F}^{\prime}[G]$. For a cyclic p-extension N / F unramified outside p, several results on p-NIB are given in the lecture note of Greither [5]. Let N / F

Manuscrit reçu le 4 septembre 2003.
be such a cyclic extension of degree $m=p^{e}$. In particular, it is known (A) that when $\zeta_{m} \in F^{\times}$, it has a p-NIB if and only if $N=F\left(\epsilon^{1 / m}\right)$ for some unit ϵ of $\mathcal{O}_{F}^{\prime}\left(\left[5\right.\right.$, Proposition 0.6.5]), and (B) that when $\zeta_{m} \notin F^{\times}$, it has a p-NIB if and only if the pushed-up extension $N\left(\zeta_{m}\right) / F\left(\zeta_{m}\right)$ has a p-NIB ([5, Theorem I.2.1]). Here, ζ_{m} is a fixed primitive m-th root of unity. These results for the unramified case form a basis of the study of a normal p-integral basis problem for \mathbb{Z}_{p}-extensions in Kersten and Michalicek [12], [5] and Fleckinger and Nguyen-Quang-Do [2]. The purpose of this article is to give some corresponding results for the ramified case.

Let $m=p^{e}$ be a power of p, F a number field with $\zeta_{m} \in F^{\times}$. In Section 2, we give a necessary and sufficient condition (Theorem 3) for a cyclic Kummer extension N / F of degree m to have a p-NIB. It is given in terms of a Kummer generator of N, but rather complicated compared with the unramified case. We also give an application of this criterion.

When $\zeta_{m} \notin F^{\times}$and $p \nmid\left[F\left(\zeta_{m}\right): F\right]$, we show the following descent property in Section 3.

Theorem 1. Let $m=p^{e}$ be a power of a prime number p, F a number field with $\zeta_{m} \notin F^{\times}$, and $K=F\left(\zeta_{m}\right)$. Assume that $p \nmid[K: F]$. Then, a cyclic extension N / F of degree m has a $p-N I B$ if and only if $N K / K$ has a p-NIB.

When p divides $[K: F]$, this type of descent property does not hold in general. Actually, we show the following assertion in Section 4. Let $C l_{F}^{\prime}$ be the ideal class group of the Dedekind domain $\mathcal{O}_{F}^{\prime}=\mathcal{O}_{F}[1 / p]$.

Theorem 2. Let F be a number field with $\zeta_{p} \in F^{\times}$but $\zeta_{p^{2}} \notin F^{\times}$, and $K=F\left(\zeta_{p^{2}}\right)$. Assume that there exists a class $\mathcal{C} \in C l_{F}^{\prime}$ of order p which capitulates in \mathcal{O}_{K}^{\prime}. Then, there exist infinitely many cyclic extensions N / F of degree p^{2} with $N \cap K=F$ such that (i) N / F has no p-NIB but (ii) $N K / K$ has a $p-N I B$.

At the end of Section 4, we see that there are several examples of p and F satisfying the assumption of Theorem 2.

Remark 1. In Theorem 1, the condition $p \nmid[K: F]$ means that $[K: F]$ divides $p-1$. Further, p must be an odd prime as $p \nmid[K: F]$.

Remark 2. As for the descent property of normal integral bases in the usual sense, the following facts are known at present. Let F be a number field with $\zeta_{p} \notin F^{\times}$, and $K=F\left(\zeta_{p}\right)$. For a cyclic extension N / F of degree p unramified at all finite prime divisors, it has a NIB if and only if $N K / K$ has a NIB. This was first proved by Brinkhuis [1] when $p=3$ and F is an imaginary quadratic field, and then by the author [7] for the general case. When $p=3$, for a tame cyclic cubic extension N / F, it has a NIB if and
only if $N K / K$ has a NIB. This was first proved by Greither [6, Theorem 2.2] when $p=3$ is unramified in F / \mathbb{Q}, and then by the author [9] for the general case.

2. A condition for having a p-NIB

In [4, Theorem 2.1], Gómez Ayala gave a necessary and sufficient condition for a tame Kummer extension of prime degree to have a NIB (in the usual sense). In [8, Theorem 2], we generalized it for a tame cyclic Kummer extension of arbitrary degree. The following is a p-integer version of these results. Let $m=p^{e}$ be a power of a prime number p, and F a number field. Let \mathfrak{A} be an m-th power free integral ideal of \mathcal{O}_{F}^{\prime}. Namely, $\wp^{m} \nmid \mathfrak{A}$ for all prime ideals \wp of \mathcal{O}_{F}^{\prime}. We can uniquely write

$$
\mathfrak{A}=\prod_{i=1}^{m-1} \mathfrak{A}_{i}^{i}
$$

for some square free integral ideals \mathfrak{A}_{i} of \mathcal{O}_{F}^{\prime} relatively prime to each other. As in $[4,8]$, we define the associated ideals \mathfrak{B}_{j} of \mathfrak{A} as follows.

$$
\begin{equation*}
\mathfrak{B}_{j}=\prod_{i=1}^{m-1} \mathfrak{A}_{i}^{[i j / m]} \quad(0 \leq j \leq m-1) . \tag{1}
\end{equation*}
$$

Here, for a real number $x,[x]$ denotes the largest integer $\leq x$. By definition, we have $\mathfrak{B}_{0}=\mathfrak{B}_{1}=\mathcal{O}_{F}^{\prime}$.
Theorem 3. Let $m=p^{e}$ be a power of a prime number p, and F a number field with $\zeta_{m} \in F^{\times}$. Then, a cyclic Kummer extension N/F of degree m has a p-NIB if and only if there exists an integer $a \in \mathcal{O}_{F}^{\prime}$ with $N=F\left(a^{1 / m}\right)$ such that (i) the principal integral ideal $a \mathcal{O}_{F}^{\prime}$ is m-th power free and (ii) the ideals associated to $a \mathcal{O}_{F}^{\prime}$ by (1) are principal.

The proof of this theorem goes through exactly similarly to the proof of [8, Theorem 2]. So, we do not give its proof. (In the setting of this theorem, the conditions (iv) and (v) in [8, Theorem 2] are not necessary as m is a unit of \mathcal{O}_{F}^{\prime}.)

It is easy to see that the assertion (A) mentioned in Section 1 follows from this theorem. The following is an immediate consequence of Theorem 3.

Corollary 1. Let m and F be as in Theorem 3. Let $a \in \mathcal{O}_{F}^{\prime}$ be an integer such that the principal integral ideal $a \mathcal{O}_{F}^{\prime}$ is square free. Then, the cyclic extension $F\left(a^{1 / m}\right) / F$ has a p-NIB.

Let H_{F} be the Hilbert class field of F. The p-Hilbert class field H_{F}^{\prime} of F is by definition the maximal intermediate field of H_{F} / F in which all prime ideals of \mathcal{O}_{F} over p split completely. Let $C l_{F}$ be the ideal class group of
F in the usual sense, and P the subgroup of $C l_{F}$ generated by the classes containing a prime ideal over p. Then, we naturally have $C l_{F}^{\prime} \cong C l_{F} / P$. Hence, by class field theory, $C l_{F}^{\prime}$ is canonically isomorphic to $\mathrm{Gal}\left(\mathrm{H}_{\mathrm{F}}^{\prime} / \mathrm{F}\right)$. It is known that any ideal of \mathcal{O}_{F}^{\prime} capitulates in $\mathcal{O}_{H_{F}}^{\prime}$. This is shown exactly similarly to the classical principal ideal theorem for H_{F} / F given in Koch [13, pp. 103-104]. Now, we can derive the following "capitulation" result from Theorem 3.

Corollary 2. Let m and F be as in Theorem 3. Then, for any abelian extension N / F of exponent dividing m, the pushed-up extension $N H_{F}^{\prime} / H_{F}^{\prime}$ has a p-NIB. In particular, if $h_{F}^{\prime}=\left|C l_{F}^{\prime}\right|=1$, any abelian extension N / F of exponent dividing m has a $p-N I B$.
Proof. For brevity, we write $H=H_{F}^{\prime}$. For each prime ideal \mathfrak{L} of \mathcal{O}_{F}^{\prime}, we can choose an integer $\omega_{\mathfrak{L}} \in \mathcal{O}_{H}^{\prime}$ such that $\mathfrak{L} \mathcal{O}_{H}^{\prime}=\omega_{\mathfrak{L}} \mathcal{O}_{H}^{\prime}$ by the principal ideal theorem mentioned above. Let $\epsilon_{1}, \cdots, \epsilon_{r}$ be a system of fundamental units of \mathcal{O}_{H}^{\prime}, and ζ a generator of the group of roots of unity in H. Let N / F be an arbitrary abelian extension of exponent dividing m. Then, we have

$$
N=F\left(a_{1}^{1 / m}, \cdots, a_{s}^{1 / m}\right)
$$

for some $a_{i} \in \mathcal{O}_{F}^{\prime}$. We see that $N H$ is contained in

$$
\tilde{N}=H\left(\zeta^{1 / m}, \epsilon_{i}^{1 / m}, \omega_{\mathfrak{L}}^{1 / m}|1 \leq i \leq r, \mathfrak{L}| a_{1} \cdots a_{s}\right)
$$

Here, \mathfrak{L} runs over the prime ideals of \mathcal{O}_{F}^{\prime} dividing $a_{1} \cdots a_{s}$. As H / F is unramified, the principal ideal $\mathfrak{L} \mathcal{O}_{H}^{\prime}=\omega_{\mathfrak{L}} \mathcal{O}_{H}^{\prime}$ is square free. Hence, by Corollary 1, the extensions

$$
\begin{equation*}
H\left(\zeta^{1 / m}\right) / H, \quad H\left(\epsilon_{i}^{1 / m}\right) / H, \quad H\left(\omega_{\mathfrak{L}}^{1 / m}\right) / H \quad \text { with } \mathfrak{L} \mid a_{1} \cdots a_{s} \tag{2}
\end{equation*}
$$

have a p-NIB. As the ideal $\omega_{\mathfrak{L}} \mathcal{O}_{H}^{\prime}=\mathfrak{L} \mathcal{O}_{H}^{\prime}$ is square free, the extension $H\left(\omega_{\mathfrak{L}}^{1 / m}\right) / H$ is fully ramified at the primes dividing \mathfrak{L} and unramified at other prime ideals of \mathcal{O}_{H}^{\prime}. Therefore, we see from the choice of ζ and ϵ_{i} that the extensions in (2) are linearly independent over H and that the ideal generated by the relative discriminants of any two of them equals \mathcal{O}_{H}^{\prime}. Therefore, the composite \widetilde{N} / H has a p-NIB by a classical theorem on rings of integers (cf. Fröhlich and Taylor [3, III (2.13)]). Hence, $N H / H$ has a p-NIB as $N H \subseteq \widetilde{N}$.

Remark 3. For the ring of integers in the usual sense, a result corresponding to this corollary is obtained in [8, Theorem 1].

3. Proof of Theorem 1

The "only if" part follows immediately from [3, III, (2.13)].
Let us show the "if" part. Let $m=p^{e}, F, K$ be as in Theorem 1. Here,
p is an odd prime number (see Remark 1). Let N / F be a cyclic extension of degree $m, L=N K$, and $G=\operatorname{Gal}(\mathrm{L} / \mathrm{K})=\operatorname{Gal}(\mathrm{N} / \mathrm{F})$. Assume that $\mathcal{O}_{L}^{\prime}=\mathcal{O}_{K}^{\prime}[G] \cdot \omega$ for some $\omega \in \mathcal{O}_{L}^{\prime}$. To prove that N / F has a p-NIB, it suffices to show that we can choose $W \in \mathcal{O}_{N}^{\prime}$ such that $\mathcal{O}_{L}^{\prime}=\mathcal{O}_{K}^{\prime}[G] \cdot W$. Actually, when this is the case, we easily see that $\mathcal{O}_{N}^{\prime}=\mathcal{O}_{F}^{\prime}[G] \cdot W$. Let $\Delta_{F}=\operatorname{Gal}(\mathrm{L} / \mathrm{N})=\operatorname{Gal}(\mathrm{K} / \mathrm{F})$ and $\ell=\left|\Delta_{F}\right|(\geq 2)$. As $p \nmid[K: F], \ell$ divides $p-1$ (see Remark 1). We fix a primitive m-th root of unity: $\zeta=\zeta_{m}$. Let σ be a fixed generator of the cyclic group Δ_{F} of order ℓ, and let $\kappa \in \mathbb{Z}$ be an integer with $\zeta^{\sigma}=\zeta^{\kappa}$, which is uniquely determined modulo m. For an integer $x \in \mathbb{Z}$, let $[x]_{p f}$ be the class in $\mathbb{Z} / p^{f}=\mathbb{Z} / p^{f} \mathbb{Z}$ represented by x. For $1 \leq f \leq e$, the class $[\kappa]_{p f}$ in the multiplicative group $\left(\mathbb{Z} / p^{f}\right)^{\times}$is of order ℓ. We put

$$
t_{f}=p^{f-1}(p-1) / \ell(\in \mathbb{Z}) .
$$

For each $1 \leq f \leq e$, we choose integers $r_{f, 1}, \cdots, r_{f, t_{f}} \in \mathbb{Z}$ so that their classes modulo p^{f} form a complete set of representatives of the quotient $\left(\mathbb{Z} / p^{f}\right)^{\times} /\left\langle[\kappa]_{p f}\right\rangle$. Then, we have

$$
\begin{equation*}
\left\{[0]_{m},\left[p^{e-f} r_{f, i} \kappa^{j-1}\right]_{m} \mid 1 \leq f \leq e, 1 \leq i \leq t_{f}, 1 \leq j \leq \ell\right\}=\mathbb{Z} / m \tag{3}
\end{equation*}
$$

For brevity, we put

$$
a(f, i, j)=p^{e-f} r_{f, i} \kappa^{j-1}
$$

Fixing a generator g of G, we define the resolvents α_{0} and $\alpha_{f, i, j}$ of ω by

$$
\alpha_{0}=\sum_{\lambda=0}^{m-1} \omega^{g^{\lambda}} \quad \text { and } \quad \alpha_{f, i, j}=\sum_{\lambda=0}^{m-1} \zeta^{-a(f, i, j) \lambda} \omega^{g^{\lambda}},
$$

for each $1 \leq f \leq e, 1 \leq i \leq t_{f}$ and $1 \leq j \leq \ell$. By (3), we see that the determinant of the $m \times m$ matrix of the coefficients of $\omega^{g^{\lambda}}$ in the above m equalities is divisible only by prime ideals of \mathcal{O}_{K} dividing p. Hence, it is a unit of \mathcal{O}_{K}^{\prime}. Therefore, from the assumption $\mathcal{O}_{L}^{\prime}=\mathcal{O}_{K}^{\prime}[G] \cdot \omega$, we obtain

$$
\begin{equation*}
\mathcal{O}_{L}^{\prime}=\mathcal{O}_{K}^{\prime} \alpha_{0}+\sum_{f, i, j} \mathcal{O}_{K}^{\prime} \alpha_{f, i, j} \tag{4}
\end{equation*}
$$

Let $\mathcal{O}_{L}^{(0)}=\mathcal{O}_{K}^{\prime}$, and let $\mathcal{O}_{L}^{\prime(f, i, j)}$ be the additive group of integers $x \in \mathcal{O}_{L}^{\prime}$ such that $x^{g}=\zeta^{a(f, i, j)} x$. As $\zeta^{\sigma}=\zeta^{\kappa}$, we see that

$$
\begin{equation*}
\mathcal{O}_{L}^{\prime(f, i, j)}=\left(\mathcal{O}_{L}^{(f, i, 1)}\right)^{\sigma^{j-1}} . \tag{5}
\end{equation*}
$$

As is easily seen, we have $\alpha_{0} \in \mathcal{O}_{K}^{\prime}$ and $\alpha_{f, i, j} \in \mathcal{O}_{L}^{\prime}(f, i, j)$. From $\mathcal{O}_{L}^{\prime}=$ $\mathcal{O}_{K}^{\prime}[G] \cdot \omega$, we see that

$$
\mathcal{O}_{L}^{\prime}{ }^{(0)}=\mathcal{O}_{K}^{\prime}=\mathcal{O}_{K}^{\prime} \alpha_{0} \quad \text { and } \quad \mathcal{O}_{L}^{\prime}{ }^{(f, i, j)}=\mathcal{O}_{K}^{\prime} \alpha_{f, i, j}=\mathcal{O}_{K}^{\prime} \alpha_{f, i, 1}^{\sigma j-1}
$$

Here, the last equality holds by (5). Therefore, from (4), we obtain

$$
\begin{equation*}
\mathcal{O}_{L}^{\prime}=\mathcal{O}_{K}^{\prime}+\sum_{f, i, j} \mathcal{O}_{K}^{\prime} \alpha_{f, i, 1}^{\sigma j-1} \tag{6}
\end{equation*}
$$

Now, we put

$$
W=1+\sum_{f, i, j} \alpha_{f, i, 1}^{\sigma^{j-1}}=1+\sum_{f, i} \operatorname{Tr}_{L / N}\left(\alpha_{f, i, 1}\right) \in \mathcal{O}_{N}^{\prime}
$$

Here, $\operatorname{Tr}_{L / N}$ denotes the trace map. As $\alpha_{f, i, 1}^{\sigma^{j-1}} \in \mathcal{O}_{L}^{\prime}(f, i, j)$, we have

$$
W^{g^{\lambda}}=1+\sum_{f, i, j} \zeta^{a(f, i, j) \lambda} \alpha_{f, i, 1}^{\sigma^{j-1}}
$$

for $0 \leq \lambda \leq m-1$. We see that the determinant of the $m \times m$ matrix of the coefficients of $\alpha_{f, i, 1}^{\sigma j-1}$ in the above m equalities is a unit of \mathcal{O}_{K}^{\prime}. Hence, by (6), we obtain $\mathcal{O}_{L}^{\prime}=\mathcal{O}_{K}^{\prime}[G] \cdot W$. Therefore, as $W \in \mathcal{O}_{N}^{\prime}, N / F$ has a p-NIB.

4. Proof of Theorem 2

Let F, K be as in Theorem 2 , and $\Delta_{F}=\operatorname{Gal}(\mathrm{K} / \mathrm{F})$. As $\zeta_{p} \in F^{\times}$, we can choose a generator σ of the cyclic group Δ_{F} of order p so that $\zeta_{p^{2}}^{\sigma}=\zeta_{p^{2}}^{\kappa}$ with $\kappa=3$ or $1+p$ according to whether $p=2$ or $p \geq 3$. When $p \geq 3$, we put

$$
D=\sum_{i=0}^{p-1} \kappa^{i} \sigma^{p-1-i}\left(\in \mathbb{Z}\left[\Delta_{F}\right]\right) .
$$

The following lemma is an exercise in Galois theory.
Lemma. Under the above setting, let x be a nonzero element of K. We put

$$
a= \begin{cases}x x^{3 \sigma}, & \text { for } p=2 \tag{7}\\ x^{D}=x^{\sigma^{p-1}} x^{\kappa \sigma^{p-2}} \cdots x^{\kappa^{p-2}} \sigma x^{\kappa^{p-1}}, & \text { for } p \geq 3 .\end{cases}
$$

Let $L=K\left(a^{1 / p^{2}}\right)$. Assume that $a \notin\left(K^{\times}\right)^{p}$. Then, L / F is an abelian extension of type $\left(p, p^{2}\right)$. Hence, there exists a cyclic extension N / F of degree p^{2} with $N \cap K=F$ and $L=N K$.

Proof of Theorem 2. Let \mathcal{C} be as in Theorem 2, and \mathfrak{Q} a prime ideal of \mathcal{O}_{F}^{\prime} contained in \mathcal{C}. By the assumption of Theorem $2, \mathfrak{Q O}_{K}^{\prime}=\beta \mathcal{O}_{K}^{\prime}$ is a principal ideal. Let $\mathfrak{P}=\alpha \mathcal{O}_{K}^{\prime}$ be an arbitrary principal prime ideal of \mathcal{O}_{K}^{\prime} of degree one in K / F relatively prime to \mathfrak{Q}, and let $\wp=\mathfrak{P} \cap \mathcal{O}_{F}^{\prime}$. Then, \wp is a prime ideal of \mathcal{O}_{F}^{\prime} splitting completely in K. Let $x=\alpha \beta$, and define an integer a by (7). As $\mathfrak{Q} \mathcal{O}_{K}^{\prime}=\beta \mathcal{O}_{K}^{\prime}$ is invariant under the action of σ, we have

$$
a \mathcal{O}_{K}^{\prime}=\alpha \alpha^{3 \sigma} \beta^{4} \mathcal{O}_{K}^{\prime} \quad \text { or } \quad \alpha^{\sigma^{p-1}} \alpha^{\sigma^{p-2} \kappa} \cdots \alpha^{\sigma \kappa^{p-2}} \alpha^{\kappa^{p-1}} \beta^{T} \mathcal{O}_{K}^{\prime}
$$

according to whether $p=2$ or $p \geq 3$. Here,

$$
T=1+\kappa+\cdots+\kappa^{p-1}
$$

For $p \geq 3$, since $\kappa^{i} \equiv 1+i p, T \equiv p \bmod p^{2}$, the last term equals

$$
\prod_{i=0}^{p-1} \alpha^{\sigma^{p-1-i}(1+i p)} \beta^{p} X^{p^{2}} \mathcal{O}_{K}^{\prime}
$$

for some $X \in \mathcal{O}_{K}^{\prime}$. We may as well replace a with a / β^{4} (resp. $a / X^{p^{2}}$) for $p=2$ (resp. $p \geq 3$). Then, it follows that

$$
\begin{equation*}
a \mathcal{O}_{K}^{\prime}=\alpha \alpha^{3 \sigma} \mathcal{O}_{K}^{\prime} \quad \text { or } \quad \prod_{i=0}^{p-1} \alpha^{\sigma^{p-1-i}(1+i p)} \beta^{p} \mathcal{O}_{K}^{\prime} \tag{8}
\end{equation*}
$$

according to whether $p=2$ or $p \geq 3$. In particular, we see that $a \notin\left(K^{\times}\right)^{p}$ as \wp splits completely in K and $\mathfrak{P}=\alpha \mathcal{O}_{K}^{\prime}$ is a prime ideal of \mathcal{O}_{K}^{\prime} over \wp. Then, by the lemma, $L=K\left(a^{1 / p^{2}}\right)$ is of degree p^{2} over K, and there exists a cyclic extension N / F of degree p^{2} with $N \cap K=F$ and $N K=L$. We see from (8) and Theorem 3 that L / K has a p-NIB. Let us show that N / F has no p-NIB. For this, assume that it has a p-NIB. Let N_{1} be the intermediate field of N / F of degree p. By the assumption, N_{1} / F has a p-NIB. We see from (7) and $\kappa \equiv 1 \bmod p$ that $N_{1} K=K\left(b^{1 / p}\right)$ with

$$
b=x x^{\sigma} \cdots x^{\sigma^{p-1}} .
$$

As $b \in \mathcal{O}_{F}^{\prime}$ and $\zeta_{p} \in F^{\times}$, it follows that $N_{1}=F\left(\left(\zeta_{p}^{s} b\right)^{1 / p}\right)$ for some $0 \leq$ $s \leq p-1$. Since $x \mathcal{O}_{K}^{\prime}=\mathfrak{P Q O} \mathcal{O}_{K}^{\prime}$, we have $b \mathcal{O}_{F}^{\prime}=\wp \mathfrak{Q}^{p}$. As N_{1} / F has a p-NIB, it follows from Theorem 3 that there exists an integer $c \in \mathcal{O}_{F}^{\prime}$ with $N_{1}=F\left(c^{1 / p}\right)$ such that $c \mathcal{O}_{F}^{\prime}$ is p-th power free. Hence, $c=\left(\zeta_{p}^{s} b\right)^{r} y^{p}$ for some $1 \leq r \leq p-1$ and $y \in F^{\times}$. We have $c \mathcal{O}_{F}^{\prime}=\wp^{r}\left(y \mathfrak{Q}^{r}\right)^{p}$. As the integral ideal $c \mathcal{O}_{F}^{\prime}$ is p-th power free, we must have $y \mathfrak{Q}^{r}=\mathcal{O}_{F}^{\prime}$. This is a contradiction as the class \mathcal{C} containing \mathfrak{Q} is of order p.

We see in the below that there are many examples of p and F satisfying the assumption of Theorem 2.

Let $p=2$. Let q_{1}, q_{2} be prime numbers with $q_{1} \equiv q_{2} \equiv-1 \bmod 4$ and $q_{1} \neq q_{2}$, and let $F=\mathbb{Q}\left(\sqrt{-q_{1} q_{2}}\right)$. Then, the imaginary quadratic field F satisfies the assumption of Theorem 2. The reason is as follows. Let \mathfrak{Q} be the unique prime ideal of \mathcal{O}_{F}^{\prime} over q_{1}. We see that the class $\mathcal{C}=[\mathfrak{Q}] \in$ $C l_{F}^{\prime}$ is of order 2 from genus theory. Let $K=F(\sqrt{-1})=F\left(\sqrt{q_{1} q_{2}}\right)$ and $k=\mathbb{Q}\left(\sqrt{q_{1} q_{2}}\right)$. By genus theory, the class number of k in the usual sense is odd. Hence, we have $q_{1} \mathcal{O}_{k}=\left(\alpha \mathcal{O}_{k}\right)^{2}$ for some integer α. Therefore, $\mathfrak{Q O}_{K}^{\prime}=\alpha \mathcal{O}_{K}^{\prime}$, and the class \mathcal{C} capitulates in \mathcal{O}_{K}^{\prime}.

Let us deal with the case $p \geq 3$. Let p be an odd prime number, k a real quadratic field in which p remains prime, $F=k\left(\zeta_{p}\right)$, and $K=F\left(\zeta_{p^{2}}\right)$. Let
$\mathbf{B}_{1} / \mathbb{Q}$ be the unique cyclic extension of degree p unramified outside p, and $k_{1}=k \mathbf{B}_{1}$. Clearly, we have $K=F \mathbf{B}_{1}$. In the tables in Sumida and the author $[10,11]$, we gave many examples of p and k having an ideal class $\mathcal{C} \in C l_{k}$ of k which is of order p and capitulates in k_{1}. (More precisely, real quadratic fields in the rows " $n_{0}=0$ " and " $n_{0}=1$ " of the tables satisfy the condition.) For such a class \mathcal{C}, the lift $\mathcal{C}_{F} \in C l_{F}$ to F is of order p and it capitulates in K. As p remains prime in k, there is only one prime ideal of F (resp. K) over p, and it is a principal ideal. Hence, we have $C l_{F}=C l_{F}^{\prime}$ and $C l_{K}=C l_{K}^{\prime}$. Thus, we obtain many examples of $p \geq 3$ and F satisfying the assumption of Theorem 2.
Acknowledgements. The author thanks the referee for valuable suggestions which improved the presentation of the paper. The author was partially supported by Grant-in-Aid for Scientific Research (C) (No. 16540033), the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

[1] J. Brinkhuis, Normal integral bases and the Spiegelungssatz of Scholz. Acta Arith. 69 (1995), 1-9.
[2] V. Fleckinger, T. Nguyen-Quang-Do, Bases normales, unités et conjecture faible de Leopoldt. Manus. Math. 71 (1991), 183-195.
[3] A. Fröhlich, M. J. Taylor, Algebraic Number Theory. Cambridge Univ. Press, Cambridge, 1991.
[4] E. J. Gómez Ayala, Bases normales d'entiers dans les extensions de Kummer de degré premier. J. Théor. Nombres Bordeaux 6 (1994), 95-116.
[5] C. Greither, Cyclic Galois Extensions of Commutative Rings. Lect. Notes Math. 1534, Springer-Verlag, 1992.
[6] C. Greither, On normal integral bases in ray class fields over imaginary quadratic fields. Acta Arith. 78 (1997), 315-329.
[7] H. IChimura, On a theorem of Childs on normal bases of rings of integers. J. London Math. Soc. (2) 68 (2003), 25-36: Addendum. ibid. 69 (2004), 303-305.
[8] H. Ichimura, On the ring of integers of a tame Kummer extension over a number field. J. Pure Appl. Algebra 187 (2004), 169-182.
[9] H. Ichimura, Normal integral bases and ray class groups. Acta Arith. 114 (2004), 71-85.
[10] H. Ichimura, H. Sumida, On the Iwasawa invariants of certain real abelian fields. Tohoku J. Math. 49 (1997), 203-215.
[11] H. Ichimura, H. Sumida, A note on integral bases of unramified cyclic extensions of prime degree, II. Manus. Math. 104 (2001), 201-210.
[12] I. Kersten, J. Michalicek, On Vandiver's conjecture and \mathbb{Z}_{p}-extensions of $\mathbb{Q}\left(\zeta_{p}\right)$. J. Number Theory 32 (1989), 371-386.
[13] H. Косн, Algebraic Number Theory. Springer, Berlin-Heidelberg-New York, 1997.
Humio Ichimura
Faculty of Science
Ibaraki University
2-1-1, Bunkyo, Mito, Ibaraki, 310-8512 Japan
E-mail: hichimur@mx.ibaraki.ac.jp

