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Résumé. Dans cet article nous prolongeons la construction de
Champernowne de nombres normaux dans la base b pour le cas
Zd, et obtenons une construction explicite du point générique de la
transformation de l’ensemble {0, 1, ..., b−1}Zd

par Zd déplacement.
Nous prouvons que l’intersection de la configuration de réseau
considérée avec une droite arbitraire est une suite normale dans
la base b .

Abstract. In this paper we extend Champernowne’s construc-
tion of normal numbers in base b to the Zd case and obtain an
explicit construction of the generic point of the Zd shift transfor-
mation of the set {0, 1, ..., b−1}Zd

. We prove that the intersection
of the considered lattice configuration with an arbitrary line is a
normal sequence in base b .

1. Introduction

A number α ∈ (0, 1) is said to be normal to base b, if in the b-ary
expansion of α, α = .d1d2 · · · (di ∈ {0, 1, · · · , b − 1}, i = 1, 2, · · · ), each
fixed finite block of digits of length k appears with an asymptotic frequency
of b−k along the sequence (di)i≥1. Normal numbers were introduced by
Borel (1909). Champernowne [2] gave an explicit construction of such a
number, namely,

θ = .1 2 3 4 5 6 7 8 9 10 11 12 ...,

obtained by successively concatenating the digital expansions all the natural
numbers.

We shall call the sequence of digits obtained from a normal number a
“normal sequence”.

Champernowne’s construction is associated with the independent identi-
cal distributed process of variables having uniform distribution over b states.
In [1], [14], and [15], constructions of normal sequences for various station-
ary stochastic processes, similar to Champernowne’s were introduced.
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Our goal is to extend such constructions to Zd-arrays (d > 1) of random
variables, which we shall call Zd-processes. We shall deal with stationary
Zd-processes, that is, processes with distribution, invariant under the Zd
action. We shall call a specific realization of a Zd-process a “configuration”
(“lattice configuration”). To begin with, the very definition of a “normal
configuration” is subject to various generalizations from the 1-dimensional
case. In this paper we continue investigations beginning in [11] and [12]
(see also [3] and [8]).

Rectangular normality. We denote by N the set of non-negative integers.
Let d, b ≥ 2 be two integers, Nd = {(n1, ..., nd) | ni ∈ N, i = 1, ..., d},
∆b = {0, 1, ..., b− 1}, Ω = ∆Nd

b .
We shall call ω ∈ Ω a configuration (lattice configuration). A configura-

tion is a function ω : Nd → ∆b.
Given a subset F of Nd, ωF will be the restriction of the function ω to

F . Let N ∈ Nd, N = (N1, ..., Nd). We denote a rectangular block by

FN = {(f1, ..., fd) ∈ Nd | 0 ≤ fi < Ni, i = 1, ..., d},
h = [0, h1) × ... × [0, hd), hi ≥ 1, i = 1, ..., d; G = Gh is a fixed block of
digits G = (gi)i∈Fh

, gi ∈ ∆b; χω,G(f) is a characteristic function of the
block of digits G shifted by vector f in the configuration ω

(1) χω,G(f) =

{
1 if ω(f + i) = gi, ∀i ∈ Fh

0 otherwise .

Definition 1. ω ∈ Ω is said to be rectangular normal if for any h ⊂ Nd

and block Gh

(2) #{f ∈ FN | χω,Gh
(f) = 1} − b−h1...hdN1...Nd = o(N1...Nd),

when max(N1, ..., Nd) →∞.
We shall say that ω is square normal in case we consider only square

blocks i.e., N1 = N2 = ... = Nd. For the sake of clarity, we shall carry the
proof only for the case d = 2.

Linear normality. Let

ω = {fij | fij ∈ ∆b, i, j = 0, 1, 2, ...}
be a 2-dimensional configuration; α ≥ 0, β be real. Let the tiling of the
plane by unit squares be given. We label the squares of the tiles of the
positive quadrant of the plane by ωij where (i, j) are the coordinates of
the left, lower vertex of the tile. Consider the line y = αx + β (or the
vertical line x = β). The line is partitioned into successive intervals of the
intersections with tiles. Therefore, to each line corresponds a sequence of
digits

(uα,β(n))n≥0.
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Let
(3)
RN (ω, α, β,m) = #{0 ≤ n < N | uα,β(n+ i) = gi, i = 1, ...,m} − b−mN.

Definition 2. ω is said to be linear normal if for all reals α ≥ 0, β the
sequence (uα,β(n))n≥0 is normal in base b, i.e.,

RN (ω, α, β,m) = o(N)

for all integer s ≥ 1 and all blocks of digits (g1, ..., gm) (gi ∈ ∆b, i =
1, ...,m).

Construction. Let

(4) L(f1, f2) =

{
f2
1 + f2, if f2 < f1

f2
2 + 2f2 − f1 if f2 ≥ f1.

This map is clearly a bijection between N and N2, inducing a total or-
der on N2 from the usual one on N. We define the configuration ωn on
F

(2nb2n2 ,2nb2n2 )
as the concatenation of b4n

2
blocks of digits of size 2n× 2n

with the left lower corner (2nx, 2ny), 0 ≤ x, y < b2n
2
. To each of

these blocks we set in correspondence the number L(x, y). Next we use
b-expansion of the number L(x, y) according to the order L to obtain digits
of the considered 2n×2n block. It is easy to obtain the analytic expression
for digits of the configuration ωn:

(5) ωn(2nx+ s, 2ny + t) =

{
as2+t(u), if t < s

at2+2t−s(u) if t ≥ s,

where

(6) u = u(x, y) =

{
x2 + y, if y < x

y2 + 2y − x if y ≥ x,

s, t, x, y are integers, 0 ≤ x, y < b2n
2
, 0 ≤ s, t < 2n, and

(7) n =
∑
i≥0

ai(n)bi, (ai(n) ∈ {0, 1, ..., b− 1})

is the b-expansion of integer n.

Next we define inductively a sequence of increasing configurations ωn on
F

(2nb2n2 ,2nb2n2 )
. Put ω

′
1 = ω1, ω

′
n+1(f) = ω

′
n(f) for f ∈ F

(2nb2n2 ,2nb2n2 )
and

ω
′
n+1(f) = ωn+1(f) otherwise. Put

ω∞ = lim ω
′
n,(8)

(ω∞)F
(2nb2n2

,2nb2n2
)
= ω′n, n = 1, 2, ... .
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Theorem 1. ω∞ is a rectangular and linear normal configuration with

RN (ω∞, α, β,m) = O(N/(logN)1/4)

with O-constant depending on α, β, and m.
The rectangular normality of ω∞ follows from [11] or [12]. Proof of the

linear normality property is given in Section 3.

Theorem 2 Let µ be a Bernoulli measure on Ω, then µ-almost all ω are
linear normal.
Proof. We consider first the lines with 0 ≤ β < 1 and the finite sequences
that are determined by these lines confined to the square {(x, y) : 0 ≤
x, y ≤ N}. There are at most 3N2 different finite sequences (uα,β(n))n≥0

whose length can vary between N − 1 and 2N . Given ε > 0, (using the
Chebishev inequality or the central limit theorem) the µ measure of the
average along any of these sequences to exceed the expected value by more
than ε is less than C/N4 . Using Borel-Cantelli will prove the claim for
these lines. To conclude the claim for lines of all values of β, observe that
µ is invariant under translations.

Generalizations, examples, and problems.

1.1. Polynomial normality.
Let

ω = {gij | gij ∈ ∆b = {0, 1, ..., b− 1}, i, j = 0, 1, 2, ...}
be a 2-dimensional configuration; αi (i = 0, 1, ..., d) be reals, φ(x) = αdx

d+
...+α1x+α0, αd > 0. Let the tiling of the plane by unit squares be given.
We label the squares of the tiles of the positive quadrant of the plane by ωij
where (i, j) are the coordinates of the left, lower vertex of the tile. Consider
the curve y = φ(x) (or the curve x = φ(y) ). The curve is partitioned into
successive intervals of the intersections with tiles. Therefore, to each curve
corresponds a sequence of digits

(uφ(n))n≥0.

Definition 3. The configuration ω is said to be polynomial normal if for
all real polynomial φ the sequence (uφ(n))n≥0 is normal in base b.

In [13] we proved that the configuration ω∞ is polynomial normal.
Now we note that notions of linear, polynomial, square, and rectangular

normal configurations define different sets in Ω. These differences have null
measure subsets, but are not empty:

Example 1. A configuration which is linear normal, but not square nor-
mal: Let x(n) be an arbitrary normal sequence in base b, put ω(i, j) =
x(i+ j), i, j = 1, 2, .... This is not a square normal configuration since the

2 × 2 block of digits
(

10
00

)
in ω does not appear in this configuration.
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Bearing in mind that ω(i, j) = ω(j, i), we obtain it is sufficient to consider
only the case 0 ≤ α ≤ 1. It is easy to see that uα,β(n) = x(f(n)) with
f(n) ∈ [n+ [αn+ β], n+ [α(n+ 1) + β]]. Observe that (f(n))n≤0 is a com-
pletely deterministic sequence in the sense of B. Weiss [16] (see also [5, p.
147-148]) and thus (uα,β(n))n≥0 is a normal sequence.

Example 2. A configuration which is rectangle normal, but not linear nor-
mal: Given ω is a rectangle normal configuration, change the configuration
so that ω

′
(i, i) = 0, i,= 1, 2, ....

Example 3. A configuration which is rectangle and linear normal, but not
polynomial normal: Similar to Example 2. Change the configuration along
non-linear polynomial line.

Example 4. A configuration which is square and linear normal, but not
rectangular normal:

Construction: Again we begin by constructing for each natural n, a block
configuration ωn(u, v))0≤u,v<2nb2n2 . We put

(9) ωn(2nx+ s, 2ny + t)) =

{
a2nt+s(x), if t < n
ans+t−n(y) if t ≥ n,

where s, t, x, y are integers, 0 ≤ x, y < b2n
2
, 0 ≤ s, t < 2n.

Let us describe the structure of the configuration ωn in words. ωn is
composed of configurations of 2n×2n blocks. Each such block is composed
of two 2n × n lower and upper rectangles. Each rectangle can store the
expansion of an integer m, 0 ≤ m < b2n

2
. Given a number m, we store

the digits in lower rectangles by first using the bottom row (left to right)
then going to the next upper row etc.

For each row of bottom rectangles we store all the different b2n
2

numbers
in their natural order. So all the rows of bottom rectangles look the same.
For the upper rectangles we use a different rule to store a number m. We
first use the first column (from top to bottom) then the second row etc.
We proceed by storing for each column of top rectangles all the different
numbers. Notice that at the end if we observe the 2n × 2n configurations
of ωn all the possible configurations appear.

This choice of ωn will lead to a configuration that will guarantee the
normality of all lines y = αx+ β. To guarantee the normality of all verti-
cal lines too, we shall have to introduce a variant of the definition of ωn.
Namely: apply (9) for all x > 0 or x = 0 and s > n; for x = 0 and s ∈ [0, n)
use

ωn(s, 2ny + t)) = a2ns+t(y)

instead of (2), where 0 ≤ y < b2n
2
, 0 ≤ t < 2n. We now proceed with

the construction of the desired configuration. We construct the sequence of
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block configurations (in a similar way as in the first construction see (8))
inductively.

These considerations lead to the following problems:

Problem 1. Is the intersection of ω∞ with all monotone, increasing convex
curves also normal?

Problem 2. Is the Davenport-Erdös like rectangular normal configuration
from [11] also linear (polynomial) normal?

1.2. s-dimensional surfaces in Rd.
Consider a function ψ : Rs → Rd. Let Gψ = {ψ(x) ∈ Rd | x ∈ Rs},

s ≤ d,

G
′
ψ = {n ∈ Zd | n + [0, 1)d ∩Gψ 6= ∅}, Hψ : G

′
ψ → Zs,

and Ψ = {ψ} is a set of function ψ (a set of s-dimensional surfaces), such
that Hψ is a bijection with Hψ(G

′
ψ) = Zs.

Definition 4. The configuration ω ∈ {0, 1, ..., b − 1}Zd
is said to be Ψ-

normal if ω(G
′
ψ(H−1

ψ )) is rectangular normal in Zs for all ψ ∈ Ψ.

Problem 3. Let ω be a d-dimensional configuration, constructed similarly
to (3) - (7); Ψp be a set of all s-dimensional polynomial surfaces in Rd. Is
ω a Ψp-normal configuration ?

1.3. Connection with uniform distribution.
Let (xn)n≥1 be an infinite sequence of points in an s-dimensional unit

cube [0, 1)s; let v = [0, γ1) × ... × [0, γs) be a box in [0, 1)s; and Av(N) be
the number of indexes n ∈ [1, N ] such that xn lies in v. The quantity

(10) DN = D((xn)Nn=1) = sup
v∈(0,1]s

| 1
N
Av(N)− γ1...γs|

is called the discrepancy of (xn)Nn=1. The sequence (xn)n≥1 is said to be
uniformly distributed in [0, 1)s if DN → 0.

It is known (Wall, 1949, see [7, p. 70]), that a number α is normal to base
b if and only if the sequence {αbn}n≥1 is uniformly distributed (abbreviated
u.d.) in [0, 1).

Let ω = (ai,j)i,j≥1 (ai,j ∈ {0, 1, ..., b− 1}) be a configuration

αm =
∞∑
i=1

am,i/b
i, m = 1, 2, ...,

s ≥ 1 be an integer. The following statement is proved in [9]:
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The lattice configuration ω is normal to base b if and only if for all s ≥ 1
the double sequence

(11)
(
{αmbn}, . . . , {αm+s−1b

n}
)
m,n≥1

is uniformly distributed in [0, 1)s, i.e.,

(12) D
((
{αmbn}, . . . , {αm+s−1b

n}
)
1≤n≤N,0≤m<M

)
= o(1),

when max(M,N) → ∞. Hence we have another definition of normal con-
figuration (of normal sequence α = (α1, α2, ...) ∈ [0, 1)∞ to the base b). It
is evident that a.e. sequences α are normal for all bases b ≥ 2 (absolutely
normal). It is easy to see that the u.d. definition of normality permits to
transport a large set of problems on normal numbers to the Zd case, for
example, normality in different bases. Another example: in [9] we prove
that the lower bound of the discrepancy of the double sequence (11)-(12)
coincides (with the exactitude of the logarithmic multiplier) with the lower
bound of the discrepancy of ordinary sequences (xn)MN

n=1 in an s-dimensional
unit cube (s,M ,N = 1, 2, ...) .

1.4. Connection with completely uniform distribution.
Now let (vn)n≥1 be an arbitrary sequence of real numbers. Starting with

the sequence (vn)n≥1, we construct for every integer s ≥ 1 the s-dimensional
sequence (x(s)

n ) = ({vn+1}, ..., {vn+s}), where {x} is the fractional part of x.
The sequence (vn)n≥1 is said to be completely uniformly distributed (abbre-
viated c.u.d.) if for any integer s ≥ 1 the sequence (x(s)

n ) is u.d. in [0, 1)s

(Korobov, 1949, see [6]). The c.u.d. sequence is the universal sequence for
computing multidimensional integrals, modeling Markov chains, random
numbers, and for other problems [4, 6, 7]. Let b ≥ 2 be an integer, (vn) be
a c.u.d. sequence, an = [b{vn}], n = 1, 2, ... . Then α = .a1a2... is normal
to base b (Korobov, [6]). In [10] we constructed a c.u.d. double sequence
(vn,m)n,m≥1, such that for all integers s, t ≥ 1

MND(((vn+i,m+j)
s,t
i=1,j=1)

N,M
n=1,m=1) = O((log(MN + 1))st+4)

for all M,N ≥ 1. Similarly to [6], we get from here the estimate of error
term in (2) as O((log(N1N2 + 1))st+4) for the configuration (an,m)n,m≥1,
where an,m = [b{vn,m}], n,m ≥ 1.

Let φ = {x, y | x, y ∈ R, y = φ(x)} be a curve in the plane. Define a
sequence of reals by (vφ(n))n≥1 = {vi,j | (i, j) ∈ Nd, (i, j) + [0, 1)2 ∩ φ 6= ∅}.

Problem 4. Find explicitly the c.u.d. double sequence (vn,m)n,m≥1, such
that the sequence (vφ(n))n≥1 is c.u.d. for all linear (polynomial) curves φ.
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2. Auxiliary notations and results.

To estimate the discrepancy we use the Erdös-Turan-Koksma inequality
(see, for example, [4] p.18)
(13)

NDN ≤ (
3
2
)k(

2N
M + 1

+
∑

0< max
1≤i≤k

(|mi|)≤M

|
∑N−1

x=0 e(m1u1x + ...+mkukx)|
m1...mk

)

where e(y) = e2πiy, m = max(1, |m|), M ≥ 1 - arbitrary.
We shall use the following estimates (see, for example, [6] p.1)

(14)
∣∣∣A+q−1∑
x=A

e(θx)
∣∣∣ ≤ min

(
P,

1
2‖θ‖

)
,

where ‖θ‖ = min({θ}, 1− {θ}).

3. Proof of Theorem 1.

We consider separately the following cases: when the line is horizontal,
vertical, rational (α ∈ Q), and irrational (α ∈ R \ Q). We start with the
difficult case:

3.1. The case of irrational α .
We shall find the number of occurences of a fixed block of digits in the

considered configuration in term of Diophantine inequalities.
Since α is irrational, {αi} 6= {αj} (i 6= j) . Let (ξi)mi=1 be the set

{1−{αi} | i = 1, ...,m} arranged in increasing order. Put ξ0 = 0, ξm+1 = 1.
Let f be the map of the set {1, ...,m} so that

(15) ξf(i) = 1− {αi}, i = 1, ...,m.

For a fixed integer ν ∈ [0,m] consider the sequence (li(ν))mi=1:

(16) li(ν) =

{
[αi], if ν < f(i)
[αi] + 1 otherwise.

Lemma 1. Let

(17) {α(2nx+ s) + β

2n
} ∈ [

t+ ξν
2n

,
t+ ξν+1

2n
), with ν ∈ [0,m].

Then

(18) {α(2nx+ s+ i) + β

2n
} ∈

[ t+ li(ν)
2n

,
t+ li(ν) + 1

2n
)
, i = 1, ...,m.
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Proof. Using (17), we have

zi = {α(2nx+ s+ i) + β

2n
} = {α(2nx+ s) + β

2n
+
αi

2n
}

= { t+ ξν + ε+ [αi] + {αi}
2n

}, with 0 ≤ ε < ξν+1 − ξν .

From (15), it follows that

zi = {
t+ [αi] + ξν + 1− ξf(i) + ε

2n
}.

It is evident that if f(i) > ν, then

ξν + ε− ξf(i) < ξν+1 − ξf(i) ≤ 0.

Applying (16), we get (18) with li(ν) = [αi]. Now let f(i) ≤ ν; then

0 ≤ ξν + ε− ξf(i) < ξν+1.

By (16), we obtain (18) with li(ν) = [αi] + 1 . �

Let us examine the conditions for the line (z, αz+ β)z≥0 to intersect the
square (2nx+ s, 2ny

′
+ t

′
)+ [0, 1)2 where s, t

′
, x, y

′
are integers, 0 ≤ x, y

′
<

b2n
2
, 0 ≤ s < 2n, 0 ≤ t

′
< 2n−

√
n:

(19) [α(2nx+ s) + β] ≤ 2ny
′
+ t

′
< α(2nx+ s+ 1) + β.

Consider the pair (y, t) such that

(20) [α(2nx+ s) + β] = 2ny + t,

2ny + t ≤ α(2nx+ s) + β < 2ny + t+ 1.
Hence

y +
t

2n
≤ α(2nx+ s) + β

2n
< y +

t+ 1
2n

.

We get that (20) is valid for some integer y if and only if

(21) {α(2nx+ s) + β

2n
} ∈ [

t

2n
,
t+ 1
2n

).

Let Un(N) (U∗n(N)) be the subset of all lattice points (2nx+s, 2ny
′
+t

′
) such

that the line (z, αz+β)z≥0 intersects the square (2nx+s, 2ny
′
+ t

′
)+[0, 1)2

where 0 ≤ x, y
′
< N, 0 ≤ s < 2n, and 0 ≤ t

′
< 2n (respectively 0 ≤ t

′
<

2n−
√
n).

Using (16) and (19), we have

(22) (1 + [α])2nN ≤ #Un(N) ≤ (2 + [α])2nN.

It is easy to see that

(23) #Un(N) = #U∗n(N) +O(N
√
n).
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Fix x and s. We get from (19) that a lower bound of 2ny
′
+ t

′
is equal

to

(24) [α(2nx+ s) + β] = 2ny0 + t0

for some y0, t0. Since α is irrational, for given β there exists an n(β) such
that for any greater n, {αn+ β} > 0.

Again from (19) we have that for n > n(β) a upper bound of 2ny
′
+ t

′
is

equal to

(25) [α(2nx+ s+ 1) + β] = 2ny1 + t1

for some y1, t1. Let n > max(n(β), α) and t ∈ [0, 2n−
√
n] satisfy (20). We

have from (20), (24), and (25) that

(26) y1 = y0 = y and t0 = t.

To determine t1, we use (20), (21), and (25):

{α(2nx+ s) + β

2n
} ∈ [

t

2n
,
t+ 1
2n

)

and

{α(2nx+ s+ 1) + β

2n
} ∈ [

t1
2n
,
t1 + 1

2n
).(27)

Clearly, there exists a unique ν0 = ν0(x, s, t) ∈ [0,m] such that

{α(2nx+ s) + β

2n
} ∈ [

t+ ξν0
2n

,
t+ ξν0+1

2n
).

Applying Lemma 1 with i = 1 we get that

(28) t1 = t+ l1(ν0).

From (19), (24)-(26), and (28), we get that U∗n(N) decomposes as follows.

(29) U∗n(N) =
⋃

0≤x<N

⋃
0≤s<2n

B(x, s)

where

(30) B(x, s) =
⋃

0≤t<2n−
√
n

⋃
0≤j≤l1(ν0)

{z(x, s, j) | αx,s ∈ ∆t,ν0},

and

(31) αx,s = {α(2nx+ s) + β

2n
}, ∆t,ν = [

t+ ξν
2n

,
t+ ξν+1

2n
),

(32) z(x, s, j) = (2nx+ s, [α(2nx+ s) + β] + j).

Now, it follows from (31) that for given x and s there is a unique pair (t, ν)
with t ∈ [0, 2n), ν ∈ [0,m] such that

αx,s ∈ ∆t,ν .
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By (30), we obtain that

B(x, s) =
⋃

0≤t<2n−
√
n

⋃
0≤ν≤m

⋃
0≤j≤l1(ν)

{z(x, s, j) |αx,s ∈ ∆t,ν}.

Using (29), we get
(33)
U∗n(N) =

⋃
0≤x<N

⋃
0≤s<2n

⋃
0≤t<2n−

√
n

⋃
0≤ν≤m

⋃
0≤j≤l1(ν)

{z(x, s, j) |αx,s ∈ ∆t,ν}

or
(34)
U∗n(N) =

⋃
0≤s<2n

⋃
0≤t<2n−

√
n

⋃
0≤ν≤m

⋃
0≤j≤l1(ν)

{z(x, s, j) |x ∈ Eνs(t,N)},

where

(35) Eνs(t,N) = {x ∈ [0, N) | αx,s ∈ ∆t,ν}.
We consider the case α < 1 (hence x ≥ y) and s ≥ t first. We examine the
interval s ∈ [

√
n, 2n−

√
n]. For s ∈ [0,

√
n) and s ∈ [2n−

√
n, 2n), we use

a trivial estimate.
Let

(36) U
′
n(N) =

⋃
0≤t≤s<2n−

√
n

⋃
0≤ν≤m

⋃
0≤j≤l1(ν)

{z(x, s, j) | x ∈ Eνs(t,N)},

and

(37) Eνs(t, Q1, Q2) = {x ∈ [Q1, Q1 +Q2) | αx,s ∈ ∆t,ν}.

For z ∈ Un(N) denote by z(1), ..., z(m) the sequence of z(i) ∈ Un(N), (i =
1, ...,m) stretching in succession, such that z(1) = z. For z = z(x, s, j) =
(2nx + s, [α(2nx + s) + β] + j) with j ∈ [0, l1(ν)], denote by z(i)(x, s, j) a
vector z(i):

(38) z(i)(x, s, j) = z(i), i = 1, ...,m.

Let Gm = (g1, ..., gm) be a block of digits i.e., gi ∈ ∆b, i = 1, ...,m,

(39) Vn(N,Gm) = {z ∈ Un(N) | Gm = (ωn(z(1)), ..., ωn(z(m)))}
is the set of the linear indices of beginning of a block Gm in the linear
configuration of digits, confined to the ωn-square configuration.
Define also

(40) V ∗
n (N,Gm) = {z ∈ U∗n(N) | Gm = (ωn(z(1)), ..., ωn(z(m)))}.

Let

(41) χωnGm(z(x, s, j)) =

{
1 if z(i)(x, s, j) = gi, i = 1, ...,m
0 otherwise.
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Applying (33) and (39)-(41), we obtain that

V ∗
n (N,Gm) =

⋃
0≤x<N

⋃
0≤s<2n

⋃
0≤t<2n−

√
n

⋃
0≤ν≤m

⋃
0≤j≤l1(ν)

{z(x, s, j)

| χωnGm(z(x, s, j)) = 1, αx,s ∈ ∆t,ν}.

Analogously to (34) and (35), we have that
(42)
V ∗
n (N,Gm) =

⋃
0≤s<2n

⋃
0≤t<2n−

√
n

⋃
0≤ν≤m

⋃
0≤j≤l1(ν)

{z(x, s, j) |x ∈ Ajνs(t,N)},

where

(43) Ajνs(t,N) = {x ∈ [0, N) | αx,s ∈ ∆t,ν , and χωnGm(z(x, s, j)) = 1}.

Let

V
′
n(N,Gm) =

⋃
0≤t≤s<2n−

√
n

⋃
0≤ν≤m

⋃
0≤j≤l1(ν)

{(2nx+ s,[α(2nx+ s) + β] + j)

| x ∈ Ajνs(t,N)},(44)

and

Ajνs(t, Q1, Q2) = {x ∈ [Q1, Q1 +Q2) | αx,s ∈ ∆t,ν ,

and χωnGm(z(x, s, j)) = 1}.(45)

Next we write an analytic expression for the sequence (z(i)(x, s, j))1≤i≤m:
For given integers t ∈ [0, 2n−

√
n), x, s, ν, and j ∈ [0, l1(ν)) put

(46) αx,s ∈ ∆t,ν .

Using (19)-(21) and Lemma 1 we have similarly to (24)-(28) that the part
of U

′
n(N) corresponding to the interval [2nx+ s+ i

′
, 2nx+ s+ i

′
+1) (with

condition (46)) is equal to

((2nx+ s+ i
′
, [α(2nx+ s) + β] + li′ (ν) + v))

where v = jδi′ , jδi′ + 1, ..., li′+1(ν) − li′ (ν) − 1, i
′

= 0, 1, ...,m − 1, with
l0(ν) = 0,

(47) δ
′
i =

{
1 if i

′
= 0

0 otherwise.

Hence, the sequence (z(i)(x, s, j))1≤i≤m (38) coincides with the first m
terms of the following sequence

(48) (((2nx+s+i
′
, [α(2nx+s)+β]+ li′ (ν)+v))jδi′≤v<li′+1

(ν)−l
i
′ (ν))i′≥0.
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Now let (kn)n≥1 be an increasing sequence of integers from the set

{(s+ i
′
)2 + t+ li′ (ν) + v + 1 | v = jδi′ , jδi′ + 1, ...,li′+1(ν)− li′ (ν)− 1,

i
′
= 0, 1, ...,m− 1}.(49)

Observe that the equality

χωnGm(z(x, s, j)) = 1

(with condition (46) or (21)) is equivalent to the assertion (found in (5),
(6), (48), and (49)) that the (ki − 1)th digit of the b-expansion of x2 + y is
equal to gi (i = 1, ...,m):
(50)
x2+y = x1+g1bk1−1+x2b

k1 +g2bk2−1+ ...+xmbkm−1 +gmbkm−1+xm+1b
km ,

where xi ∈ [0, bki−ki−1−1) are integers (i = 1, ...,m), k0 = 0, and y = y(x, s)
is a function of (x, s) (see (20)).

In the sequel we consider y as y = y(x, s). Using (43), (45), and (50), we
have that

(51) Ajνs(t,N) = {x ∈ [0, N) | αx,s ∈ ∆t,ν , and x2 + y = x1

+ g1b
k1−1 + x2b

k1 + g2b
k2−1 + ...+ xmb

km−1 + gmb
km−1 + xm+1b

km},

and

(52) Ajνs(t, Q1, Q2) = {x ∈ [Q1, Q1 +Q2) | αx,s ∈ ∆t,ν , and x2 + y = x1

+ g1b
k1−1 + x2b

k1 + g2b
k2−1 + ...+ xmb

km−1 + gmb
km−1 + xm+1b

km}.

Let

BN (s, t, j, ν, g) = #{x ∈[0, N) | αxs ∈ ∆tν , and

{(x2 + y)b−km} ∈ [
g

bkm−k1+1
,

g + 1
bkm−k1+1

)}.(53)

Lemma 2. Let N ∈ [b2n
2−5n, b2n

2
), s ∈ [

√
n, 2n−

√
n] . Then

(54) #Ajνs(t,N) =
bk2−k1−1−1∑

x2=0

...
bkm−km−1−1−1∑

xm=0

BN (s, t, j, ν, g),

where
(55)
g = g(x2, .., xm) = g1 + x2b+ g2b

k2−k1 + ...+ xmb
km−1−k1+1 + gmb

km−k1 .
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Proof. Using (51) and (55) we get

Ajνs(t,N) =
bk2−k1−1−1⋃

x2=0

...
bkm−km−1−1−1⋃

xm=0

{
x ∈ [0, N) | αx,s ∈ ∆tν , and

x2 + y = x1 + gbk1−1 + xm+1b
km

}
.

Bearing in mind that the condition

x2 + y = x1 + gbk1−1 + xm+1b
km

is equivalent to the condition

{(x2 + y)b−km} ∈ [
g

bkm−k1+1
,

g + 1
bkm−k1+1

)

with any integer x1 ∈ [0, bk1−1), xm+1 ≥ 0 (integer g ∈ [0, bkm−k1+1) is
fixed) we obtain from (53) the assertion of the lemma. �

Let q1 < q2... < qn < ... be a sequence of denominators of the continued
fraction of α,

(56) α =
pr
qr

+
θr

qrqr+1
, with (pr, qr) = 1, |θr| ≤ 1

and

(57) qr ≤ b(s+6m)2/2 < qr+1

(r = r(s,m) is the function of s,m with fixed integer m, and s = 1, 2, ... ).
We will consider two cases. In the first case qr is large (qr ≥ n6b2sm,

the growth of qr is small, case of almost all α). In the second case qr is
small (qr ≤ n6b2sm, the growth of qr is large), case of almost no α (the
complicated case).

3.1.1. case qr large.
In this subsection, we prove that the frequency of the appearance of the

block of digits Gm in the sequence (uα,β(n))Nn=1 tends to b−m. According to
(42) and (51)-(54), it is sufficient to get the estimate of BN (s, t, j, ν, g) (see
(53)) to prove the above statement. We use the estimate of exponential
sums (Lemma 3) and the Erdös-Turan-Koksma inequality (13) to compute
BN (s, t, j, ν, g).

Lemma 3. Let qr ≥ n6b2sm, N ∈ [b2n
2−5n, b2n

2
), s ∈ [

√
n, 2n −

√
n],

0 < max(|m1|, |m2|) ≤M = n4b2sm,

(58) SN (m1,m2) =
N−1∑
x=0

e(m1(x2+αx+γ)b−km +m2(α(2nx+s)+β)/2n).

Then

(59) |SN (0,m2)| ≤ qr,
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(60) |SN (m1,m2)| = O(Nn−6b−2sm), m1 6= 0.

Proof. Let m1 = 0. It is easy to see that

(61) σ1 = |SN (0,m2)| = |
N−1∑
x=0

e(m2αx)|.

Using (14) we have

(62) σ1 ≤ min(N,
1

2‖m2α‖
).

Bearing in mind (56) and the condition of Lemma 3, we obtain that

0 < |m2| ≤ n4b2sm < qr/2

and

‖m2α‖ = ‖m2(
pr
qr

+
θr

qrqr+1
)‖ ≥ | 1

qr
− 1

2qr+1
| ≥ 1

2qr
.

We have from (62) that σ1 ≤ qr. Hence (59) follows from (61). Assume
m1 6= 0. It is easy to see that

σ2
2 = |SN (m1,m2)|2

=
N−1∑

x1,x2=0

e(m1(x2
1 − x2

2 + α(x1 − x2))b−km +m2α(x1 − x2)).(63)

Let x1−x2 = u. Then u ∈ [−N+1, N−1], x2 = x1−u ∈ [0, N−1], x1+x2 =
2x1 − u, x2

1 − x2
2 = u(2x1 − u), x1 ∈ [max(0, u),min(N − 1, N − 1 + u)].

Hence

σ2
2 =

N−1∑
u=−N+1

min(N−1,N−1+u)∑
x1=max(0,u)

e(m1(2ux1 − u2 + αu)b−km +m2αu)

≤
N−1∑

u=−N+1

|
min(N−1,N−1+u)|∑

x1=max(0,u)

e(2m1ux1b
−km)|.

By (14) we get

(64) σ2
2 ≤

N−1∑
u=−N+1

min(2N,
1

2‖2m1ub−km‖
).
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Let (2m1, b
km) = f, u = u1 + u2b

km/f with u1 ∈ [0, bkm/f − 1] and u2 ∈
[−N1, N1], where N1 = [f(N − 1)b−km ] + 1. It is easy to see that

σ2
2 ≤

N1∑
u2=−N1

(2N +
bkm/f−1∑
u1=1

1
2‖fu1b−km‖

)

≤ (
2N
bkm/f

+ 3)(2N + (bkm/f) log bkm)

≤ 4N2|m1|b−km + 6N + 2Nkm log b+ 3bkmkm log b.(65)

Hence
σ2 = O(Nb−km/2

√
|m1|+

√
kmb

km/2).

Using (49) we obtain that s2 + 1 ≤ km ≤ (s+m)2 + αm+ 2 and

(66) σ2 = O(Nb−s
2/2n2bsm + (s+m)b(s+m)2/2).

Taking into account that s ∈ [
√
n, 2n−

√
n], we get

(67) Nn2bsm−s
2/2 = O(Nn−6b−2sm),

and

(s+m)2b(s+m)2/2 = O(n2b(s+4m)2/2−2sm) = O(n2b(2n−
√
n+4m)2/2−2sm)

= o(n−6b2n
2−5n−2sm) = O(Nn−6b−2sm).(68)

Using (63), and (66)-(68), we obtain (60). �

Lemma 4. Let qr ≥ n6b2sm, N ∈ [b2n
2−5n, b2n

2
), s ∈ [

√
n, 2n −

√
n].

Then

NDN = NDN (({(x2 + αx+ γ)b−km}, {(α(2nx+ s) + β)/2n})N−1
x=0 )

= O(Nn−4b−km+k1).

Proof. Using the Erdös-Turan-Koksma inequality (13) with k = 2, M =
n4b2sm, and (58), we obtain that

(69) NDN = O(Nn−4b−2sm + σ3 + σ4)

where

σ3 =
∑

0<|m2|≤M

|S(0,m2)|
m2

(70)

and

σ4 =
∑

0<max(|m1|,|m2|)≤M, m1 6=0

|S(m1,m2)|
m1m2

.(71)
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Applying (59) we have that

σ3 ≤ 2
M∑

m2=1

qr
m2

≤ 2qr(1 + logM).

Using (57) and the conditions of Lemma 4, we obtain that

σ3 = O(b(s+6m)2/2sm) = O(nb(2n−
√
n+6m)2/2)

= O(n−4b2n
2−5n−4nm) = O(n−4b2n

2−5n−2sm) = O(n−4Nb−2sm).(72)

From (60) and (71), we get

σ4 = O(n−6Nb−2sm
∑

|m1|,|m2|≤M
1

m1m2
)

= O(n−6Nb−2sm(logM)2) = O(s2n−6Nb−2sm) = O(n−4Nb−2sm).(73)

Combining (73) with (69)-(72), we have that

(74) NDN = O(n−4Nb−2sm).

By (49), and (16) we obtain

(75) −km + k1 ≥ s2 − (s+m)2 − αm− 1 = −2sm−m2 − αm− 1.

The assertion of the lemma follows from (74) . �

Let

BN (s, t,ν, γ, γ1, γ2)

= #{x ∈ [0, N) | αxs ∈ ∆tν , {(x2 + αx+ γ)b−km} ∈ [γ1, γ2)}.(76)

Corollary 1. Let 0 ≤ γ1 < γ2 ≤ 1. Under the assumptions of Lemma 4,

BN (s, t, ν, γ, γ1, γ2) = N
ξν+1 − ξν

2n
(γ2 − γ1) +O(Nn−4b−km+k1).

Proof. The proof follows from (10), (31), and Lemma 4. �

Apply (20) to get a formula for the number x2 + y (where y = y(x, s)):

(77) [α(2nx+ s) + β] = 2ny + t.

Let also

αx,s = {α(2nx+ s) + β

2n
} ∈ ∆t,ν = [

t+ ξν
2n

,
t+ ξν+1

2n
),

αx,s =
t+ ε

2n
, where ε ∈ [0, 1).

Then
α(2nx+ s) + β

2n
= i+

t+ ε

2n
for an integer i. Hence

{α(2nx+ s) + β} = {2ni+ t+ ε} = ε.
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Using (77) we obtain

y =
[α(2nx+ s) + β]− t

2n
=
α(2nx+ s) + β − t− {α(2nx+ s) + β}

2n

=
α(2nx+ s) + β − t

2n
− ε

2n
.

Therefore

(78) x2 + y = x2 + αx+
αs+ β − t

2n
− ε

2n
.

Lemma 5. Let 0 ≤ g < bkm−k1+1. Under the assumptions of Lemma 4,

(79) BN (s, t, j, ν, g) = N
ξν+1 − ξν

2n
bk1−km−1(1 +O(n−3)),

where BN (s, t, j, ν, g) is defined in (53).
Proof. We have from (78) that if

{(x2 + αx+ γ0)b−km} ∈ [
g

bkm−k1+1
+ θ0,

g + 1
bkm−k1+1

)

with θ0 = 1
2nbkm

, and γ0 = αs+β−t
2n , then

(80) {(x2 + y)b−km} ∈ [
g

bkm−k1+1
,

g + 1
bkm−k1+1

).

Hence and from (53) and (76) we get

(81) BN (s, t, ν, γ0,
g

bkm−k1+1
+ θ0,

g + 1
bkm−k1+1

) ≤ BN (s, t, j, ν, g).

Conversely, assume (80), then

{(x2 + αx+ γ0)b−km} ∈ [
g

bkm−k1+1
− θ0,

g + 1
bkm−k1+1

) for g ≥ 1

and

{(x2 + αx+ γ0)b−km} ∈ [0,
1

bkm−k1+1
) ∪ [1− θ0, 1) for g = 0.

Hence

BN (s, t, j, ν, g) ≤ BN (s, t, ν, γ0,max(0,
g

bkm−k1+1
− θ0),

g + 1
bkm−k1+1

)

+BN (s, t, ν, γ0, 1− θ0, 1).(82)

Using Corollary 1, we have

(83) BN (s, t, j, ν, g) = N
ξν+1 − ξν

2n
(

1
bkm−k1+1

+ε1θ0)+O(Nn−4b−km+k1),

with |ε1| < 2. Applying (49) and (80), we get that

bk1−km−1 + εθ0 = bk1−km−1(1 +O(n−1b−k1)) = bk1−km−1(1 +O(n−3)).
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Bearing in mind (83) and that ξν+1−ξν ≥ c > 0 (ν = 0, 1, ...,m), we obtain
(79). �

Corollary 2. Let 0 ≤ t ≤ s, j ∈ [0, l1(ν)]. Under the assumptions of
Lemma 4,

(84) #Ajνs(t,N) = b−mN
ξν+1 − ξν

2n
(1 +O(1/n3)).

The proof follows from Lemma 2 and Lemma 5. �

Lemma 6. Let 0 ≤ t ≤ s. Under the assumptions of Lemma 4,

#Ajνs(t,N) = b−m#Eνs(t,N)(1 +O(1/n)).

Proof. We get from (31), (37), and (56) that

Eνs(t, Q1, qr) = {x ∈ [0, qr) | {
xpr
qr

+
α(2nQ1 + s) + β)

2n
+

θrx

qrqr+1
} ∈ ∆t,ν}.

Using (57) and that (pr, qr) = 1, we obtain

Eνs(t, Q1, qr) = {x ∈ [0, qr) | {
x

qr
+ γ +

θ(x)
qr

} ∈ ∆t,ν}

with γ = α(2nQ1+s)+β
2n , |θ(x)| ≤ 1.

Recalling the definition (31) of ∆tν , get

#Eνs(t, Q1, qr) = qr(
ξν+1 − ξν

2n
) + 4ε, where |ε| ≤ 1.

Taking into account that ξν+1 − ξν ≥ c > 0 (ν = 0, 1, ...,m) and the
condition of the lemma, we obtain

#Eνs(t, Q1, qr) = qr(
ξν+1 − ξν

2n
)(1 +O(1/n)).

From (35), (37), and the condition of the lemma, we get

#Eνs(t,N) =
∑

0≤i<[N/qr]

#Eνs(t, iqr, qr) + εqr

= [N/qr]qr(
ξν+1 − ξν

2n
)(1 +O(1/n)) + εqr

= N(
ξν+1 − ξν

2n
)(1 +O(1/n)).

Applying Corollary 2, the assertion of Lemma 6 follows. �

3.1.2. Small qr (the complicated case).
The main idea of this subsection is the partition of the interval of summa-

tion into qr arithmetical progressions (x+vqr)v≥0 with x ∈ [0, qr). Next we
fix the integer x and compute (similarly to Lemma 3 - Lemma 5) the num-
ber of occurrences of the block of digits Gm in the sequence (uα,β(n))Nn=1.
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We obtain in Lemma 10 the main estimate of this subsection for the spe-
cial Diophantine condition. We find in Lemma 11 the set of parameters, for
which the above Diophantine condition is true. In Lemma 12 we partition
the interval of summation (according to Lemma 11) to essential intervals,
and to auxiliary intervals. We use the estimate of Lemma 10 for the essen-
tial intervals and the trivial estimate for auxiliary intervals. We collect all
the gotten results in Lemma 13 - Lemma 15.

Lemma 7. Let qr ≤ n6b2sm, P ≥ n4bs
2/2+3sm, s ∈ [

√
n, 2n −

√
n],

0 < |m| ≤M = n4b2sm, x ∈ [H, (H + 1)qr), H ≥ 0,

(85) SP (m) =
P−1∑
v=0

e(m((x+ vqr)2 + α(x+ vqr) + γ)b−km)).

Then
|SP (m)| = O(Pn−3b−2sm).

Proof. Similarly to (63)-(64), we have that

|SP (m)|2 ≤
P−1∑

u=−P+1

min(2P,
1

2‖2mq2rb−kmu‖
).

Let (2mq2r , b
km) = f . We note that

1 ≤ f ≤ 2mq2r = O(n16b6sm).

By (49) and by the conditions of the lemma, we get similarly to (65) that

|SP (m)|2 = O(P 2fb−km + Pkm + bkmkm)

= O(P 2n16b6sm−s
2
+ s2P + s2b(s+m)2)

= O(P 2b−10sm + s2n−8P 2b(s+m)2−s2−6sm)

= O(n−6P 2b−4sm). �

Lemma 8. Let qr ≤ n6b2sm, P ≥ n4bs
2/2+3sm, s ∈ [

√
n, 2n −

√
n],

x ∈ [H, (H + 1)qr), H ≥ 0 . Then

PDP = PDP (({((x+vqr)2+α(x+vqr)+γ)b−km})P−1
v=0 ) = O(Pn−4b−km+k1).

Proof. Using (13) with k = 1, M = n4b2sm, Lemma 7, and (85), we obtain
that

PDP = O(Pn−4b−2sm +
∑

0<|m|≤M

|SP (m)|
m

) = O(Pn−4b−2sm

+ Pn−3b−2sm log(n4b2sm)) = O(Pn−2b−2sm) = O(Pn−2b−km+k1).

�
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Let

BP (x, s,ν, γ, γ1, γ2)

= #{v ∈ [0, P ) | {((x+ vqr)2 + α(x+ vqr) + γ)b−km} ∈ [γ1, γ2)}.(86)

Corollary 3. Let 0 ≤ γ1 < γ2 ≤ 1. Under the assumptions of Lemma 8,

(87) BP (x, s, t, ν, γ, γ1, γ2) = P (γ2 − γ1) +O(Pn−2b−km+k1).

The proof follows from (10), (86), and Lemma 8. �

Let

BP (x, s, t, j, ν, g) = #{v ∈ [0, P ) | {((x+vqr)2 + y)b−km}

∈ [
g

bkm−k1+1
,

g + 1
bkm−k1+1

)},(88)

where g ∈ [0, bkm−k1+1) be integer, x ∈ [H, (H+1)qr), and y = y(x+vqr, s)
satisfy (20).

Lemma 9. Under the assumptions of Lemma 8,

(89) BP (x, s, t, j, ν, g) = Pbk1−km−1(1 +O(n−2)).

Proof. Using Corollary 3 and repeating the proof of Lemma 5, we obtain
(89). �

Lemma 10. Under the assumptions of Lemma 8, let

x ∈ Eνs(t,Hqr, qr) if and only if x+ (Q−H)qr ∈ Eνs(t, Qqr, qr)

for all Q ∈ [H,H + P ]. Then

#Ajνs(t,Hqr, P qr) = b−mP#Eνs(t,Hqr, qr)(1 +O(1/n)).

Proof. It follows from (52), (37), and the condition of the lemma that

(90) #Ajνs(t,Hqr, P qr) =
∑

x∈Eνs(t,Hqr,qr)

#Ajνsx(P )

with

Ajνsx(P ) = {v ∈ [0, P )|(x+ vqr)2 + y = x1+g1bk1−1 + x2b
k1 + ...

...+ gmb
km−1 + xm+1b

km}.(91)

Hence

Ajνsx(P ) =
bk2−k1−1−1∑

x2=0

...

bkm−km−1−1−1∑
xm=0

{v ∈ [0, P ) | (x+ vqr)2 + y

= x1 + gbk1−1 + xm+1b
km},
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where

g = g(x2, .., xm) = g1 + x2b+ g2b
k2−k1 + ...+ xmb

km−1−k1+1 + gmb
km−k1 .

Bearing in mind that the condition

x2 + y = x1 + gbk1−1 + xm+1b
km

is equivalent to the condition

{(x2 + y)b−km} ∈ [
g

bkm−k1+1
,

g + 1
bkm−k1+1

)

with any integer x1 ∈ [0, bk1−1), x2 ≥ 0 (the integer g ∈ [0, bkm−k1+1) is
fixed), we obtain from (88) that

#Ajνsx(P ) =
bk2−k1−1−1∑

x2=0

...

bkm−km−1−1−1∑
xm=0

#{v ∈ [0, P ) |

{((x+ vqr)2 + y)b−km} ∈ [
g

bkm−k1+1
,

g + 1
bkm−k1+1

)}

=
bk2−k1−1−1∑

x2=0

...

bkm−km−1−1−1∑
xm=0

BP (x, s, t, j, ν, g).

Using Lemma 9 we obtain

#Ajνsx(P ) =
bk2−k1−1−1∑

x2=0

...
bkm−km−1−1−1∑

xm=0

Pbk1−km−1(1 +O(n−2))

= b−mP (1 +O(n−2)).(92)

Applying (90) the assertion of Lemma 10 follows. �

Let

(93) β = br/qr + β1/qr, with |β1| ≤ 1/2

where br is an integer,
(94)

Q
′
= d−qr+1β1

2nqrθr
e − 2, P1 = [n−7bs

2/2+4sm], Q0 =

{
Q
′

if Q
′ ∈ [0, P1)

P1 otherwise

where dxe = x+ 1 for integer x; otherwise dxe = [x].

Lemma 11. Let qr ≤ n6b2sm, N ∈ [b2n
2−5n, b2n

2
),
√
n ≤ t ≤ s ≤ 2n−

√
n,

x ∈ [0, qr), n > m2. Then ∀Q ∈ [0, Q0)

(95) x ∈ Eνs(t, qr) if and only if x+Qqr ∈ Eνs(t, Qqr, qr),
and ∀Q1 ∈ (Q0 + 2, P1]

(96) x+P1qr ∈ Eνs(t, P1qr, qr) if and only if x+Q1qr ∈ Eνs(t, Q1qr, qr).
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Proof. Consider the case of θr > 0. (For θr < 0 the proof is similar.) Let

(97) z(x) ≡ pr(2nx+ s) + br (mod 2nqr), with z(x) ∈ [0, 2nqr)

and

(98) γ = γ(x) = β1 +
θr(2nx+ s)

qr+1
.

Using (57), (93) and the condition of lemma, we have that for sufficiently
large n.

(99) |γ(x)| < 3/4.

It follows from (31), (56), (93), (97), and (98) that

αx+Qqr,s = {(pr
qr

(2n(x+Qqr) + s) +
θr

qrqr+1
(2n(x+Qqr) + s))/2n+

β

2n
}

= {pr(2nx+ s) + br + β1

2nqr
+
θr(2n(x+Qqr) + s)

2nqrqr+1
}

= {z(x) + γ(x)
2nqr

+
θrQ

qr+1
}.(100)

Applying (37) we have

x+Qqr ∈ Eνs(t, Qqr, qr) if and only if αx+Qqr,s ∈ ∆t,ν

or

(101) {z(x) + γ(x)
2nqr

+
θrQ

qr+1
} ∈ [

t+ ξν
2n

,
t+ ξν+1

2n
).

Now let

(102) x+Qqr ∈ Eνs(t, Qqr, qr) and x+ (Q+ 1)qr 6∈ Eν(t, (Q+ 1)qr, qr)

with any Q ∈ [0, Q0]. Using (101) and that θr > 0 and t ≤ 2n−
√
n, we get

that the transition Q→ Q+ 1 causes a shift in the fractional part of (101)
to the right of the interval [ t+ξν2n , t+ξν+1

2n ) to the interval [ t+ξν+1

2n , t+ξν+2

2n ):

(103) {z(x) + γ(x)
2nqr

+
θrQ

qr+1
} < t+ ξν+1

2n
≤ {z(x) + γ(x)

2nqr
+
θr(Q+ 1)
qr+1

}.

We have from (57), (94), (99) and the condition of lemma that

(104) 0 ≤ Q ≤ P1 ≤ n−7bs
2/2+4sm <

qr+1

8nqr
and

(105) |γ(x)
2nqr

+
θrQ

qr+1
| < 1

2nqr
.
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Bearing in mind (97), (101) and so that t ∈ [
√
n, 2n−

√
n], we get

{z(x) + γ(x)
2nqr

+
θrQ

qr+1
} ∈ [

√
n

2n
,
2n−

√
n+ 2

2n
],

and we can eliminate the sign of the fractional part in (103):

z(x) + γ(x)
2nqr

+
θrQ

qr+1
<
t+ ξν+1

2n
≤ z(x) + γ(x)

2nqr
+
θr(Q+ 1)
qr+1

.

Hence

(106) Q = dqr+1

θr
(
t+ ξν+1

2n
− z(x) + γ(x)

2nqr
)e − 1.

Let ξν+1 = 1 − {αi} = 1 − {pri
qr

+ θri
qrqr+1

} = i1
qr
− θri

qrqr+1
with the same

i ∈ [0,m], i1 ∈ [1, qr]. It follows from (106), (97) and (98) that

Q = dqr+1

θr
(
qrt+ i1
2nqr

− z(x) + β1

2nqr
− θr(2nx+ s+ i)

2nqrqr+1
)e − 1

= d qr+1

2nqrθr
(v − β1)−

(2nx+ s+ i)
2nqr

e − 1,(107)

with v = qrt − z(x) + i1. From the condition of the lemma we have that
0 ≤ 2nx+ s+ i < 2nqr−

√
n+m < 2nqr. Using (93) we get , that if v 6= 0,

then
|Q| ≥ qr+1

4nqrθr
− 3 ≥ qr+1

4nqr
− 3.

This is in contradiction with (104).
Let v = 0. We get from (94) and (107) that

(108) Q = Q(x) = d−qr+1β1

2nqrθr
− 2nx+ s+ i

2nqr
e − 1 ∈ [Q

′
, Q

′
+ 2],

where i ∈ [0,m]. Hence if Q
′
< −2 or Q

′
> P1, then there is no Q ∈ [0, P1]

satisfying (102). Now, let

(109) x+Q1qr ∈ Eν(t, Q1qr, qr) and x(Q1−1)qr 6∈ Eν(t, (Q1−1)qr, qr),

with 0 ≤ Q1 = Q1(x) ≤ P1. Similarly to (94)-(108) we obtain for all
x ∈ [0, qr), that

(110) Q1(x) ∈ [Q
′
, Q

′
+ 2].

Hence ifQ
′
< −2 orQ

′
> P1, then there is noQ1 satisfying (109). Now from

(94), (102), (108), (109), and (110), the assertion of Lemma 11 follows. �

Lemma 12. Under the assumptions of Lemma 11,

#Ajνs(t,N) = b−m#Eνs(t,N)(1 +O(1/n)) +O(N/n4).

Proof. Let

(111) P2 = [n4bs
2/2+3sm] + 1.



Lattice configurations 849

We have from (94) that

(112) P2 = O(n−2P1).

If Q0 ≤ P2, or Q0 ∈ [P1 − P2, P1], then we use the trivial estimate

(113) #Ajνs(t, Q0qr) ≤ #Eνs(t, Q0qr) ≤ P2qr

for Q0 ≤ P2, and

(114) #Ajνs(t, Q0qr, (P1 −Q0)qr) ≤ #Eνs(t, Q0qr, (P1 −Q0)qr) ≤ P2qr

for Q0 ∈ [P1 − P2, P1]. Let Q0 ≤ P2.
Applying (94), (111), (112), Lemma 11, and Lemma 10 with H = P2

and P = P1 − P2, we obtain that

#Eν,s(t, P2qr, (P1 − P2)qr) = (P1 − P2)#Eν,s(t, P2qr, qr)

and

#Ajνs(t, P2qr, (P1 − P2)qr) = b−m(P1 − P2)#Eνs(t, P2qr, qr)(1 +O(1/n)).

Hence

#Ajνs(t, P2qr, (P1 − P2)qr) = b−m#Eνs(t, P2qr, (P1 − P2)qr)(1 +O(1/n)).

Using (45) and (113) we have

(115) #Ajνs(t, P1qr) = b−m#Eνs(t, P1qr)(1 +O(1/n)) +O(P2qr).

By (114) and Lemma 10 with H = 0 and P = P1 − P2, we get similarly
that (115) is valid for the case Q0 ∈ [P1−P2, P1]. Now we prove that (115)
is valid for Q0 ∈ (P2, P1 − P2). Let Q0 ∈ (P2, P1 − P2). We have from
Lemma 11 that

#Eνs(t, Q0qr) = Q0#Eνs(t, qr),

and

#Eνs(t, (Q0 + 3)qr, (P1 −Q0 − 3)qr) = (P1 −Q0 − 3)#Eνs(t, P1qr, qr)

= (P1 −Q0 − 3)

×#Eνs(t, (Q0 + 3)qr, qr).

Hence

#Eνs(t, P1qr) = Q0#Eνs(t, qr)

+ (P1 −Q0 − 3)#Eνs(t, (Q0 + 3)qr, qr) + 3εqr.(116)

Applying (94), (96) and Lemma 10 twice, we have that

#Ajνs(t, Q0qr) = b−mQ0#Eνs(t, qr)(1 +O(1/n)),
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and

#Ajνs(t, (Q0 + 3)qr, (P1 −Q0 − 3)qr)

= b−m(P1 −Q0 − 3)#Eνs(t, (Q0 + 3)qr, qr)(1 +O(1/n)).

Hence, and from (116), we get

#Ajνs(t, P1qr) = b−m(Q0#Eνs(t, qr) + (P1 −Q0 − 3)#Eνs(t, P1qr, qr))

× (1 +O(1/n)) + 3εqr = b−m#Eνs(t, P1qr)(1 +O(1/n)) +O(qr).

Therefore (115) is valid for all Q0 ∈ [0, P1]. Bearing in mind that (115) is
valid for all β, we get (replacing β by β + iP1qrα)

#Ajνs(t, iP1qr, P1qr) = b−m#Eνs(t, iP1qr, P1qr)(1 +O(1/n)) +O(P2qr),

with i = 0, 1, ... . Hence

#Ajνs(t,N) =
∑

0≤i<[N/P1qr]

#Ajνs(t, iP1qr, P1qr) +O(P1qr)

=
∑

0≤i<[N/P1qr]

(b−m#Eνs(t, iP1qr, P1qr)

× (1 +O(1/n)) +O(P2qr)) +O(P1qr).

By (94), (112) and condition of the lemma, we obtain

Ajνs(t,N) = b−mEνs(t,N)(1 +O(1/n)) +O(P1qr +N/n4)

= b−mEνs(t,N)(1 +O(1/n)) +O(N/n4). �

Lemma 13. Let s0, s0 + s1 ∈ [0, 2n). Then∑
s0≤s<s0+s1

∑
0≤t<2n

∑
0≤ν≤m

#Eνs(t,N) ≤ s1N.

Proof. From (15), (31), and (35) we have that∑
0≤t<2n

∑
0≤ν≤m

#Eνs(t,N) = N.

�

Lemma 14. Let [t0, t0 + t1) ∈ [0, 2n). Then

µ =
∑

0≤s<2n

∑
t0≤t<t0+t1

∑
0≤ν≤m

#Eνs(t,N) = O(t1N).

Proof. From (15), (31), and (35) we have that∑
t0≤t<t0+t1

∑
0≤ν≤m

#Eνs(t,N)

= #{x ∈ [0, N) | {α(2nx+ s) + β

2n
} ∈ [

t0
2n

t0 + t1
2n

)},
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and

(117) µ =
N−1∑
x=0

#{s ∈ [0, 2n) | {α(2nx+ s) + β

2n
} ∈ [

t0
2n
,
t0 + t1

2n
)}.

Since α ∈ (0, 1), we have that

#{s ∈ [0, 2n) | {α(2nx+ s) + β

2n
} ∈ [

t0
2n
,
t0 + t1

2n
)} ≤ t1

α
+ 2.

Hence from (117) we get the assertion of the lemma. �

Lemma 15. Let N ∈ [b2n
2−5n, b2n

2
). Then

#V
′
n(N,Gm) = b−m#U

′
n(N)(1 +O(1/

√
n)) +O(N

√
n).

Proof. Using (44) we have that

(118) #V
′
n(N,Gm) = µ1 + ε2µ2 + ε3µ3,

with 0 ≤ ε2, ε3 ≤ 1, and

µ1 =
∑

√
n≤t≤s<2n−

√
n

∑
0≤ν≤m

∑
0≤j≤l1(ν)

#Ajνs(t,N)

µ2 =
∑

0≤s<
√
n

∑
0≤t<2n−

√
n

∑
0≤ν≤m

∑
0≤j≤l1(ν)

#Ajνs(t,N)

µ3 =
∑

0≤s<2n−
√
n

∑
0≤t<

√
n

∑
0≤ν≤m

∑
0≤j≤l1(ν)

#Ajνs(t,N)

Now let

σ2 =
∑

0≤s<
√
n

∑
0≤t<2n−

√
n

∑
0≤ν≤m

∑
0≤j≤l1(ν)

#Ejνs(t,N),(119)

σ3 =
∑

0≤s<2n−
√
n

∑
0≤t<

√
n

∑
0≤ν≤m

∑
0≤j≤l1(ν)

#Eνs(t,N).(120)

By Lemma 6 and Lemma 12 we get

µ1 =
∑

√
n≤t≤s<2n−

√
n

∑
0≤ν≤m

∑
0≤j≤l1(ν)

(b−m#Eνs(t,N)

× (1 +O(1/n)) +O(Nn−4)).(121)

Using (16) and Lemma 13, we get

(122) µ2 ≤ σ2 ≤ 4
√
n(α+ 1)N.

Applying Lemma 14, we obtain

(123) µ3 ≤ σ3 ≤ (α+ 1)(
√
n+ 3)α−1N.
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From (118)-(121), we have

#V
′
n(N,Gm) =

∑
0≤t≤s<2n−

√
n

∑
0≤ν≤m

∑
0≤j≤l1(ν)

(b−m#Eνs(t,N)(1 +O(1/n))

+O(Nn−4)) + ε2µ2 + ε3µ3 + ε4σ2 + ε5σ3,

with 0 ≤ |εν | ≤ 1, ν ∈ [2, 5]. By (36), (122), and (123) we obtain the
assertion of Lemma 15. �

Main Lemma. Let N ∈ [b2n
2−5n, b2n

2
). Then

(124) #Vn(N,Gm) = b−m#Un(N)(1 +O(1/
√
n)).

Proof. Using (5), (23), (34), (39), (40), (42) and repeating the proof of
Lemmas 2-15 for the case t > s, we obtain

#Un(N) = #U∗n(N) +O(N
√
n) = #U

′
n(N) +O(N

√
n),

#Vn(N,Gm) = #V ∗
n (N,Gm) +O(N

√
n) = #V

′
n(N,Gm) +O(N

√
n),

and

#Vn(N,Gm) = b−m#Un(N)(1 +O(1/
√
n)) +O(N

√
n).

Applying (22) we get (124). �

Remark. For the case α > 1, we consider the line (z, αz + β) as the line
((w − β)/α,w); the variable y as an independent variable (instead of x);
and in (5), (6) we choose the case of y > x. (Hence we use the formula
u = y2 +2y−x instead of u = x2 +y). Now repeating the proof of Lemmas
2-15, we get the proof of the Main Lemma for the case α > 1.

3.2. The case of the rational line with α > 0.
In this subsection we slightly modify partition of Section 3.1. Next we

prove that the estimate of Lemma 10 can be applied for rational α.
Let α = p/q > 0, (p, q) = 1. We use the notation of (15), (16):

(125) ξj = j/q, j = 0, ..., q; f(i) = q(1− {αi}), i = 1, ...,m.

We fix an integer ν ∈ [0, q − 1] and consider the sequence (li(ν))mi=1:

li(ν) =

{
[αi], if ν < f(i)
[αi] + 1. otherwise.

Lemma 16. Let

(126) {α(2nx+ s) + β

2n
} ∈ [

t+ ν/q

2n
,
t+ (ν + 1)/q

2n
), with ν ∈ [0, q − 1].

Then

(127) {α(2nx+ s+ i) + β

2n
} ∈ [

t+ li(ν)
2n

,
t+ li(ν) + 1

2n
), i = 1, ...,m.)
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Proof. Using (126) we get

zi = {α(2nx+ s+ i) + β

2n
} = {α(2nx+ s) + β

2n
+
αi

2n
}

= { t+ ν/q + ε+ [αi] + {αi}
2n

}, with 0 ≤ ε < 1/q.

From here and from (125), we have that

zi = { t+ [αi] + ν/q + 1− f(i)/q + ε

2n
}.

It is evident that if f(i) > ν, then

ν/q + ε− f(i)/q < (ν + 1)/q − f(i)/q ≤ 0.

Applying (126) we get (127) with li(ν) = [αi].
Now let f(i) ≤ ν. Then

0 ≤ ν/q + ε− f(i)/q < (ν + 1)/q.

By (126) we obtain (127) with li(ν) = [αi] + 1 . �

We use a variant of notations (31) - (43) as follows :

αxs = {p(2nx+ s)/q + β},

∆t,ν = [
t+ ξν

2n
,
t+ ξν+1

2n
),(128)

wxs =

{
1 if αxs = 0
0 otherwise,(129)

and in the summation of y in formulas (34), (36), (42), and (44), we apply
l
′
1(ν) = l1(ν) − wxs instead of l1(ν). (Note that wxs = 0 for all β 6= c/q
with integer c.) For fixed integers x, s, t, ν and j, we denote: (kn)n≥1 as an
increasing sequence of integers from the set

{(s+ i
′
)2 + t+ li′ (ν) + v + 1| v = jδi′ , jδi′ + 1, ..., li′+1(ν)− li′ (ν)− wxs,

i
′
= 0, 1, ...,m− 1},(130)

and (z(r)(x, s, j))mr=1 as the sequence of the first m vectors from the set

((2nx+ s+ i
′
, [α(2nx+ s) + β] + li′ (ν) + v))
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with i
′
= 0, 1, ...,m, and

v = jδi′ , jδi′ + 1, ..., li′+1(ν)− li′ (ν)− wxs, (see (47));(131)

Eνs(x
′
, t, N) = {x ∈ [0, N) | x ≡ x

′
(mod q), αx,s ∈ ∆t,ν},(132)

Ajνs(x
′
, t, N) = {x ∈ [0, N) | x ≡ x

′
(mod q),

χωnGm(z(x, s, j)) = 1, αx,s ∈ ∆t,ν}(133)

Un(N) =
⋃

0≤x′<q

⋃
0≤s<2n

⋃
0≤t<2n

⋃
0≤ν<q

⋃
0≤j≤l′1(ν)

Eνs(x
′
, t, N),(134)

where l
′
1(ν) = l1(ν)− wx′s,

(135) Vn(N,Gm) =
⋃

0≤x′<q

⋃
0≤s<2n

⋃
0≤t<2n

⋃
0≤ν<q

⋃
0≤j≤l′1(ν)

Ajνs(x
′
, t, N).

Lemma 17. Let N ∈ [b2n
2−5n, b2n

2
),

√
n ≤ t ≤ s ≤ 2n−

√
n. Then

(136) #Ajνs(x
′
, t, N) = b−m#Eνs(x

′
, t, N)(1 +O(1/n)).

Proof. Let

δ(x, s, t, ν) =

{
1 if αx,s ∈ ∆t,ν

0 otherwise .

It is easy to see that the sequences αx,s, δ(x, s, t, ν) (x = 1, 2, ...) (128)-
(129) have period q. Hence we have from (132)

(137) #Eνs(x
′
, t, N) = δ(x

′
, s, t, ν)(N/q + ε), with |ε| ≤ 1.

Consider Lemma 10 with qr = q (r = 1). Then the condition of Lemma 10

x ∈ Eνs(t,Hqr, qr) if and only if x+Qqr ∈ Eνs(t, Qqr, qr)
for all Q ∈ [H,H+P ) is valid for all H ≥ 0 and all P ≥ 1. Applying (133),
and (91), (92) for the case P = [N/q], x ≡ x

′
(mod q), we obtain

#Ajνs(x
′
, t, N) = b−mδ(x

′
, s, t, ν)[N/q](1 +O(1/n)).

(136) follows from (137) and the condition of the lemma �

(Def. V
′
n (U

′
n) be the part of Vn (Un) with t < s)

Lemma 18. Let N ∈ [b2n
2−5n, b2n

2
). Then

(138) #V
′
n(N,Gm) = b−m#U

′
n(N)(1 +O(1/n)) +O(N

√
n).

Proof. Using Lemmas 13, 14, 17 and repeating the proof of Lemma 15, we
obtain (138). �

Now we consider the case of t ≥ s and (similarly to (138)), we get:
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Corollary. Let N ∈ [b2n
2−5n, b2n

2
). Then

(139) #Vn(N,Gm) = b−m#Un(N)(1 +O(1/
√
n)).

The proof is the same as that of the Main Lemma.

3.3. The case of the horizontal lines (α = 0).
Using (19)-(24) we obtain that β ≥ 0, y = 0 , t = [β], Un(N) = 2nN .

Let N ∈ [b2n
2−5n, b2n

2
). It follows from (5), (6) that for s ∈ [t, 2n − 4m)

the block of digits Gm = (g1, ..., gm) appears at the point (2nx+s, t) if and
only if

x2 = x1 + g1b
s2+t + x2b

s2+t+1 + g2b
(s+1)2+t

+ ...+ gmb
(s+m−1)2+t + xm+1b

(s+m−1)2+t+1,

where xi ∈ [0, bki−ki−1−1) are integers (i = 1, ...,m), k0 = 0, and ki =
(s+ i− 1)2 + t+ 1, i = 1, 2, .... We have from (39) that

#Vn(N,Gm) =
∑

s∈[t,2n−4m)

bk2−k1−1−1∑
x2=0

...
bkm−km−1−1−1∑

xm=0

#{x ∈ [0, N) |

{x2b−km} ∈ [
g

bkm−k1+1
,

g + 1
bkm−k1+1

)}+O(N),

with

g = g(x2, .., xm) = g1 + x2b+ g2b
k2−k1 + ...+ xmb

km−1−k1+1 + gmb
km−k1 .

Using (88) and Lemma 9 with qr = 1, x = 0, H = 0 and P = N , we have
that

#Vn(N,Gm) =
∑

s∈[t,2n−4m)

bk2−k1−1−1∑
x2=0

...

bkm−km−1−1−1∑
xm=0

Nbk1−km−1(1+O(n−1)).

Bearing in mind that Un(N) = 2nN , we have that

(140) #Vn(N,Gm) = b−m#Un(N)(1 +O(1/
√
n)).

3.4. The case of vertical lines.
Using (19)-(24), we get x = 0, s = [β], and Un(N) = 2nN . Let t ∈

[s, 2n − m), N ∈ [b2n
2−5n, b2n

2
). The block of digits Gm = (g1, ..., gm)

appears at the point (s, 2ny + t) if and only if

y2 + 2y = y1 + g1b
t2+2t−s + y2b

t2+2t−s+1 + g2b
(t+1)2+2t−s+2

+ ...+ gmb
(t+m−1)2+2(t+m−1)−s + ym+1b

(t+m−1)2+2(t+m−1)−s+1,



856 Mordechay B. Levin, Meir Smorodinsky

where yi+1 ∈ [0, b2t+2i) are integers i = 1, 2, .... Repeating the previous
proof, we get

(141) #Vn(N,Gm) = b−m#Un(N)(1 +O(1/
√
n)).

3.5. Completion of the proof of Theorem 1.
In this subsection we go from the configuration ωn to the configura-

tion ω∞.
Let P ≥ 1 be an integer. There exists an integer n ≥ 1 such that

(142) 2(n− 1)b2(n−1)2 ≤ P < 2nb2n
2
.

Let N = [P/2n], P = 2nN + N1, where N1 ∈ [0, 2n), α > 0 is irrational.
Let U(P ) be the subset of all lattice points (u, v) such that the line (z, αz+
β)z∈[0,P ) intersects the square (u, v) + [0, 1)2. Applying the definition of
Un(N) (see (21)-(24)), we have that

(143) #U(P ) = #Un(N) +O(n).

Let
V (P,Gm) = {z ∈ U(P ) | Gm = (ω(z(1)), ..., ω(z(m)))}

be the set of the linear indices of the beginning of a block Gm in the linear
configuration of digits, confined to the P -square configuration. It is evident,
that

(144) #V (P,Gm) = #V (2nN,Gm) +O(n),

with

(145) V (2nN,Gm) = {z ∈ Un(N) | Gm = (ω(z(1)), ..., ω(z(m)))}.
To compute #V (2nN,Gm), consider the configuration ω as the union of
the parts of the configurations ωn, ωn−1 and ω

′
n−2 (where ω

′
n−2 is the part

of configuration ω corresponding to ωn−2). We use a trivial estimate for
ω
′
n−2 :
By (8) (definition of ω), (34), (39), and (145), we have

#V (2nN,Gm) = #Vn(N,Gm)−#Vn([(n− 1)b2(n−1)2/n], Gm)

+ #Vn−1(b2(n−1)2 , Gm) +O(nb2(n−2)2),

and

(146) #Un−1(b2(n−1)2) = #Un([(n− 1)b2(n−1)2/n]) +O(n).

Let α be irrational. Using the Main Lemma, we get

#V (2nN,Gm) = b−m#Un(N)(1 +O(1/
√
n))

− b−m#Un([(n− 1)b2(n−1)2/n])(1 +O(1/
√
n))

+ b−m#Un−1(b2(n−1)2)(1 +O(1/
√
n)) +O(nb2(n−2)2).
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From here, (22), and (146), we obtain

#V (2nN,Gm) = b−m#Un(N)(1 +O(1/
√
n)).

Hence from (144), (143), and (142), we obtain

#V (P,Gm) = b−m#U(P )(1 +O(1/(logP )1/4).

For the case α > 0 rational (the horizontal line, and vertical lines) we use
(139) (respectively (140), (141)) instead of the Main Lemma. Now by (3)
we obtain the assertion of Theorem 1. �

Acknowledgment. We are very grateful to the referee for his many cor-
rections and suggestions.

References
[1] R. Adler, M. Keane, M. Smorodinsky, A construction of a normal number for the con-

tinued fraction transformation. Journal of Number Theory 13 (1981), 95–105.

[2] D. J. Champernowne, The construction of decimals normal in the scale of ten. J. London
Math. Soc. 8 (1933), 254–260.

[3] J. Cigler, Asymptotische Verteilung reeller Zahlen mod 1. Monatsh. Math. 64 (1960),
201–225.

[4] M. Drmota, R. F. Tichy, Sequences, Discrepancies and Applications. Lecture Notes in

Math, vol. 1651, Springer, 1997.
[5] T. Kamae, Subsequences of normal sequences. Israel J. Math. 16 (1973), 121–149.

[6] N. M. Korobov, Exponential Sums and their Applications. Kluwer Academic Publishers,

Dordrecht, 1992.
[7] L. Kuipers , H. Niederreiter, Uniform Distribution of Sequences. Pure and Applied

Mathematics, Wiley–Interscience, New York, 1974.

[8] P. Kirschenhofer, R.F. Tichy, On uniform distribution of double sequences. Manuscripta
Math. 35 (1981), 195–207.

[9] M. B. Levin, On normal lattice configurations and simultaneously normal numbers. J.
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