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Résumé. Nous présentons des algorithmes pour le calcul des
formes de Humbert binaires extrémales sur les corps quadratiques
réels. Grâce à ces algorithmes, nous sommes capables de cal-
culer les formes de Humbert extrémales pour les corps de nombres
Q(
√

13) et Q(
√

17). Enfin nous calculons la constante d’Hermite-
Humbert pour le corps de nombres Q(

√
13).

Abstract. We present algorithms for the computation of ex-
treme binary Humbert forms in real quadratic number fields. With
these algorithms we are able to compute extreme Humbert forms
for the number fields Q(

√
13) and Q(

√
17). Finally we compute

the Hermite-Humbert constant for the number field Q(
√

13).

1. Introduction

A new invariant of number fields, called the Hermite-Humbert constant,
was introduced by M.I. Icaza in 1997 (see [Ica]). This constant is an ana-
logue to the Hermite constant for Q. In [H] Humbert describes a generaliza-
tion of the reduction theory for quadratic forms over Z where he considers
totally positive forms, called Humbert forms, with integral entries from a
given number field K. He deduces an analogous reduction theory and the
existence of the Hermite-Humbert constant.

In this work we compute extreme binary Humbert forms for the number
fields Q(

√
13) and Q(

√
17) and the Hermite-Humbert constant γK,2 for

Q(
√

13). In [BCIO] it is shown that finding Hermite-Humbert constants of
real quadratic number fields is tantamount to looking for extreme Humbert
forms. Their existence is proved in [Ica]. Following the precedence of
Voronöı a characterization of extreme Humbert forms is given in [C] by
introducing two properties of extreme Humbert forms, namely perfection
and eutacticity.

Manuscrit reçu le 2 février 2004.
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2. The theoretical background

Let P denote the set of positive real binary Humbert forms, i.e. S =
(S1, S2) ∈ P with positive definite 2 × 2 real matrices S1 and S2. If K
denotes a real quadratic number field and OK its maximal order, we denote
with S[x] the product xtS1x ·x′tS2x

′ for any x ∈ O2
K , where x′ denotes the

conjugate vector of x and we let detS be the product of the determinants
det S1 and detS2. In the same way U ′ denotes the matrix U ∈ K2×2 with
all entries conjugated. Let

m(S) := min {S[x] : 0 6= x ∈ O2
K}

denote the minimum of a given Humbert form S, then

M(S) := {[x] ∈ O2
K | S[x] = m(S)}

denotes a set of equivalence classes

[x] := {y ∈ O2
K | y = εx, ε ∈ O×K}

where the elements of M(S), respectively their representatives, are called
minimal vectors of S. To avoid superfluous notation we denote the elements
[x] of M(S) only with x. If a tuple U := (U1, U2) ∈ GL(2,OK)2 is given we
can make unimodular transformations from a Humbert form S to another
denoted by

S[U ] := (S[U1], S[U2]) := (U t
1S1U1, U

t
2S2U2).

By scaling we mean multiplication of a given Humbert form S = (S1, S2)
with an element λ = (λ1, λ2) ∈ (R>0)2 to obtain another Humbert form

λS := (λ1S1, λ2S2).

We note that for a given Humbert form S the set M(S) is finite which is
shown in [Ica]. The following theorem is due to Humbert([H]). He proved
the existence of Hermite-Humbert constants:

Theorem 1. Let K be a real quadratic number field. Then for any S ∈ P
there is a constant C ∈ R>0 such that

(1) S[x] ≤ C
√

det S ∀x ∈M(S).

The best known upper bounds for C are given in [Co2] and [Ica]. We use
the estimate C ≤ 1

2 |dK | from [Co2]. With theorem 1 we are able to define
a map from P to R>0 in the following way.

Definition & Proposition 2. Let S ∈ P and

γK
: P −→ R>0, γK (S) =

m(S)√
det S

,

then γK is invariant under unimodular transformations and scaling.
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Now we are able to define the Hermite-Humbert constant as

(2) γK,2 = sup
S∈P

γK (S).

Any Humbert form S for which equality holds in (2) is called critical. The
existence of such forms is shown in [Ica]. The value γK (S) of a critical
Humbert form S is a global maximum of γK . Forms for which γK achieves
a local maximum are called extreme. For characterizing extreme forms
we introduce two properties (see [C]): perfection and eutacticity. If S =
(S1, S2) ∈ P and x ∈M(S), then(

xxt

S1[x]
,

x′x′t

S2[x′]

)
is a semi-positive definite Humbert form. The set of such forms of a given
S ∈ P will be denoted with XS . Now perfection means

dim
∑

X∈XS

RX = 5

and eutacticity means that there is a representation

S−1 = (S−1
1 , S−1

2 ) =
∑

X∈XS

ρXX

with ρX ∈ R>0 for all X ∈ XS . The following theorem of [C] characterizes
extreme forms:

Theorem 3. A Humbert form is extreme if and only if it is eutactic and
perfect.

So we get the following corollary ([BCIO]):

Corollary 4. An extreme Humbert form of a real quadratic number field
has at least 5 minimal vectors.

Now we need the definition of equivalence for two Humbert forms:

Definition 5. Two Humbert forms S and T are called equivalent, if there
is a tupel U := (U1, U2) ∈ GL(2,OK)2 with U2 = U ′

1 and

T = S[U ]

or if there is λ = (λ1, λ2) ∈ (R>0)2 such that S = λT .

In [C] it is shown that there are only a finite number of extreme forms
up to equivalence. This suggests we should look for a suitable set of rep-
resentatives for extreme Humbert forms. With the next lemmata we are
able to determine such a set and a finite set M which contains all minimal
vectors for each element of this set. To reduce the amount of necessary
computations we introduce the following definition:
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Definition 6. Two elements x, y ∈ O2
K are called a unimodular pair if

they are a OK-basis of O2
K , i.e. O2

K = OKx⊕OKy.

With ε0 > 1 we denote the fundamental unit and with hK the class
number of a real quadratic number field K. The following lemma is proved
in [BCIO]:

Lemma 7. Let hK = 1. If any extreme Humbert form has a unimodular
pair of minimal vectors then it is equivalent to a form

(3) S =

((
1 b1

b1 c

)
,

(
1 b2

b2 c−1

))
with ε−1

0
≤ c < ε0. The standard basis vectors e1 and e2 are contained in

the set M(S) and for any other minimal vector x = (x1, x2)t ∈ O2
k we have

|NK/Q(x1)| ≤ γK,2 , |NK/Q(x2)| ≤ γK,2

and

|x(1)
2 | <

√
ε0γK,2

|x(2)
1 |

, |x(2)
2 | <

√
ε0γK,2

|x(1)
1 |

.

We denote the obtained set of such representatives with S. In order to
restrict the finite set M of minimal vectors for each element of S we can
make use of the following lemma (see [BCIO]):

Lemma 8. (1) Let S = (S1, S2) ∈ P with

Si =
(

ai bi

bi ci

)
for i = 1, 2 and u = (u1, u2)t ∈ O2

K . Then

|NK/Q(u1)| ≤

√
c1c2S[u]
m(S)2

γK,2 ,

|NK/Q(u2)| ≤

√
a1a2S[u]
m(S)2

γK,2 ,

|u(1)
1 u

(2)
2 | ≤

√
a2c1S[u]
m(S)2

γK,2 ,

|u(2)
1 u

(1)
2 | ≤

√
a1c2S[u]
m(S)2

γK,2 .

(2) Let u = (u1, u2)t, v = (v1, v2)t ∈ O2
K be minimal vectors of S with

v /∈ O×Ku and

U =
(

u1 u2

v1 v2

)
,
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then

|NK/Q(detU)| ≤ γK,2 .

By corollary 4 we know that every extreme Humbert form has at least 5
minimal vectors. Now we are able to compute all possible extreme forms
as follows if we assume that every Humbert form has a unimodular pair of
minimal vectors:

(1) determine the finite set M of all possible minimal vectors for each
element of S.

(2) for any 3-set T = {u1, u2, u3} ⊆M\{e1, e2} we have to solve polyno-
mial equations S[ui] = 1 in the unknowns of S ∈ S where

S =

((
1 b1

b1 c

)
,

(
1 b2

b2 c−1

))

and i = 1, 2, 3.
(3) finally we have to test whether the obtained Humbert forms are eu-

tactic and perfect.

If we have two perfect Humbert forms S and T we need an algorithm
which decides whether T and S are equivalent. We consider two 3-sets
W = {w1, w2, w3} ⊆ M(T ) and V = {v1, v2, v3} ⊆ M(S) of minimal
vectors. If S and T are unimodular equivalent then there is a matrix
U ∈ GL(2,OK) with

(4) Uwi = εivi

for i = 1, 2, 3 and suitable units εi ∈ O×K . Let S and T be two perfect
Humbert forms. Then S and T are equivalent if and only if there exists a
matrix U ∈ GL(2,OK) with U ·M(T ) = M(S).

3. The algorithms

In this section K always denotes a real quadratic number field with
hK = 1 and ε0 > 1 the fundamental unit of the maximal order OK .

We want to develop an algorithm for computing extreme Humbert forms.
The main algorithm splits into several subalgorithms. The first subalgo-
rithm for computing the set M and all 3-sets is algorithm 10. After com-
puting all 3-sets of M we have to compute real solutions of the polyno-
mial equations obtained by all triples of M in order to construct Humbert
forms. Then we compute minimal vectors with algorithm 14 and, if neces-
sary, eutactic coefficients. Finally we test the obtained Humbert forms for
equivalence by algorithm 11.
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Algorithm 9 (Main Algorithm).
Input: The maximal order OK of a real quadratic number field K

Output: A set of all eutactic and perfect Humbert forms of K up to
equivalence having a unimodular pair of minimal vectors

• T ← All 3-sets of M
• H1 ← set of Humbert forms obtained by the real solutions of the

polynomial equations
• H2 ← {S = (S1, S2) ∈ H1 | m(S) = 1}
• H3 ←

{
(h1, h2) | h2 ∈ H2, h1 = set of minimal vectors of h2 and

|h1| > 4
}

• H4 ← {h = (h1, h2) ∈ H3 | h2 is perfect and eutactic }
• H5 ← set of non-equivalent Humbert forms
• Return H5

3.1. Computing of all 3-sets of M . In this section we describe the
algorithm to compute all suitable 3-sets of M . We make use of the results
of lemma 7 and lemma 8. Note that we assume every Humbert form has
got a unimodular pair of minimal vectors.

Algorithm 10 (3-sets of M ).
Input: An integral basis 1, ω of the maximal order OK of a real

quadratic number field K, the fundamental unit ε0

Output: All suitable 3-sets of M

• M ← ∅, X, Y ← {[α] | α ∈ OK with 0 < |NK/Q(α)| ≤ dK
2 }

• For all x ∈ X do
For all y ∈ Y do
if ∃k ∈ Z with |

(
yεk

0

)(1)| <
√

ε0dK

x(2) and |
(
yεk

0

)(2)| < √
ε0dK

x(1) then
M ←M ∪ {(x, yεk

0
)t}

• T ← set of all 3-sets of M

• S ← ∅

• For all A = {αi | αi ∈ O2
K , i = 1, 2, 3} ∈ T do

Ψ← {(αi, αj) ∈ GL(2,K) | i, j ∈ {1, 2, 3}}
If Ψ = ∅ or for any X ∈ Ψ there holds |NK/Q(detX)| > dK

2 then
S ← S ∪ {A}

Else
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For X = (αi, αj) ∈ Ψ (i, j ∈ {1, 2, 3}, i 6= j) do
α← A\{αi, αj}
If λ = (λ1, λ2)t ∈ K2 exists with λ1λ2 = 0 where α = Xλ then

S ← S ∪ {A}

• Return T\S

3.2. Unimodular equivalent Humbert forms. Now we describe an
algorithm which decides whether two perfect Humbert forms S and T are
unimodular equivalent. Let A = {a1, a2, a3} ⊆ M(S) and let us assume
there holds

(5) λ2a2 = a1

with λ2 ∈ K. If λ2 = λ21
λ22

(λ22, λ21 ∈ OK , λ22 6= 0) with gcd(λ22, λ21) = 1
then a1 = λ21µ for some µ ∈ O2

K . Now we get

S[a1] = NK/Q(λ21)2S[µ]

and we obtain |NK/Q(λ21)| = 1 = |NK/Q(λ22)|. Together this means

(6) λ2a2 = a1 ⇒ [a1] = [a2].

The same holds if we change the role of the ai (i = 1, 2, 3). If A =
{a1, a2, a3} ⊆ M(S) and B = {b1, b2, b3} ⊆ M(T ) then let us assume
withous loss of generality the first two elements of A and B are K-linear
independent. Now we have a representation of the third element of each set
in terms of the first two. It is easy to see that if a matrix U ∈ GL(2,OK) ex-
ists fulfilling (4) then for the matrices X := (a1, a2) and Y := (b1, b2) there
holds Y X−1 ∈ GL(2,OK). If we assume the existence of a U ∈ GL(2,OK)
fulfilling (4) we have

U(a1, a2, a3) = (ε1b1, ε2b2, b3) (ε1, ε2 ∈ O×K)

and with a3 = Xλ and b3 = Y µ we get λ = (λ1, λ2)t, µ = (µ1, µ2)t ∈ K2

with λ1, λ2, µ1, µ2 6= 0 because of (6). Now we obtain

ε1 =
µ1

λ1
and ε2 =

µ2

λ2
.

Finally we have to test whether ε1 and ε2 are units in OK and(
(ε1b1, ε2b2)X−1

)
M(S) = M(T ).

Algorithm 11 (Equivalence of Humbert Tuples).
Input: The sets M(S) and M(T ) of two perfect Humbert forms S

and T of a real quadratic number field K

Output: U ∈ GL(2,OK) with U ·M(S) = M(T ) if S and T are
unimodular equivalent, false otherwise
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• S ← ∅

• For all A = {ai | ai ∈ O2
K , i = 1, 2, 3} ⊆M(S)

For all B = {bi | bi ∈ O2
K , i = 1, 2, 3} ⊆M(T ) do

Ψ1 ← {(ai, aj) ∈ GL(2,K) | i, j ∈ {1, 2, 3}}
Ψ2 ← {(bi, bj) ∈ GL(2,K) | i, j ∈ {1, 2, 3}}
For X = (ai, aj) ∈ Ψ1 and Y = (bk, bl) ∈ Ψ2 do

If |NK/Q(det Y X−1)| = 1 then
a← A\{ai, aj}
b← B\{bk, bl}
λ← (λ1, λ2)t ∈ K2 with λ1λ2 6= 0 where a = Xλ
µ← (µ1, µ2)t ∈ K2 with µ1µ2 6= 0 where b = Y µ
ε1 ← µ1

λ1
,

ε2 ← µ2

λ2

If ε1, ε2 ∈ O×K
If (ε1bk, ε2bl)X−1 ·M(S) = M(T ) then

Return((ε1bk, ε2bl)X−1)

• Return false

3.3. Computing minimal vectors. Next we want to compute minimal
vectors of a given S ∈ P. To do this we need a constructive proof for the
finiteness of minimal vectors of a given Humbert form. ( We will need cer-
tain quantities from this proof for the following algorithm which computes
minimal vectors).

Lemma 12. Let S = (S1, S2) ∈ P, C ∈ R>0 and K be a real quadratic
number field. Then the set

(7) {x ∈ O2
K | S1[x] + S2[x′] ≤ C}

is finite.

Proof. For all T ∈ R2×2 we denote with
∥∥T∥∥ the value

min
x 6=0

∥∥Tx
∥∥

2∥∥x∥∥
2

∀ x ∈ R2.

If T is a regular matrix then we have∥∥T∥∥ = min
x 6=0

∥∥Tx
∥∥

2∥∥x∥∥
2

= min
y 6=0

∥∥y∥∥
2∥∥T−1y
∥∥

2

=
∥∥T−1

∥∥−1

2

with y = Tx. If we consider the Cholesky decompositions for Si = Rt
iRi

with Ri ∈ GL(2, R) (i = 1, 2), we get

(8) S1[x] =
∥∥R1x

∥∥2

2
≥
∥∥R1

∥∥2 ∥∥x∥∥2

2
=
∥∥R−1

1

∥∥−2

2

∥∥x∥∥2

2
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and the same holds for S2[x′]. For the computation of
∥∥R−1

i

∥∥
2

we need the
well known estimate∥∥Ri

∥∥
2
≤
(∥∥Ri

∥∥
∞
∥∥Ri

∥∥
1

) 1
2 (i = 1, 2)

and now we get with (8)

S1[x] ≥
∥∥R−1

1

∥∥−2

2

∥∥x∥∥2

2
≥
(∥∥R−1

1

∥∥
∞

∥∥R−1
1

∥∥
1

)−1 ∥∥x∥∥2

2

where the same holds again for S2[x′]. If m := min
i=1,2

(∥∥R−1
i

∥∥
∞

∥∥R−1
i

∥∥
1

)−1

we get with x = (a, b)t ∈ O2
K

(9) m
(
a2 + a′2 + b2 + b′2

)
= m

(∥∥x∥∥2

2
+
∥∥x′∥∥2

2

)
≤ S1[x] + S2[x′] ≤ C

and further

(10) a2 + a′2 = (a, a′)(a, a′)t =

((
1 1
ω ω′

)(
1 ω
1 ω′

))
︸ ︷︷ ︸

:=A

[(a1, a2)t]

with a = a1+a2ω for an integral basis {1, ω} ofOK and a1, a2 ∈ Z. We know
the matrix A is a positive definite form in Z because the trace of integral
elements of a given maximal order are rational integral elements. With (9)
and (10) we obtain for any element z = (x1+x2ω, y2+y2ω)t (x1, x2, y1, y2 ∈
Z) of the set in (7) the condition

(11) A[(x1, x2)t] ≤ C

m
and A[(y1, y2)t] ≤ C

m

and the set of solutions of these inequalities is finite and so the set in (7)
is finite, too. �

The next lemma motivates lemma 12.

Lemma 13. Let S = (S1, S2) ∈ P. Then there exists a constant α ∈
R>0 such that suitable representants of the elements of the set M(S) are
contained in the set

(12)
{
x ∈ O2

K | S1[x] + S2[x′] ≤ α
}
.

Proof. This is an easy consequence of the fact that there is only a finite
number of integers in a given number field with bounded absolute values
of their conjugates. �

With the last two lemmata we are able to compute minimal vectors of a
given S ∈ P.
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Algorithm 14 (Minimal Vectors).
Input: A Humbert form S = (S1, S2) ∈ P, the maximal order OK

with integral basis {1, ω}, α and m as in lemma 12 and
lemma 13

Output: The set J ⊆ O2
K of all minimal vectors of S

• I, J ← ∅

Si ← CSi (i = 1, 2) where Si =
(

ai bi

bi ci

)
and C = (max{a1, a2})−1

ε0 ← the fundamental unit ε of OK with ε > 1

A←
(

TrK/Q(1) TrK/Q(ω)
TrK/Q(ω) TrK/Q(ω2)

)
B ←

(
1 ln|ε20|
1 ln|ε′0

2|

)

• L←
{

(x1, x2)t ∈ O2
K | xi = (xi1 + xi2ω), xi1, xi2 ∈ Z and

A[(xi1, xi2)t] ≤ α
m , (i = 1, 2)

}
• µ← minx∈L S[x]

For x ∈ L do
If S[x] = µ then I ← I ∪ {x}

• For x ∈ I do
k ← n ∈ Z with 0 ≤ λ2 − n < 1 where

λ = (λ1, λ2)t ∈ R2 with Bλ =
(

lnS1[x]
lnS2[x′]

)
J ← J ∪ {xε−k}

• Return J

3.4. Computing eutactic coefficients. For computing eutactic coeffi-
cients we use well known combinatorical algorithms. There exist classical
algorithms to compute barycentric coordinates based on linear program-
ming.

4. Examples

Now we have the theoretical background and the algorithms for comput-
ing extreme Humbert forms. The algorithms are implemented in KASH/KANT
(see [Pohst et al]). To continue we need the following lemma:
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Lemma 15. Let S ∈ P and vi = (αi, βi)t ∈M(S) for 1 ≤ i ≤ s := |M(S)|
and for 1 ≤ i 6= j ≤ s let vij be the determinants of the corresponding pairs:

vij = det
(

αi αj

βi βj

)
.

Then, for a fixed prime ideal p, with corresponding exponential valuation
νp, we have: If {i, j, k} ⊆ {1, . . . , s} is ordered so that

νp(vij) ≥ max(νp(vik), νp(vjk))

then

νp(vij) ≥ νp(vik) = νp(vjk).

Proof. For a proof see [BCIO] �

Now we can use our algorithms to compute the Hermite-Humbert con-
stant for the case K = Q(

√
13). We need the following lemma:

Lemma 16. If K = Q(
√

13) and γK,2 ≤
dK
2 = 6.5 then any Humbert form

S with more than 4 minimal vectors has got a unimodular pair of minimal
vectors.

Proof. Let us assume there is no unimodular pair in M(S). With the
notations of lemma 15 we obtain |NK/Q(det vij)| ≤ γK,2 for each vij by
lemma 8 and because of |M(S)| ≥ 5 we have at least

(
5
2

)
= 10 of the vij .

Because of hK = 1 we can always assume e1 ∈M(S). With v5 := e1 we have
v5i = βi. Because of γK,2 ≤

dK
2 = 6.5 and the assumption above we obtain

νpk
(vij) = 1 for at least k = 1, 2 or 3 where p1 = (2) and p2p3 = (3). At first

we consider without lost of generality the situation νp1(v15) = 1 = νp1(v25)
and vp2(ν35) = 1. That means νp3(v13) = 1 = νp3(v23) because otherwise
we would get a contradiction like νp1(v35) = 1, νp2(v15) = 1 or νp2(v25) = 1.
So we obtain by lemma 15

1 = νp3(v23) ≥ νp3(v12) = νp3(v13)︸ ︷︷ ︸
=1

and then νp3(v12) = 1 = νp1(v12), a contradiction.
Lastly there is the case where all βi are divisible by a single prime ideal.

Without loss of generality let νp1(βi) = 1 for i ∈ {1, . . . , 4}. By assumption
there is νp1(v12) = 1 = νp1(α1β2 − α2β1) = νp1(γ) + νp1(α1ε2 − α2ε1) with
βi = γεi where νp1(γ) = 1, ε1, ε2 ∈ OK are p1-units and γ ∈ OK . Because
of |OK/p1| = 4 and s ≥ 5 we can assume by changing v1 and v2 if necessary
that νp1(α1 − α2) > 0, but then νp1(α1ε2 − α2ε1) > 0, a contradiction. �
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By algorithm 10 we obtain about 4000 triples. Because of lemma 16 we
know each extreme Humbert form must have a unimodular pair of minimal
vectors. We found 770 Humbert forms with more than 4 minimal vectors.
By algorithm 11 we obtain 3 Humbert forms with more than four minimal
vectors up to unimodular equivalence . Their minimal vectors are listed in
the following table:

nr. Minimal vectors without e1 and e2

1
(
−3 + 1+

√
13

2
−2

)
,

(
−2 + 1+

√
13

2

−1 + 1+
√

13
2

)
,

(
1

1 + 1+
√

13
2

)

2

(
−2 + 1+

√
13

2

−1 + 1+
√

13
2

)
,

(
1+
√

13
2

1 + 1+
√

13
2

)
,

(
1

−1− 1+
√

13
2

)
,

(
1

1 + 1+
√

13
2

)

3
(
−3 + 1+

√
13

2
−2

)
,

(
−2 + 1+

√
13

2

−1 + 1+
√

13
2

)
,

(
1+
√

13
2

1 + 1+
√

13
2

)
,

(
2

2 + 1+
√

13
2

)

Remark 17. The Humbert form T resulting from the minimal vectors of
the first row in the table above is an extreme form. But the value of γK (T )
is less then the value of the Humbert form S below. The Humbert form
resulting from the minimal vectors of the third row in the table above has
perfection of dimension 3.

We obtain a critical Humbert form S = (S1, S2) with

S1 =

(
1 −8+

√
13+7

√
7−2

√
91

18
−8+

√
13+7

√
7−2

√
91

18
7−2

√
13−14

√
7+4

√
91

9

)

S2 =

(
1 −8−

√
13−7

√
7−2

√
91

18
−8−

√
13−7

√
7−2

√
91

18
7+2

√
13+14

√
7+4

√
91

9

)
.

with m(S) = 1. For its eutactic coefficients we compute

ρ1 = ρ2 = 9+
√

91
28 , ρ3 = ρ6 = 3(11−

√
91)

70 , ρ4 = ρ5 = 29+
√

91
140

and for its minimal vectors we get M(S)\{x3 := e2, x6 := e1} ={
x1 =

(
−3+

√
13

2
−1+

√
13

2

)
, x2 =

(
1+
√

13
2

3+
√

13
2

)
, x4 =

(
1

−3+
√

13
2

)
, x5 =

(
1

3+
√

13
2

)}
.
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After verifying

S−1 =
6∑

i=1

ρi

(
xix

t
i

S1[x]
,

x′ix
′
i
t

S2[x′]

)
and dim

∑
X∈XS

RX is equal to 5, we get

γK (S) = γK,2 =

√
1476 + 144

√
91

175
= 4.0353243 . . .

because of S being critical.
In the case Q(

√
17) we were not able to show that each extreme Hum-

bert form has a unimodular pair of minimal vectors. But we can use our
algorithms to compute extreme forms with pairs of unimodular minimal
vectors. With Algorithm 10 we compute about 80000 triples. Now we
solve polynomial equations to obtain Humbert forms and compute mini-
mal vectors and if necessary eutactic coefficients. We give an example with
the triple {(

−5+
√

17
2
1

)
,

(
−3+

√
17

2
−1

)
,

(
1
−1

)}
.

If we write a Humbert form S as

S =

((
1 b1

b1 c

)
,

(
1 b2

b2 c−1

))
we obtain for every minimal vector x = (x1, x2)t ∈ O2

K polynomial equa-
tions in c, b1 and b2

S[x]− 1 = 0⇔
(
x2

1 + 2b1x1x2 + cx2
2

) (
cx′21 + 2cb2x

′
1x
′
2 + x′22

)
− c = 0.

We use resultants of polynomials for eliminating b1 and b2 to obtain a
polynomial in c like

f(c) = c6 − 3
2
c5 +

−1360 + 330
√

17
8

c4 +
2970− 720

√
17

4
c3

+
1360− 330

√
17

8
c2 +

−13062 + 3168
√

17
4

c +
4354− 1056

√
17

2
.

Now we obtain by factoring

f(c) =

(
c2 +

16− 4
√

17
2

c +
16
√

17− 66
2

)

·

(
c2 +

1−
√

17
4

c +
−9 +

√
17

8

)
·

(
c2 +

9
√

17− 39
4

+
161− 39

√
17

8

)
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and for g(c) := c2 + (8− 2
√

17)c + 8
√

17− 33 we get

c1,2 = (
√

17− 4)±
√

2(33− 8
√

17).

Because of (−4 +
√

17)2 = 33 − 8
√

17 the solutions c1,2 are in the field
L := Q(

√
17,
√

2) and we obtain by c > 0

c =
√

17− 4 +
√

2
√

17− 4
√

2.

Then we substitute c into the polynomial(
−(128 + 32

√
17)c2 − 16c

)
b2
1

+
(
(264 + 64

√
17)c3 + (64 + 20

√
17)c2 + 8c

)
b1 − (132 + 32

√
17)c4

− (68 + 16
√

17)c3 − (12 + 2
√

17)c2 + (32− 8
√

17)c

to obtain

b2
1 +

(
13
4
−
√

17 +
√

34− 17
4

√
2
)

b1 +

(√
17
2
− 15

8
+

17
√

2
8
−
√

34
2

)
= 0

which leads to b1 = 1
2 . In a last step we substitute the solutions into the

polynomial(
8cb1 − (5 +

√
17)c2 + (−10 + 2

√
17)c

)
b2

+
(
−(10 + 2

√
17)c + (−5 +

√
17)
)

b1 +
21 + 5

√
17

2
c2 + 4c +

21− 5
√

17
2

and obtain

(7
√

17− 29)b2 +
29− 7

√
17

2
= 0

with b2 = 1
2 . Now we get the following Humbert form S = (S1, S2) =((

1 1
2

1
2 −4 +

√
17− 4

√
2 +
√

34

)
,

(
1 1

2
1
2 −4−

√
17 + 4

√
2 +
√

34

))
with m(S) = 1. For the eutactic coefficients we get

ρ1 = ρ2 = ρ3 = ρ4 = 8+
√

34
30 , ρ5 = 14−2

√
34

15

and for the minimal vectors we compute M(S)\{x5 := e1, x3 := e2} ={
x1 :=

(
−5+

√
17

2
1

)
, x2 :=

(
−3+

√
17

2
−1

)
, x4 :=

(
1
−1

)}
.
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Together we obtain

S−1 =
5∑

i=1

ρi

(
xix

t
i

S1[x]
,

x′ix
′
i
t

S2[x′]

)
and dim

∑
X∈XS

RX is equal to 5. Finally we compute

γK (S) =

√
784 + 128

√
34

225
= 2.607989300 . . .

as a local maximum of γK .
In the same way we obtain an extreme Humbert form S = (S1, S2) with

S1 =

(
1 3+5

√
17−3

√
5−
√

85
16

3+5
√

17−3
√

5−
√

85
16

3−
√

5
2

)
,

S2 =

(
1 3−5

√
17+3

√
5−
√

85
16

3−5
√

17+3
√

5−
√

85
16

3+
√

5
2

)
and m(S) = 1. For the eutactic coefficients we get

ρ1 =
12
45

, ρ2 =
44− 2

√
85

45
, ρ3 =

11 +
√

85
45

,

ρ4 =
12
45

, ρ5 =
11 +

√
85

45

and for the minimal vectors we compute M(S)\{x5 := e1, x3 := e2}={
x1 :=

(
3−
√

17
2
1

)
, x2 :=

(
5−
√

17
2

3−
√

17
2

)
, x4 :=

(
1

−3−
√

17
2

)}
.

Together we obtain

S−1 =
5∑

i=1

ρi

(
xix

t
i

S1[x]
,

x′ix
′
i
t

S2[x′]

)
and dim

∑
X∈XS

RX is equal to 5. Finally We compute

γK (S) =

√
1408 + 128

√
85

405
= 2.527919014 . . .
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