# On the largest prime factor of $n!+2^{n}-1$ 

par Florian LUCA et Igor E. SHPARLINSKI


#### Abstract

RÉSumé. Pour un entier $n \geq 2$, notons $P(n)$ le plus grand facteur premier de $n$. Nous obtenons des majorations sur le nombre de solutions de congruences de la forme $n!+2^{n}-1 \equiv 0(\bmod q)$ et nous utilisons ces bornes pour montrer que


$$
\limsup _{n \rightarrow \infty} P\left(n!+2^{n}-1\right) / n \geq\left(2 \pi^{2}+3\right) / 18
$$

Abstract. For an integer $n \geq 2$ we denote by $P(n)$ the largest prime factor of $n$. We obtain several upper bounds on the number of solutions of congruences of the form $n!+2^{n}-1 \equiv 0(\bmod q)$ and use these bounds to show that

$$
\limsup _{n \rightarrow \infty} P\left(n!+2^{n}-1\right) / n \geq\left(2 \pi^{2}+3\right) / 18
$$

## 1. Introduction

For any positive integer $k>1$ we denote by $P(k)$ the largest prime factor of $k$ and by $\omega(k)$ the number of distinct prime divisors of $k$. We also set $P(1)=1$ and $\omega(1)=0$.

It is trivial to see that $P(n!+1)>n$. Erdős and Stewart [4] have shown that

$$
\limsup _{n \rightarrow \infty} \frac{P(n!+1)}{n}>2
$$

This bound is improved in [7] where it is shown that the above upper limit is at least $5 / 2$, and that it also holds for $P(n!+f(n))$ with a nonzero polynomial $f(X) \in \mathbb{Z}[X]$.

Here we use the method of [7], which we supplement with some new arguments, to show that

$$
\limsup _{n \rightarrow \infty} \frac{P\left(n!+2^{n}-1\right)}{n}>\left(2 \pi^{2}+3\right) / 18
$$

We also estimate the total number of distinct primes which divide at least one value of $n!+2^{n}-1$ with $1 \leq n \leq x$.

[^0]These results are based on several new elements, such as bounds for the number of solutions of congruences with $n!+2^{n}-1$, which could be of independent interest.

Certainly, there is nothing special in the sequence $2^{n}-1$, and exactly the same results can be obtained for $n!+u(n)$ with any nonzero binary recurrent sequence $u(n)$.

Finally, we note that our approach can be used to estimate $P(n!+u(n))$ with an arbitrary linear recurrence sequence $u(n)$ (leading to similar, albeit weaker, results) and with many other sequences (whose growth and the number of zeros modulo $q$ are controllable).

Throughout this paper, we use the Vinogradov symbols $\gg, \ll$ and $\asymp$ as well as the Landau symbols $O$ and $o$ with their regular meanings. For $z>0, \log z$ denotes the natural logarithm of $z$.

Acknowledgments. During the preparation of this paper, F. L. was supported in part by grants SEP-CONACYT 37259-E and 37260-E, and I. S. was supported in part by ARC grant DP0211459.

## 2. Bounding the number of solutions of some equations and congruences

The following polynomial

$$
\begin{equation*}
F_{k, m}(X)=\left(2^{k}-1\right) \prod_{i=1}^{m}(X+i)-\left(2^{m}-1\right) \prod_{i=1}^{k}(X+i)+2^{m}-2^{k} \tag{2.1}
\end{equation*}
$$

plays an important role in our arguments.
Lemma 2.1. The equation

$$
F_{k, m}(n)=0
$$

has no integer solutions ( $n, k, m$ ) with $n \geq 3$ and $m>k \geq 1$.
Proof. One simply notices that for any $n \geq 3$ and $m>k \geq 1$

$$
\begin{aligned}
\left(2^{k}-1\right) \prod_{i=1}^{m}(n+i) & \geq 2^{k-1}(n+1)^{m-k} \prod_{i=1}^{k}(n+i) \\
& \geq(n+1) 2^{m-2} \prod_{i=1}^{k}(n+i) \geq 2^{m} \prod_{i=1}^{k}(n+i) \\
& >\left(2^{m}-1\right) \prod_{i=1}^{k}(n+i) .
\end{aligned}
$$

Hence, $F_{k, m}(n)>0$ for $n \geq 3$.

Let $\ell(q)$ denote the multiplicative order of 2 modulo an odd integer $q \geq 3$.
For integers $y \geq 0, x \geq y+1$, and $q \geq 1$, we denote by $\mathcal{T}(y, x, q)$ the set of solutions of the following congruence

$$
\mathcal{T}(y, x, q)=\left\{n \mid n!+2^{n}-1 \equiv 0 \quad(\bmod q), y+1 \leq n \leq x\right\}
$$

and put $T(y, x, q)=\# \mathcal{T}(y, x, q)$. We also define

$$
\mathcal{T}(x, q)=\mathcal{T}(0, x, q) \quad \text { and } \quad T(x, q)=T(0, x, q) .
$$

Lemma 2.2. For any prime $p$ and integers $x$ and $y$ with $p>x \geq y+1 \geq 1$, we have

$$
T(y, x, p) \ll \max \left\{(x-y)^{3 / 4},(x-y) / \ell(p)\right\} .
$$

Proof. We assume that $p \geq 3$, otherwise there is nothing to prove. Let $\ell(p)>z \geq 1$ be a parameter to be chosen later.

Let $y+1 \leq n_{1}<\ldots<n_{t} \leq x$ be the complete list of $t=T(y, x, p)$ solutions to the congruence $n!+2^{n}-1 \equiv 0(\bmod p), y+1 \leq n \leq x$. Then

$$
\mathcal{T}(y, x, p)=\mathcal{U}_{1} \cup \mathcal{U}_{2},
$$

where

$$
\mathcal{U}_{1}=\left\{n_{i} \in \mathcal{T}(y, x, p)| | n_{i}-n_{i+2} \mid \geq z, i=1, \ldots, t-2\right\},
$$

and $\mathcal{U}_{2}=\mathcal{T}(y, x, p) \backslash \mathcal{U}_{1}$.
It is clear that $\# \mathcal{U}_{1} \ll(x-y) / z$. Assume now that $n \in \mathcal{U}_{2} \backslash\left\{n_{t-1}, n_{t}\right\}$. Then there exists a nonzero integers $k$ and $m$ with $0<k<m \leq z$, and such that

$$
n!+2^{n}-1 \equiv(n+k)!+2^{n+k}-1 \equiv(n+m)!+2^{n+m}-1 \equiv 0 \quad(\bmod p) .
$$

Eliminating $2^{n}$ from the first and the second congruence, and then from the first and the third congruence, we obtain

$$
\begin{aligned}
n!\left(\prod_{i=1}^{k}(n+i)-2^{k}\right) & +2^{k}-1 \\
& \equiv n!\left(\prod_{i=1}^{m}(n+i)-2^{m}\right)+2^{m}-1 \equiv 0 \quad(\bmod p)
\end{aligned}
$$

Now eliminating $n$ !, we derive

$$
\left(2^{m}-1\right)\left(\prod_{i=1}^{k}(n+i)-2^{k}\right)-\left(2^{k}-1\right)\left(\prod_{i=1}^{m}(n+i)-2^{m}\right) \equiv 0 \quad(\bmod p),
$$

or $F_{k, m}(n) \equiv 0(\bmod p)$, where $F_{k, m}(X)$ is given by (2.1). Because $\ell(p)>$ $z$, we see that for every $0<k<m \leq z$ the polynomial $F_{k, m}(X)$ has a nonzero coefficient modulo $p$ and $\operatorname{deg} F_{k, m}=m \leq z$, thus for every $0<k<$ $m<z$ there are at most $z$ suitable values of $n$ (since $p>x \geq y+1 \geq 1$ ).

Summing over all admissible values of $k$ and $m$, we derive $\# \mathcal{U}_{2} \ll z^{3}+1$. Therefore

$$
T(y, x, p) \leq \# \mathcal{U}_{1}+\# \mathcal{U}_{2} \ll(x-y) / z+z^{3}+1
$$

Taking $z=\min \left\{(x-y)^{1 / 4}, \ell(p)-1\right\}$ we obtain the desired inequality.
Obviously, for any $n \geq p$ with $n!+2^{n}-1 \equiv 0(\bmod p)$, we have $2^{n} \equiv 1$ $(\bmod p)$. Thus

$$
\begin{equation*}
T(p, x, p) \ll x / \ell(p) \tag{2.2}
\end{equation*}
$$

Lemma 2.3. For any integers $q \geq 2$ and $x \geq y+1 \geq 1$, we have

$$
T(y, x, q) \leq\left(2+O\left(\frac{1}{\log x}\right)\right) \frac{(x-y) \log x}{\log q}+O(1)
$$

Proof. Assume that $T(y, x, q) \geq 6$, because otherwise there is nothing to prove. We can also assume that $q$ is odd. Then, by the Dirichlet principle, there exist integers $n \geq 4, m>k \geq 1$, satisfying the inequalities

$$
1 \leq k<m \leq 2 \frac{x-y}{T(y, x, q)-4}, \quad y+1 \leq n<n+k<n+m \leq x
$$

and such that

$$
n!+2^{n}-1 \equiv(n+k)!+2^{n+k}-1 \equiv(n+m)!+2^{n+m}-1 \equiv 0 \quad(\bmod q)
$$

Arguing as in the proof of Lemma 2.2, we derive $F_{m, k}(n) \equiv 0(\bmod q)$. Because $F_{m, k}(n) \neq 0$ by Lemma 2.1, we obtain $\left|F_{m, k}(n)\right| \geq q$. Obviously, $\left|F_{m, k}(n)\right|=O\left(2^{k} x^{m}\right)=O\left((2 x)^{m}\right)$. Therefore,

$$
\log q \leq m(\log x+O(1)) \leq 2 \frac{(x-y)(\log x+O(1))}{T(y, x, p)-4}
$$

and the result follows.
Certainly, Lemma 2.2 is useful only if $\ell(p)$ is large enough.
Lemma 2.4. For any $x$ the inequality $\ell(p) \geq x^{1 / 2} / \log x$ holds for all except maybe $O\left(x /(\log x)^{3}\right)$ primes $p \leq x$.

Proof. Put $L=\left\lfloor x^{1 / 2} / \log x\right\rfloor$. If $\ell(p) \leq L$ then $p \mid R$, where

$$
R=\prod_{i=1}^{L}\left(2^{i}-1\right) \leq 2^{L^{2}}
$$

The bound $\omega(R) \ll \log R / \log \log R \ll L^{2} / \log L$ concludes the proof.
We remark that stronger results are known, see $[3,6,9]$, but they do not seem to be of help for our arguments.

## 3. Main Results

Theorem 3.1. The following bound holds:

$$
\limsup _{n \rightarrow \infty} \frac{P\left(n!+2^{n}-1\right)}{n} \geq \frac{2 \pi^{2}+3}{18}=1.2632893 \ldots
$$

Proof. Assuming that the statement of the above theorem is false, we see that there exist two constants $\lambda<\left(2 \pi^{2}+3\right) / 18$ and $\mu$ such that the inequality $P\left(n!+2^{n}-1\right)<\lambda n+\mu$ holds for all integer positive $n$.

We let $x$ be a large positive integer and consider the product

$$
W=\prod_{1 \leq n \leq x}\left(n!+2^{n}-1\right)
$$

Let $Q=P(W)$ so we have $Q \leq \lambda x+\mu$. Obviously,

$$
\begin{equation*}
\log W=\frac{1}{2} x^{2} \log x+O\left(x^{2}\right) \tag{3.1}
\end{equation*}
$$

For a prime $p$, we denote by $s_{p}$ the largest power of $p$ dividing at least one of the nonzero integers of the form $n!+2^{n}-1$ for $n \leq x$. We also denote by $r_{p}$ the $p$-adic order of $W$. Hence,

$$
\begin{equation*}
r_{p}=\sum_{1 \leq s \leq s_{p}} T\left(x, p^{s}\right) \tag{3.2}
\end{equation*}
$$

and therefore, by (3.1) and (3.2), we deduce

$$
\begin{equation*}
\sum_{\substack{p \mid W \\ p \leq Q}} \log p \sum_{1 \leq s \leq s_{p}} T\left(x, p^{s}\right)=\log W=\frac{1}{2} x^{2} \log x+O\left(x^{2}\right) \tag{3.3}
\end{equation*}
$$

We let $\mathcal{M}$ be the set of all possible pairs $(p, s)$ which occur on the left hand side of (3.3), that is,

$$
\mathcal{M}=\left\{(p, s)|p| W, p \leq Q, 1 \leq s \leq s_{p}\right\}
$$

and so (3.3) can be written as

$$
\begin{equation*}
\sum_{(p, s) \in \mathcal{M}} T\left(x, p^{s}\right) \log p=\frac{1}{2} x^{2} \log x+O\left(x^{2}\right) \tag{3.4}
\end{equation*}
$$

As usual, we use $\pi(y)$ to denote the number of primes $p \leq y$, and recall that by the Prime Number Theorem we have $\pi(y)=(1+o(1)) y / \log y$.

Now we introduce subsets $\mathcal{E}_{1}, \mathcal{E}_{2}, \mathcal{E}_{3}, \mathcal{E}_{4} \in \mathcal{M}$, which possibly overlap, and whose contribution to the sums on the left hand side of (3.4) is $o\left(x^{2} \log x\right)$. After this, we study the contribution of the remaining set $\mathcal{L}$.

- Let $\mathcal{E}_{1}$ be the set of pairs $(p, s) \in \mathcal{M}$ with $p \leq x / \log x$. By Lemma 2.3, we have

$$
\begin{aligned}
\sum_{(p, s) \in \mathcal{E}_{1}} T\left(x, p^{s}\right) \log p & \ll x \log x \sum_{(p, s) \in \mathcal{E}_{1}} \frac{1}{s}+\sum_{(p, s) \in \mathcal{E}_{1}} \log p \\
\ll & x \log x \sum_{p \leq x / \log x} \log \left(s_{p}+1\right) \\
& +\sum_{p \leq x / \log x} s_{p} \log p \ll x^{2}
\end{aligned}
$$

because obviously $s_{p} \ll x \log x$.

- Let $\mathcal{E}_{2}$ be the set of pairs $(p, s) \in \mathcal{M}$ with $s \geq x /(\log x)^{2}$. Again by Lemma 2.3, and by the inequality

$$
s_{p} \ll x \frac{\log x}{\log p}
$$

we have

$$
\begin{aligned}
\sum_{(p, s) \in \mathcal{E}_{2}} T\left(x, p^{s}\right) \log p & \ll x \log x \sum_{(p, s) \in \mathcal{E}_{2}} \frac{1}{s}+\sum_{(p, s) \in \mathcal{E}_{2}} \log p \\
& \ll x \log x \sum_{p \leq Q} \sum_{x /(\log x)^{2} \leq s \leq s_{p}} \frac{1}{s}+\sum_{p \leq Q} s_{p} \log p \\
& \ll x \pi(Q) \log x \log \log x \ll x^{2} \log \log x
\end{aligned}
$$

because $Q=O(x)$ by our assumption.

- Let $\mathcal{E}_{3}$ be the set of pairs $(p, s) \in \mathcal{M}$ with $\ell(p) \leq x^{1 / 2} / \log x$. Again by Lemmas 2.3 and 2.4, and by the inequality $s_{p} \ll x \log x$, we have

$$
\begin{aligned}
& \sum_{(p, s) \in \mathcal{E}_{3}} T\left(x, p^{s}\right) \log p \ll x \log x \sum_{(p, s) \in \mathcal{E}_{2}} \frac{1}{s}+\sum_{(p, s) \in \mathcal{E}_{3}} \log p \\
& \ll x \log x \sum_{\substack{p \leq Q \\
\ell(p) \leq x^{1 / 2} / \log x}} \sum_{1 \leq s \leq s_{p}} \frac{1}{s} \\
&+\sum_{\substack{p \leq Q}} s_{p} \log p \\
& \ell(p) \leq x^{1 / 2} / \log x \\
& \ll x(\log x)^{2} \sum_{\substack{p \leq Q \\
\ell(p) \leq x^{1 / 2} / \log x}} 1 \ll x^{2} / \log x .
\end{aligned}
$$

- Let $\mathcal{E}_{4}$ be the set of pairs $(p, s) \in \mathcal{M} \backslash\left(\mathcal{E}_{1} \cup \mathcal{E}_{3}\right)$ with $s<x^{1 / 4}$. By

Lemma 2.2 and by (2.2), we have

$$
\begin{aligned}
\sum_{(p, s) \in \mathcal{E}_{3}} T\left(x, p^{s}\right) \log p & \ll x^{1 / 4} \sum_{p \leq Q} T(x, p) \log p \\
& \ll x^{1 / 4} \sum_{p \leq Q}\left(p^{3 / 4}+x / \ell(p)\right) \log p \\
& \ll x^{1 / 4} Q^{3 / 4} \sum_{p \leq Q} \log p \\
& \ll x^{1 / 4} Q^{7 / 4} \ll x^{2}
\end{aligned}
$$

We now put $\mathcal{L}=\mathcal{M} \backslash\left(\mathcal{E}_{1} \cup \mathcal{E}_{2} \cup \mathcal{E}_{3} \cup \mathcal{E}_{4}\right)$.
The above estimates, together with (3.4), show that

$$
\begin{equation*}
\sum_{(p, s) \in \mathcal{L}} T\left(x, p^{s}\right) \log p=\frac{1}{2} x^{2} \log x+O\left(x^{2} \log \log x\right) \tag{3.5}
\end{equation*}
$$

The properties of the pairs $(p, s) \in \mathcal{L}$ can be summarized as

$$
p>\frac{x}{\log x}, \quad \ell(p) \geq \frac{x^{1 / 2}}{\log x}, \quad \frac{x}{(\log x)^{2}} \geq s \geq x^{1 / 4}
$$

In what follows, we repeatedly use the above bounds.
We now remark that because by our assumption $P\left(n!+2^{n}-1\right) \leq \lambda n+\mu$ for $n \leq x$, we see that $T\left(x, p^{s}\right)=T\left(\lfloor(p-\mu) / \lambda\rfloor, x, p^{s}\right)$.

Thus, putting $x_{p}=\min \{x, p\}$, we obtain

$$
T\left(x, p^{s}\right)=T\left(\lfloor(p-\mu) / \lambda\rfloor, x, p^{s}\right)=T\left(\lfloor(p-\mu) / \lambda\rfloor, x_{p}, p^{s}\right)+T\left(x_{p}, x, p^{s}\right)
$$

Therefore,

$$
\begin{equation*}
\sum_{(p, s) \in \mathcal{L}} T\left(x, p^{s}\right) \log p=U+V \tag{3.6}
\end{equation*}
$$

where

$$
U=\sum_{(p, s) \in \mathcal{L}} T\left(\lfloor(p-\mu) / \lambda\rfloor, x_{p}, p^{s}\right) \log p
$$

and

$$
V=\sum_{(p, s) \in \mathcal{L}} T\left(x_{p}, x, p^{s}\right) \log p
$$

To estimate $U$, we observe that, by Lemma 2.3,

$$
\begin{aligned}
U & \leq(2+o(1)) \log x \sum_{p \leq Q}\left(\left(x_{p}-\frac{p-\mu}{\lambda}\right) \sum_{x / \log x>s \geq x^{1 / 4}} \frac{1}{s}+O(1)\right) \\
& \leq(3 / 2+o(1))(\log x)^{2} \sum_{p \leq Q}\left(x_{p}-\frac{p-\mu}{\lambda}\right)+O\left(x^{2}\right)
\end{aligned}
$$

Furthermore,

$$
\begin{aligned}
\sum_{p \leq Q}\left(x_{p}-\frac{p-\mu}{\lambda}\right) & =\sum_{p \leq x}\left(p-\frac{p-\mu}{\lambda}\right)+\sum_{x<p \leq Q}\left(x-\frac{p-\mu}{\lambda}\right) \\
& =\left(\frac{\lambda-1}{2 \lambda}+o(1)\right) \frac{x^{2}}{\log x}+\left(\frac{(\lambda-1)^{2}}{2 \lambda}+o(1)\right) \frac{x^{2}}{\log x} \\
& =\left(\frac{\lambda-1}{2}+o(1)\right) \frac{x^{2}}{\log x}
\end{aligned}
$$

Hence

$$
\begin{equation*}
U \leq\left(\frac{3(\lambda-1)}{4}+o(1)\right) x^{2} \log x \tag{3.7}
\end{equation*}
$$

We now estimate $V$. For an integer $\alpha \geq 1$ we let $\mathcal{P}_{\alpha}$ be the set of primes $p \leq Q$ with

$$
\ell(p)=\ldots=\ell\left(p^{\alpha}\right) \neq \ell\left(p^{\alpha+1}\right)
$$

Thus, $\ell\left(p^{\alpha+1}\right)=\ell(p) p$.
Accordingly, let $\mathcal{L}_{\alpha}$ be the subset of pairs $(p, s) \in \mathcal{L}$ for which $p \in \mathcal{P}_{\alpha}$.
We see that if $(p, s) \in \mathcal{L}$ and $n \leq x$, then $p^{2}>n$, and therefore the $p$-adic order of $n!$ is

$$
\operatorname{ord}_{p} n!=\left\lfloor\frac{n}{p}\right\rfloor
$$

For $p \in \mathcal{P}_{\alpha}$ we also have

$$
\operatorname{ord}_{p}\left(2^{\ell(p)}-1\right)=\alpha
$$

Clearly, if $n \geq p$ then $\operatorname{ord}_{p}\left(n!+2^{n}-1\right)>0$ only for $n \equiv 0(\bmod \ell(p))$. Because $\ell\left(p^{\alpha+1}\right)=p \ell(p) \gg x^{3 / 2} /(\log x)^{2}>x$, we see that, for $p \leq n \leq x$,

$$
\operatorname{ord}_{p}\left(2^{n}-1\right)=\left\{\begin{array}{ll}
0, & \text { if } n \not \equiv 0 \quad(\bmod \ell(p)) \\
\alpha, & \text { if } n \equiv 0
\end{array}(\bmod \ell(p)) .\right.
$$

Therefore, for $n \leq \alpha p-1$ and $n \equiv 0(\bmod \ell(p))$, we have

$$
\operatorname{ord}_{p}\left(n!+2^{n}-1\right) \leq \operatorname{ord}_{p} n!<n /(p-1) \ll \log x
$$

Thus, $T\left(x_{p}, \alpha p-1, p^{s}\right)=0$ for $(p, s) \in \mathcal{L}_{\alpha}$.

On the other hand, for $n \geq(\alpha+1) p$, we have $\operatorname{ord}_{p}(n!)>n / p-1 \geq \alpha$. Hence, for $n \equiv 0(\bmod \ell(p))$, we derive

$$
\operatorname{ord}_{p}\left(n!+2^{n}-1\right)=\operatorname{ord}_{p}\left(2^{n}-1\right)=\alpha<n / p \ll \log x
$$

As we have mentioned $\operatorname{ord}_{p}\left(n!+2^{n}-1\right)=0$ for every $n \geq p$ with $n \equiv 0$ $(\bmod \ell(p))$. Thus, $T\left((\alpha+1) p, x, p^{s}\right)=0$ for $(p, s) \in \mathcal{L}_{\alpha}$.

For $\alpha=1,2, \ldots$, let us define

$$
Y_{\alpha, p}=\min \{x, \alpha p-1\} \quad \text { and } \quad X_{\alpha, p}=\min \{x,(\alpha+1) p\} .
$$

We then have

$$
V=\sum_{\alpha=1}^{\infty} V_{\alpha},
$$

where

$$
V_{\alpha}=\sum_{(p, s) \in \mathcal{L}_{\alpha}} T\left(x_{p}, x, p^{s}\right) \log p
$$

For every $\alpha \geq 1$, and $(p, s) \in \mathcal{L}_{\alpha}$, as we have seen,

$$
T\left(x_{p}, x, p^{s}\right)=T\left(Y_{\alpha, p}, X_{\alpha, p}, p^{s}\right) .
$$

We now need the bound,

$$
\begin{equation*}
T\left(Y_{\alpha, p}, X_{\alpha, p}, p^{s}\right) \leq \frac{X_{\alpha, p}-Y_{\alpha, p}}{\ell(p)}+1 \tag{3.8}
\end{equation*}
$$

which is a modified version of (2.2). Indeed, if $Y_{\alpha, p}=x$ then $X_{\alpha, p}=x$ and we count solutions in an empty interval. If $Y_{\alpha, p}=\alpha p-1$ (the other alternative), we then replace the congruence modulo $p^{s}$ by the congruence modulo $p$ and remark that because $n>Y_{\alpha, p} \geq p$ we have $n!+2^{n}-1 \equiv 2^{n}-1$ $(\bmod p)$ and $(3.8)$ is now immediate.

We use (3.8) for $x^{1 / 2} /(\log x)^{2} \geq s \geq x^{1 / 4}$, and Lemma 2.3 for $x /(\log x)^{2}>$ $s \geq x^{1 / 2} /(\log x)^{2}$. Simple calculations lead to the bound

$$
V_{\alpha} \leq(1+o(1))(\log x)^{2} \sum_{p \in \mathcal{P}_{\alpha}}\left(X_{\alpha, p}-Y_{\alpha, p}\right)+O\left(x^{2}\right) .
$$

We now have

$$
\sum_{p \in \mathcal{P}_{\alpha}}\left(X_{\alpha, p}-Y_{\alpha, p}\right)=\sum_{\substack{p \in P_{\alpha} \\ p \leq x /(\alpha+1)}}(p+1)+\sum_{\substack{p \in P_{\alpha} \\ x /(\alpha+1)<p \leq(x+1) / \alpha}}(x-\alpha p+1) .
$$

Thus, putting everything together, and taking into account that the sets $\mathcal{P}_{\alpha}, \alpha=1,2, \ldots$, are disjoint, we derive

$$
\begin{aligned}
V \leq & (1+o(1))(\log x)^{2}\left(\sum_{p \leq x / 2} p+\sum_{\alpha=1}^{\infty} \sum_{x /(\alpha+1)<p \leq(x+1) / \alpha}(x-\alpha p)\right) \\
= & (1+o(1))(\log x)^{2} \\
& \times\left(\frac{x^{2}}{8 \log x}+\frac{x^{2}}{\log x} \sum_{\alpha=1}^{\infty}\left(\frac{1}{\alpha(\alpha+1)}-\frac{2 \alpha+1}{2 \alpha(\alpha+1)^{2}}\right)\right) \\
= & (1+o(1))(\log x)^{2}\left(\frac{x^{2}}{8 \log x}+\frac{x^{2}}{2 \log x} \sum_{\alpha=1}^{\infty} \frac{1}{\alpha(\alpha+1)^{2}}\right) \\
= & (1+o(1))(\log x)^{2} \\
& \quad \times\left(\frac{x^{2}}{8 \log x}+\frac{x^{2}}{2 \log x} \sum_{\alpha=1}^{\infty}\left(\frac{1}{\alpha(\alpha+1)}-\frac{1}{(\alpha+1)^{2}}\right)\right) \\
= & (1+o(1))(\log x)^{2}\left(\frac{x^{2}}{8 \log x}+\frac{x^{2}}{2 \log x}\left(2-\frac{\pi^{2}}{6}\right)\right) .
\end{aligned}
$$

Hence

$$
\begin{equation*}
V \leq\left(\frac{27-2 \pi^{2}}{24}+o(1)\right) x^{2} \log x \tag{3.9}
\end{equation*}
$$

Substituting (3.7) and (3.9) in (3.6), and using (3.5), we derive

$$
\frac{3(\lambda-1)}{4}+\frac{27-2 \pi^{2}}{24} \geq \frac{1}{2}
$$

which contradicts the assumption $\lambda<\left(2 \pi^{2}+3\right) / 18$, and thus finishes the proof.

Theorem 3.2. For any sufficiently large $x$, we have:

$$
\omega\left(\prod_{1 \leq n \leq x}\left(n!+2^{n}-1\right)\right) \gg \frac{x}{\log x}
$$

Proof. In the notation of the proof of Theorem 3.1, we derive from (3.2) and Lemma 2.3, that

$$
r_{p} \ll \sum_{1 \leq s \leq s_{p}} \frac{x \log x}{s \log p}+1 \ll \frac{x \log x \log \left(s_{p}+1\right)}{\log p}+s_{p}
$$

Obviously $s_{p} \ll x \log x / \log p$, therefore $r_{p} \ll x(\log x)^{2} / \log p$. Thus, for any prime number $p$,

$$
p^{r_{p}}=\exp \left(O\left(x(\log x)^{2}\right)\right)
$$

which together with (3.1) finishes the proof.

## 4. Remarks

We recall the result of Fouvry [5], which asserts that $P(p-1) \geq p^{0.668}$ holds for a set of primes $p$ of positive relative density (see also [1, 2] for this and several more related results). By Lemma 2.4, this immediately implies that $\ell(p) \geq p^{0.668}$ for a set of primes $p$ of positive relative density. Using this fact in our arguments, one can easily derive that actually

$$
\limsup _{n \rightarrow \infty} \frac{P\left(n!+2^{n}-1\right)}{n}>\frac{2 \pi^{2}+3}{18}
$$

However, the results of [5], or other similar results like the ones from [1, 2], do not give any effective bound on the relative density of the set of primes with $P(p-1) \geq p^{0.668}$, and thus cannot be used to get an explicit numerical improvement of Theorem 3.1.

We also remark that, as in [7], one can use lower bounds on linear forms in $p$-adic logarithms to obtain an "individual" lower bound on $P\left(n!+2^{n}-1\right)$. The $A B C$-conjecture can also used in the same way as in [8] for $P(n!+1)$.

## References

[1] R. C. Baker, G. Harman, The Brun-Titchmarsh theorem on average. Analytic number theory, Vol. 1 (Allerton Park, IL, 1995), Progr. Math. 138, Birkhäuser, Boston, MA, 1996, 39-103,
[2] R. C. Baker, G. Harman, Shifted primes without large prime factors. Acta Arith. 83 (1998), 331-361.
[3] P. Erdős, R. Murty, On the order of a (mod $p)$. Proc. 5th Canadian Number Theory Association Conf., Amer. Math. Soc., Providence, RI, 1999, 87-97.
[4] P. Erdős, C. Stewart, On the greatest and least prime factors of $n!+1$. J. London Math. Soc. 13 (1976), 513-519.
[5] É. Fouvry, Théorème de Brun-Titchmarsh: Application au théorème de Fermat. Invent. Math. 79 (1985), 383-407.
[6] H.-K. Indlekofer, N. M. Timofeev, Divisors of shifted primes. Publ. Math. Debrecen 60 (2002), 307-345.
[7] F. Luca, I. E. Shparlinski, Prime divisors of shifted factorials. Bull. London Math. Soc. 37 (2005), 809-817.
[8] M.R. Murty, S. Wong, The ABC conjecture and prime divisors of the Lucas and Lehmer sequences. Number theory for the millennium, III (Urbana, IL, 2000), A K Peters, Natick, MA, 2002, 43-54.
[9] F. Pappalardi, On the order of finitely generated subgroups of $\mathbb{Q}^{*}(\bmod p)$ and divisors of $p-1$. J. Number Theory 57 (1996), 207-222.
[10] K. Prachar, Primzahlverteilung. Springer-Verlag, Berlin, 1957.

Florian Luca
Instituto de Matemáticas
Universidad Nacional Autónoma de México
C.P. 58089, Morelia, Michoacán, México

E-mail: fluca@matmor.unam.mx
Igor E. Shparlinski
Department of Computing
Macquarie University
Sydney, NSW 2109, Australia
E-mail: igor@ics.mq.edu.au


[^0]:    Manuscrit reçu le 7 novembre 2003.

