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On the exceptional set of Lagrange’s equation

with three prime and one almost–prime variables

par Doychin TOLEV

Résumé. Nous considérons une version affaiblie de la conjecture
sur la représentation des entiers comme somme de quatre carrés
de nombres premiers.

Abstract. We consider an approximation to the popular con-
jecture about representations of integers as sums of four squares
of prime numbers.

1. Introduction and statement of the result

The famous theorem of Lagrange states that every non–negative integer
n can be represented as

(1.1) x2
1 + x2

2 + x2
3 + x2

4 = n,

where x1, . . . , x4 are integers. There is a conjecture, which asserts that
every sufficiently large integer n, such that n ≡ 4 (mod 24), can be repre-
sented in the form (1.1) with prime variables x1, . . . , x4. This conjecture
has not been proved so far, but there are various approximations to it
established.

We have to mention first that in 1938 Hua [9] proved the solvability of
the corresponding equation with five prime variables. In 1976 Greaves [3]
and later Shields [19] and Plaksin [18] proved the solvability of (1.1) with
two prime and two integer variables (in [18] and [19] an asymptotic formula
for the number of solutions was found).

In 1994 Brüdern and Fouvry [2] considered (1.1) with almost–prime vari-
ables and proved that if n is large enough and satisfies n ≡ 4 (mod 24) then
(1.1) has solutions in integers of type P34. Here and later we denote by
Pr any integer with no more than r prime factors, counted according to
multiplicity. Recently Heath–Brown and the author [8] proved that, under
the same conditions on n, the equation (1.1) has solutions in one prime and
three P101 – almost–prime variables and also in four P25 – almost–prime
variables. These results were sharpened slightly by the author [21], who
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established the solvability of (1.1) in one prime and three P80 – almost–
primes and, respectively, in four P21 – almost–primes.

There are several papers, published during the last years, devoted to
the study of the exceptional set of the equation (1.1) with prime variables.
Suppose that Y is a large real number and denote by E1(Y ) the number
of positive integers n ≤ Y satisfying n ≡ 4 (mod 24) and which cannot
be represented in the form (1.1) with prime variables x1, . . . , x4. In 2000
J.Liu and M.-C. Liu [16] proved that E1(Y ) � Y 13/15+ε, where ε > 0 is
arbitrarily small. This result was improved considerably by Wooley [22],
who established that E1(Y ) � Y 13/30+ε. Recently L. Liu [15] established
that E1(Y ) � Y 2/5+ε.

In the paper [22] Wooley obtained other interesting results, concerning
the equation (1.1). We shall state one of them. Denote by R(n) the number
of solutions of (1.1) in three prime and one integer variables. It is expected
that R(n) can be approximated by the expression 1

2 π
2 S(n)n (log n)−3,

where S(n) is the corresponding singular series (see [22] for the definition).
Wooley proved that the set of integers n, for which R(n) fails to be close
to the expected value, is remarkably thin. More precisely, let ψ(t) be any
monotonically increasing and tending to infinity function of the positive
variable t, such that ψ(t) � (log t)B for some constant B > 0. Let Y be a
large real number and denote by E∗(Y, ψ) the number of positive integers
n ≤ Y such that∣∣∣R(n) − 1

2
π2 S(n)n (log n)−3

∣∣∣ > n (log n)−3 ψ(n)−1.

Theorem 1.2 of [22] asserts that

E∗(Y, ψ) � ψ(Y )4 (log Y )6.

We note that if the integer n satisfies

(1.2) n ≡ 3, 4, 7, 12, 15 or 19 (mod 24) ,

then
1 � S(n) � log log n.

Therefore, if E2(Y ) denotes the number of positive integers n ≤ Y , satis-
fying (1.2) and which cannot be represented in the form (1.1) with three
prime and one integer variables, then

(1.3) E2(Y ) � (log Y )6+ε

for any ε > 0.
The purpose of the present paper is to obtain an estimate of almost the

same strength as (1.3) for the exceptional set of the equation (1.1) with
three prime and one almost–prime variables. We shall prove the following
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Theorem. Let Y be a large real number and denote by E(Y ) the number
of positive integers n ≤ Y satisfying n ≡ 4 (mod 24) and which cannot be
represented in the form

(1.4) p2
1 + p2

2 + p2
3 + x2 = n ,

where p1, p2, p3 are primes and x = P11. Then we have

(1.5) E(Y ) � (log Y )1053 .

As one may expect, the proof of this result is technically more compli-
cated than the proof of Theorem 1.2 of [22]. We use a combination of the
circle method and the sieve methods.

In the circle method part we apply the approach of Wooley [22], adapted
for our needs. On the set of minor arcs we apply the method of Klooster-
man, introduced in the classical paper [14]. This technique was, actually,
applied also by Wooley in the estimation of the sums T1 and T2 in section 3
of [22]. In his analysis, however, only Ramanujan’s sums appear, whiles in
our situation we have to deal with much more complicated sums, defined
by (8.19). Fortunately, these sums differ very slightly from sums considered
by Brüdern and Fouvry [2], so we can, in fact, borrow their result for our
needs.

The sieve method part is rather standard. We apply a weighted sieve
with weights of Richert’s type and proceed as in chapter 9 of Halberstam
and Richert’s book [4].

In many places we omit the calculations because they are similar to those
in other books or papers, or because they are standard and straightforward.
We note that one can obtain slightly stronger result (with smaller power
in (1.5) and with variable x having fewer prime factors) by means of more
elaborate computational work.

Acknowledgement. The main part of this paper was written during the
visit of the author to the Institute of Mathematics of the University of
Tsukuba. The author would like to thank the Japan Society of Promotion
of Science for the financial support and to the staff of the Institute for the
excellent working conditions. The author is especially grateful to Professor
Hiroshi Mikawa for the interesting discussions and valuable comments.

The author would like to thank also Professor Trevor Wooley for inform-
ing about his paper [22] and providing with the manuscript.

2. Notations and some definitions

Throughout the paper we use standard number–theoretic notations. As
usual, µ(n) denotes the Möbius function, ϕ(n) is the Euler function, Ω(n)
is the number of prime divisors of n, counted according to multiplicity,
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τ(n) is the number of positive divisors of n. The greatest common divisor
and, respectively, the least common multiple of the integers m1,m2 are
denoted by (m1,m2) and [m1,m2]. However, if u and v are real numbers
then (u, v) means the interval with endpoints u and v. The meaning is
always clear from the context. We use bold style letters to denote four–
dimensional vectors. The letter p is reserved for prime numbers. If p > 2
then

(
·
p

)
stands for the Legendre symbol. To denote summation over the

positive integers n ≤ Z we write
∑

n≤Z . Furthermore,
∑

x(q), respectively,∑
x(q)∗ means that x runs over a complete, respectively, reduced system of

residues modulo q. By [α] we denote the integer part of the real number α,
e(α) = e2πiα and eq(α) = e(α/q).

We assume that ε > 0 is an arbitrarily small positive number and A
is an arbitrarily large number; they can take different values in different
formulas. Unless it is not specified explicitly, the constants in the O –
terms and � – symbols depend on ε and A. For positive U and V we write
U � V as an abbreviation of U � V � U .

Let N be a sufficiently large real number. We define

(2.1) X = N1/2 , P = Xδ for some constant δ ∈ (0, 9/40) ,

(2.2) Q = NP−1(logN)−E , M = X(logN)−4E−4 ,

where E > 1 is a large constant, which we shall specify later.
To apply the sieve method we need information about the number of

solutions of (1.4) in integers x lying in arithmetical progressions and in
primes p1, p2, p3. For technical reasons we attach logarithmic weights to
the primes and a smooth weight to the variable x. More precisely, we
consider the function

(2.3) ω0(t) =

{
exp

(
1

(20t−10)2−1

)
if t ∈ (9/20, 11/20) ,

0 otherwise

and let

(2.4) ω(x) = ω0(xX−1) .

For any integer n ∈ (N/2, N ] and for any squarefree integer k, such that
(k, 6) = 1, we define

(2.5) I(n, k) =
∑

p2
1+p2

2+p2
3+x2=n

M<p1,p2,p3≤X
x≡0 (mod k)

(log p1) (log p2) (log p3)ω(x) .

We expect that this quantity can be approximated, at least on average, by
the expression

(2.6) Σ(n, k) =
π

4
X2 κ(n) k−1 S(n, k) ,
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which arises as a mean term when we apply formally the circle method.
The quantity κ(n) from the right–hand side of (2.6) comes from the

singular integral and is defined by

(2.7) κ(n) =
∫ ∞

−∞
ω0(t)

(
nN−1 − t2

)1/2
dt .

Having in mind (2.3) we see that

(2.8) κ(n) � 1 for n ∈ (N/2, N ] .

Furthermore, S(n, k) comes from the singular series and is defined by

(2.9) S(n, k) =
∞∑

q=1

f(q, n, k) ,

where

(2.10) f(q, n, k) = (q, k) q−1 ϕ(q)−3
∑
a(q)∗

Sk(q, a)S∗(q, a)3 eq(−an) ,

(2.11) Sk(q, a) =
∑
x(q)

x≡0 (mod (q,k))

eq(ax2) , S∗(q, a) =
∑
x(q)∗

eq(ax2) .

We shall consider S(n, k) in detail in the next section.

3. Some properties of the sum S(n, k)

It is not difficult to see that the function f(q, n, k), defined by (2.10), is
multiplicative with respect to q. We shall compute it for q = pl.

From this point onwards we assume that the integers n and k satisfy

(3.1) n ≡ 4 (mod 24) , (6, k) = 1 , µ(k) 6= 0 .

Then we have

(3.2) f(2l, n, k) =


0 if l = 1 ,
1 if l = 2 ,
2 if l = 3 ,
0 if l > 3 .

Furthermore, if p > 2 is a prime, then

(3.3) f(pl, n, k) = 0 for l > 1
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and

(3.4) f(p, n, k) =


h1(p, n) if p - kn ,
h2(p) if p - k , p | n ,
h3(p, n) if p | k , p - n ,
h4(p) if p | k , p | n ,

where the quantities hj are defined by

h1(p, n) =
−1

(p− 1)3

{
p

(
1 + 3

(−n
p

))
+ 3

(−1
p

)
+

(n
p

)}
,(3.5)

h2(p) =
1

(p− 1)2

{
p+ 3

(−1
p

)}
,(3.6)

h3(p, n) =
1

(p− 1)3

{
p2

(−n
p

)
+ 3p

((−1
p

)
+

(n
p

))
+ 1

}
,(3.7)

h4(p) =
−1

(p− 1)2

{
3p

(−1
p

)
+ 1

}
.(3.8)

The proof of formulas (3.2) – (3.8) is standard and uses only the basic
properties of the Gauss sums (see Hua [10], chapter 7, for example). We
leave the verification to the reader.

From (3.2) – (3.8) we easily get

(3.9) f(q, n, k) � τ4(q) q−2 (q, kn) .

This estimate implies that the series (2.9) is absolutely convergent. We
apply Euler’s identity and we use (3.1) – (3.5) to obtain

S(n, k) = 8
∏
p>3

(
1 + f(p, n, k)

)
.

From this formula and (3.4), after some rearrangements, we get

(3.10) S(n, k) = 8ξ(n)ψn(k) ,

where

(3.11) ξ(n) =
∏
p>3

(
1 + h1(p, n)

) ∏
p|n

1 + h2(p)
1 + h1(p, 0)

,

(3.12) ψn(k) =
∏
p|k

ψn(p)
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and where

(3.13) ψn(p) =


1 + h3(p, n)
1 + h1(p, n) if p - n ,

1 + h4(p)
1 + h2(p)

if p | n .

From (3.1), (3.5) – (3.8), (3.11) and (3.13) we obtain the estimates

(3.14) 1 � ξ(n) � log log n ,

(3.15) 0 < ψn(p) < 5 if p ≥ 7 or if p = 5 and 5 - n ,

(3.16) ψn(5) = 0 if 5 | n

and

(3.17) ψn(p) = 1 +O
(1
p

)
,

where the constant in the O –term in the last formula is absolute. We leave
the easy verification of formulas (3.14) – (3.17) to the reader.

Let us note that from (3.10), (3.12) and (3.16) it follows

(3.18) S(n, k) = 0 if 5 | (n, k) ,

which we, of course, expect, having in mind the definition (2.5) of I(n, k)
and the conditions (3.1).

4. Proof of the Theorem

A central rôle in the proof of the Theorem plays the following Proposi-
tion, which asserts that the difference between the quantities I(n, k) and
Σ(n, k), defined by (2.5) and (2.6), is small on average with respect to n
and k.

Proposition. Suppose that the set F consists of integers n ∈ (N/2, N ],
satisfying the congruence n ≡ 4 (mod 24), and denote by F the cardinality
of F . Let γ(k) be a real valued function, defined on the set of positive
integers and such that

(4.1) γ(k) = 0 if (6, k) > 1 or µ(k) = 0

and

(4.2) |γ(k)| ≤ τ(k) .

Suppose also that

(4.3) D = Xη for some constant η ∈ (0, 1/8)
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and consider the sum

(4.4) E =
∑
k≤D

γ(k)
∑
n∈F

(
I(n, k)− Σ(n, k)

)
.

Then we have

(4.5) E � F 3/4X2 (logN)262 + F X2 (logN)−E .

The constant in Vinogradov’s symbol depends only on the constants δ,
E, and η, included, respectively, in (2.1), (2.2) and (4.3).

We shall prove the Proposition in sections 5 – 8. In this section we shall
use it to establish the Theorem.

Let F be the set of integers n ∈ (N/2, N ] satisfying n ≡ 4 (mod 24) and
which cannot be represented in the form (1.4) with primes p1, p2, p3 and
with x = P11. Let F be the cardinality of F . We shall establish that

(4.6) F � (logN)1052 .

Obviously, this implies the estimate (1.5).
To study the equation (1.4) with an almost–prime variable x we apply a

weighted sieve of Richert’s type.
Let η, ν, ν1, θ be constants such that

(4.7) 0 < θ , 0 < η < 1/8 , 0 < ν < ν1 , ν + ν1 < η .

Denote

(4.8) z = Xν , z1 = Xν1 , D = Xη

and

(4.9) P =
∏

3<p<z

p .

Consider the sum

(4.10) Γ =
∑
n∈F

∑
p2
1+p2

2+p2
3+x2=n

M<p1,p2,p3≤X
(x,P)=1

(log p1) (log p2) (log p3)ω(x) ∆(x; θ, ν, ν1) ,

where

(4.11) ∆(x) = ∆(x; θ, ν, ν1) = 1− θ
∑

z≤p<z1

p|x

(
1− log p

log z1

)
.

It is clear that

(4.12) Γ ≤ Γ1 ,
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where Γ1 is the contribution of the terms for which ∆(x) > 0. We decom-
pose Γ1 as

(4.13) Γ1 = Γ2 + Γ3 ,

where Γ2 is the contribution of the terms with x ≡ 0 (mod p2) for some
prime p ∈ [z, z1) and where Γ3 comes from the other terms.

We note that the congruence condition n ≡ 4 (mod 24) and the size
conditions on pi in the domain of summation in (4.10) imply that there
are no terms with (6, x) > 1 counted in Γ and, respectively, in Γ3. Hence
the condition (x,P) = 1 from the domain of summation in (4.10) can be
replaced by (x, 6P) = 1. Furthermore, if x is squarefree with respect to the
prime numbers p ∈ [z, z1), if (x, 6P) = 1 and ∆(x) > 0, then

(4.14) Ω(x) < θ−1 + ν−1
1 .

For explanation we refer the reader to Halberstam and Richert [4], chap-
ter 9, p.256.

From this point onwards we assume also that

(4.15) θ−1 + ν−1
1 < 12 .

Then using (4.14), (4.15) and the definition of the set F we conclude that
the sum Γ3 is empty, i.e.

(4.16) Γ3 = 0 .

Indeed, if this were not true, then for some n ∈ F the equation (1.4) would
have a solution p1, p2, p3, x with x satisfying (4.14). However, this is not
possible due to (4.15) and the definition of F .

It is easy to estimate Γ2 from above. We have

Γ2 � (logN)3
∑
n∈F

∑
z≤p<z1

∑
p2
1+p2

2+p2
3+x2=n

x≡0 (mod p2)

1

� (logN)3
∑
n∈F

∑
z≤p<z1

∑
l≤n

( ∑
p2
1+p2

2=l

1
) ∑

p2
3+x2=n−l

x≡0 (mod p2)

1

� N ε
∑
n∈F

∑
z≤p<z1

∑
x,y≤X

x≡0 (mod p2)

1

� N ε F (X2z−1 + z1X)

and, having in mind (4.7) and (4.8), we get

(4.17) Γ2 � FX2−ε .

From (4.12), (4.13), (4.16) and (4.17) it follows that

(4.18) Γ +O(FX2−ε) ≤ 0 .
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We shall now estimate Γ from below. Using (4.10) and (4.11) we repre-
sent it in the form

(4.19) Γ = Γ4 − θΓ5 ,

where

(4.20) Γ4 =
∑
n∈F

∑
p2
1+p2

2+p2
3+x2=n

M<p1,p2,p3≤X
(x,P)=1

(log p1) (log p2) (log p3)ω(x)

and where Γ5 comes from the second term in the right–hand side of (4.11).
Changing the order of summation we get

Γ5 =
∑

z≤p<z1

(
1− log p

log z1

) ∑
n∈F

(4.21)

×
∑

p2
1+p2

2+p2
3+x2=n

M<p1,p2,p3≤X
(x,P)=1

x≡0 (mod p)

(log p1) (log p2) (log p3)ω(x) .

To find a non–trivial lower bound for Γ we have to estimate Γ4 from below
and Γ5 from above. We shall apply Rosser’s sieve (see Iwaniec [12], [13]).

First we get rid of the condition (x,P) = 1 from the domains of summa-
tion in (4.20) and (4.21) by introducing the weight

(4.22)
∑

d|(x,P)

µ(d) =

{
1 if (x,P) = 1 ,
0 otherwise .

Denote by λ−(d) the lower Rosser function of order D and for each prime
p ∈ [z, z1) denote by λ+

p (d) the upper Rosser function of order D/p. They
satisfy

|λ−(d)| ≤ 1 , λ−(d) = 0 if µ(d) = 0 or d > D ,(4.23)

|λ+
p (d)| ≤ 1 , λ+

p (d) = 0 if µ(d) = 0 or d > D/p(4.24)

and

(4.25)
∑

d|(x,P)

λ−(d) ≤
∑

d|(x,P)

µ(d) ≤
∑

d|(x,P)

λ+
p (d) .
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Furthermore, let f(s) and F (s) be the functions of the linear sieve. We
consider separately the cases 5 | n and 5 - n and use (3.15) – (3.17), (4.7) –
(4.9) to find that∑

d|P
5-(d,n)

λ−(d)
d

ψn(d) ≥ N(n)
{
f
( logD

log z

)
+O

(
(logN)−1/3

)}
,(4.26)

∑
d|P

5-(d,n)

λ+
p (d)
d

ψn(d) ≤ N(n)
{
F

( log(D/p)
log z

)
+O

(
(logN)−1/3

)}
,(4.27)

where

(4.28) N(n) =
∏
p|P

(
1− ψn(p)

p

)
� (logN)−1 .

For the definition and properties of Rosser’s functions and the functions
f(s), F (s) as well as for explanation of (4.23) – (4.27) we refer the reader
to Iwaniec [12], [13].

Consider the sum Γ4. From (2.5), (4.20), (4.22), (4.23) and (4.25) we get

(4.29) Γ4 ≥ Γ6 ,

where

Γ6 =
∑
n∈F

∑
p2
1+p2

2+p2
3+x2=n

M<p1,p2,p3≤X

(log p1) (log p2) (log p3)ω(x)
∑

d|(x,P)

λ−(d)

=
∑
k≤D

γ′(k)
∑
n∈F

I(n, k)

and where

(4.30) γ′(k) =

{
λ−(k) if k | P ,
0 otherwise .

Consider now Γ5. Using (4.21), (4.22) and (4.25) we find that

(4.31) Γ5 ≤ Γ7 ,

where Γ7 comes from the quantity from the right–hand side of (4.25).
Changing the order of summation and applying (2.5), (4.9) and (4.24) we
write Γ7 in the form

Γ7 =
∑
k≤D

γ′′(k)
∑
n∈F

I(n, k) ,
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where

(4.32) γ′′(k) =
∑

z≤p<z1

∑
d|P

dp=k

(
1− log p

log z1

)
λ+

p (d) .

Using (4.8), (4.9), (4.23), (4.24), (4.30) and (4.32) we see that both func-
tions γ′(k) and γ′′(k) satisfy the conditions (4.1) and (4.2). We consider
the sums

(4.33) Γ8 =
∑
k≤D

γ′(k)
∑
n∈F

Σ(n, k) , Γ9 =
∑
k≤D

γ′′(k)
∑
n∈F

Σ(n, k)

and using the Proposition we conclude that

(4.34) |Γ6 − Γ8| , |Γ7 − Γ9| � F 3/4X2 (logN)262 + F X2 (logN)−E .

According to (4.19), (4.29), (4.31) and (4.34) we have

(4.35) Γ ≥ Γ8 − θΓ9 +O
(
F 3/4X2 (logN)262

)
+O

(
F X2 (logN)−E

)
.

Consider more precisely the sums Γ8 and Γ9. From (2.6), (3.10), (3.18),
(4.30) and (4.33) it follows that

(4.36) Γ8 = 2πX2
∑
n∈F

κ(n) ξ(n)
∑
k|P

5-(k,n)

λ−(k)
k

ψn(k)

and, respectively, we apply (2.6), (3.10), (3.18) and (4.33) to get

(4.37) Γ9 = 2πX2
∑
n∈F

κ(n) ξ(n)
∑
k≤D

5-(k,n)

γ′′(k)
k

ψn(k) .

Furthermore, according to (3.12), (4.24) and (4.32) we have

(4.38)
∑
k≤D

5-(k,n)

γ′′(k)
k

ψn(k) =
∑

z≤p<z1

ψn(p)
p

(
1− log p

log z1

) ∑
d|P

5-(d,n)

λ+
p (d)
d

ψn(d) .

From (2.8), (3.14) – (3.17), (4.26) – (4.28) and (4.36) – (4.38) we obtain

Γ8 − θΓ9 ≥ 2πX2
∑
n∈F

κ(n) ξ(n)(4.39)

×N(n)
{

Φ(η, ν, ν1, θ) +O
(
(logN)−1/3

)}
,

where

Φ(η, ν, ν1, θ) = f
( logD

log z

)
− θ

∑
z≤p<z1

1
p

(
1− log p

log z1

)
F

( log(D/p)
log z

)
.
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Now we apply the arguments of Halberstam and Richert [4], chapter 9,
p. 246 and we find

(4.40) Φ(η, ν, ν1, θ) = Φ0(η, ν, ν1, θ) +O
(
(logN)−1

)
,

where

Φ0(η, ν, ν1, θ) = f(ην−1)− θ

∫ ν−1

ν−1
1

F
(
ν−1

(
η − 1

t

)) (
1− 1

ν1t

) dt
t
.

We specify the constants included by

(4.41) θ = 1.5 , η = 0.12499 , ν = 0.03125 , ν1 = 0.09373 .

It is easy to see that they satisfy the conditions (4.7) and (4.15). Further-
more, using Lemma 9.1 of Halberstam and Richert [4], we can verify that
if η, ν, ν1 and θ are specified by (4.41), then

(4.42) Φ0(η, ν, ν1, θ) > 0 .

From (2.8), (3.14), (4.28), (4.39), (4.40) and (4.42) we get

(4.43) Γ8 − θΓ9 ≥ c0 F X
2 (logN)−1 ,

where c0 > 0 is a constant. Inequalities (4.18), (4.35) and (4.43) imply

(4.44) F X2 (logN)−1 � F 3/4X2 (logN)262 + F X2 (logN)−E .

We are now in a position to apply the main idea of Wooley [22]. Since
E > 1 we can omit the second term from the right–hand side of (4.44). We
get

F X2 (logN)−1 � F 3/4X2 (logN)262 ,

which implies the estimate (4.6) and proves the Theorem.

5. The proof of the Proposition — beginning

We represent the sum I(n, k), defined by (2.5), in the form

(5.1) I(n, k) =
∫ 1

0
S3(α) fk(α) e(−nα) dα ,

where

(5.2) S(α) =
∑

M<p≤X

(log p) e(αp2) , fk(α) =
∑
x∈Z

x≡0 (mod k)

ω(x) e(αx2) .

The integration in (5.1) can be taken over any interval of length one and,
in particular, over

J0 =
(
(1 + [X])−1 , 1 + (1 + [X])−1

]
.
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We represent J0 as an union of disjoint Farey intervals

J0 =
⋃

q≤X

q⋃
a=1

(a,q)=1

B(q, a) ,

where

(5.3) B(q, a) =
( a
q
− 1
q(q + q′)

,
a

q
+

1
q(q + q′′)

]
and where q′ and q′′ are specified by the conditions

(5.4) X < q+q′, q+q′′ ≤ q+X ; aq′ ≡ 1 (mod q) , aq′′ ≡ −1 (mod q)

(for more details we refer the reader, for example, to Hardy and Wright [5],
chapter 7).

Consider the set

(5.5) M =
⋃
q≤P

q⋃
a=1

(a,q)=1

N(q, a) ,

where

(5.6) N(q, a) =
( a
q
− 1
qQ

,
a

q
+

1
qQ

]
.

It is clear that if 1 ≤ a ≤ q ≤ P , (a, q) = 1, then N(q, a) ⊂ B(q, a), hence
we can represent J0 in the form

(5.7) J0 = M∪m,

where

(5.8) m = m1 ∪m2 ,

(5.9) m1 =
⋃
q≤P

q⋃
a=1

(a,q)=1

(
B(q, a) \N(q, a)

)
, m2 =

⋃
P<q≤X

q⋃
a=1

(a,q)=1

B(q, a) .

Hence we have

(5.10) I(n, k) = I1 + I2 ,

where

(5.11) I1 =
∫
M
S3(α) fk(α) e(−nα) dα , I2 =

∫
m
S3(α) fk(α) e(−nα) dα .

From (4.4), (5.10) and (5.11) we see that the sum E can be represented
as

(5.12) E = E1 + E2 ,
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where

(5.13) E1 =
∑
k≤D

γ(k)
∑
n∈F

(
I1 − Σ(n, k)

)
, E2 =

∑
k≤D

γ(k)
∑
n∈F

I2 .

To prove the Proposition we have to estimate the sums E1 and E2. We shall
consider E1 in section 6 and E2 – in sections 7 and 8.

6. The estimation of the sum E1

We apply Lemma 3.1 of Wooley [22], which is based on the earlier result
of Bauer, Liu and Zhan [1]. It states that if the set M is defined by (5.5),
then for any integer h such that 1 ≤ h ≤ N , we have∫

M
S3(α) e(−hα) dα =

π

4
S∗(h, P )h1/2(6.1)

+O
(
( |S∗(h, P )|+ 1 )X (logN)−2E

)
,

where

(6.2) S∗(h, P ) =
∑
q≤P

ϕ(q)−3
∑
a(q)∗

S∗(q, a)3 eq(−ah) .

Using (5.2) and (5.11) we write I1 in the form

I1 =
∑
x∈Z

x≡0 (mod k)

ω(x)
∫
M
S3(α) e(−α(n− x2)) dα .

We now apply (2.3), (2.4) and (6.1) to get

(6.3) I1 = I
(1)
1 +O

(
I

(2)
1

)
,

where

I
(1)
1 =

π

4

∑
x∈Z

x≡0 (mod k)

ω(x) S∗(n− x2, P ) (n− x2)1/2 ,(6.4)

I
(2)
1 = X (logN)−2E

∑
x≤ 2

3
X

x≡0 (mod k)

(
|S∗(n− x2, P )|+ 1

)
.(6.5)

We note that, due to the choice of our weight ω(x), it is not necessary to
consider analogs of formula (6.1) for non–positive integers h, as it was done
in [22].

Using (4.2), (5.13) and (6.3) we find

(6.6) E1 = E(1)
1 +O

(
E(2)

1

)
,
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where

(6.7) E(1)
1 =

∑
k≤D

γ(k)
∑
n∈F

(
I

(1)
1 −Σ(n, k)

)
, E(2)

1 =
∑
k≤D

τ(k)
∑
n∈F

I
(2)
1 .

Consider first E(2)
1 . It was established in [22] that

(6.8) S∗(h, P ) � τ(h) logP ,

so, using (2.1), (6.5), (6.7) and (6.8) we find

(6.9) E(2)
1 � X (logN)−2E+1

∑
n∈F

Hn ,

where
Hn =

∑
k≤D

τ(k)
∑

x≤ 2
3
X

x≡0 (mod k)

τ(n− x2) .

It is clear that

Hn =
∑

x≤ 2
3
X

( ∑
k≤D
k|x

τ(k)
)
τ(n− x2) ≤

∑
x≤ 2

3
X

τ2(x) τ(n− x2)

≤
∑

x≤ 2
3
X

τ4(x) +
∑

x≤ 2
3
X

τ2(n− x2) .

Applying Theorem 3 of Hua [11] we find

(6.10) Hn � X(logN)B

for some absolute constant B > 0. From (6.9) and (6.10) we conclude that
if E ≥ B + 1, which we shall assume, then

(6.11) E(2)
1 � F X2 (logN)−E .

Consider now the sum E(1)
1 . First we apply (6.2) and (6.4) to write the

expression I(1)
1 in the form

(6.12) I
(1)
1 =

π

4

∑
q≤P

ϕ(q)−3
∑
a(q)∗

S∗(q, a)3W (n, k, q, a) ,

where

W = W (n, k, q, a) =
∑
x∈Z

x≡0 (mod k)

ω(x) eq(−a(n− x2)) (n− x2)1/2 .

Furthermore, we have

(6.13) W =
∑
m(q)

m≡0 (mod (k,q))

eq(a(m2 − n))W ∗(n, k, q, a) ,
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where

(6.14) W ∗ = W ∗(n, k, q, a) =
∑
x∈Z

x≡0 (mod k)
x≡m (mod q)

ω(x) (n− x2)1/2 .

Obviously, if (k, q) - m, then W ∗ = 0. If (k, q) | m, then there exists
unique h = hm,q,k (mod [k, q]), such that the system of congruences in the
domain of summation of (6.14) is equivalent to x ≡ h (mod [k, q]). We
apply Poisson’s summation formula and use (2.3) and (2.4). After some
calculations we get

W ∗ =
X2

[k, q]

∑
l∈Z

e
( lh

[k, q]

) ∫ ∞

−∞
ω0(t) (nN−1 − t2)1/2 e

(
− lX

[k, q]
t
)
dt .

If |l| ≥ 1 then we integrate the last integral by parts m times. Having in
mind the conditions k ≤ D, q ≤ P and using (2.1) and (4.3) we find that
the integral is

�
( |l|X

[k, q]

)−m
� |l|−mX−m/2 ,

where the constant in Vinogradov’s symbol depends only on m. From this
observation we conclude that the contribution to W ∗, coming from the
terms with |l| ≥ 1, is negligible. More precisely, we have

(6.15) W ∗ =
X2

[k, q]
κ(n) +O(X−A) ,

where κ(n) is defined by (2.7) and where the constant A > 0 is arbitrarily
large.

From (2.10), (2.11), (6.12), (6.13) and (6.15) we get

I
(1)
1 =

π

4
X2 κ(n) k−1

∑
q≤P

f(q, n, k) +O(X−A) .

It remains to take into account also (2.6), (2.8), (2.9) and (3.9) and we find

I
(1)
1 = Σ(n, k) +O

(
X2+ε k−1 P−1

)
.

This formula and (2.1), (4.2), (6.7) imply

(6.16) E(1)
1 � F X2+ε P−1 � F X2−ε .

We note that any, arbitrarily small positive value of the constant δ from
the definition of P , suffices for the proof of the last estimate. This happens
wherever P occurs, so any progress in obtaining asymptotic formulas of
type (6.1) for larger sets of major arcs is not relevant to our problem.

Finally, from (6.6), (6.11) and (6.16) we obtain the estimate

(6.17) E1 � F X2 (logN)−E .
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7. The estimation of the sum E2

Using (5.11) and (5.13) we represent the sum E2 in the form

E2 =
∫

m
S3(α)H(α)K(−α) dα ,

where

(7.1) H(α) =
∑
k≤D

γ(k) fk(α) , K(α) =
∑
n∈F

e(αn) .

Applying Hölder’s inequality we get

E2 �
∫

m
|S3(α)H(α)K(−α) | dα(7.2)

� F 1/2

∫
m
|S(α)|3 |H(α)| |K(α)|1/2 dα

� F 1/2 T
3/4
1 T

1/4
2 ,

where

(7.3) T1 =
∫

m
|S(α)|4 dα , T2 =

∫
m
|H(α)|4 |K(α)|2 dα .

For T1 we apply the well known estimate

(7.4) T1 �
∫ 1

0
|S(α)|4 dα� X2 (logN)7 .

Consider T2. From (7.1) and (7.3) we get

T2 =
∫

m
|H(α)|4

∑
n1,n2∈F

e(α(n1 − n2)) dα(7.5)

= F

∫
m
|H(α)|4 dα+

∑
n1,n2∈F
n1 6=n2

∫
m
|H(α)|4 e(α(n1 − n2)) dα

� F

∫ 1

0
|H(α)|4 dα+ F 2 max

1≤l≤N
|Φ(l)| ,

where

(7.6) Φ(l) =
∫

m
|H(α)|4 e(αl) dα .

To estimate the first term from the last line of (7.5) we apply the in-
equality

(7.7)
∫ 1

0
|H(α)|4 dα� X2 (logN)1027 .

Its proof is very similar to the proof of formula (4.3) from author’s pa-
per [20], so we omit it.
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In the next section we shall estimate Φ(l) and we shall prove that

(7.8) max
1≤l≤N

|Φ(l)| � D4X3/2+ε +X2+ε P−1/2 .

From (2.1), (4.3), (7.5), (7.7) and (7.8) we obtain

(7.9) T2 � F X2 (logN)1027 + F 2X2−ε .

Applying (7.2), (7.4) and (7.9) we get

(7.10) E2 � F 3/4X2 (logN)262 + F X2−ε .

It remains to combine (5.12), (6.17) and (7.10) and we find that the
estimate (4.5) holds, which proves the Proposition.

8. The estimation of Φ(l)

For any integers a, q, satisfying 1 ≤ a ≤ q ≤ X, (a, q) = 1, we consider
the set M(q, a), defined by

(8.1) M(q, a) =


(
− 1

q(q+q′) ,
1

q(q+q′′)

]
\

(
− 1

qQ , 1
qQ

]
if q ≤ P ,

(
− 1

q(q+q′) ,
1

q(q+q′′)

]
if P < q ≤ X ,

where the integers q′ and q′′ are specified by (5.4). Using (5.3), (5.6), (5.8),
(5.9), (7.6) and (8.1) we find that

(8.2) Φ(l) =
∑
q≤X

∑
a(q)∗

∫
M(q,a)

∣∣∣H(a
q

+ β
) ∣∣∣4 e(l(a

q
+ β

))
dβ .

If q ≤ X, |β| ≤ (qX)−1 and k ≤ X, then we have

(8.3) fk

(a
q

+ β
)

=
X

qk

∑
|m|≤kXε

S(q, ak2,m) I
(
βN,−Xn

qk

)
+O(X−A) ,

where

S(q, h,m) =
∑
x(q)

eq(hx2 +mx) ,(8.4)

I(β, u) =
∫ ∞

−∞
ω0(x) e(βx2 + ux) dx .(8.5)

Formula (8.3) is a special case of Lemma 12 from the paper [8] by Heath–
Brown and the author.
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From (7.1) and (8.3) it follows that the integrand in (8.2) can be repre-
sented in the form

X4

q4

∑
k1,...,k4≤D

γ(k1) . . . γ(k4)
k1 . . . k4

∑
n∈Nk

eq(al)Sk(q, a,n)(8.6)

× e(βl) Ik(βN,Xq−1n) + O(X−A) ,

where

(8.7) Nk = { n ∈ Z4 : |ni| ≤ kiX
ε , i = 1, 2, 3, 4 } ,

Sk(q, a,n) = S(q, ak2
1, n1)S(q, ak2

2, n2)(8.8)

× S(q,−ak2
3,−n3)S(q,−ak2

4,−n4) ,

Ik(γ,u) = I(γ,−u1k
−1
1 ) I(γ,−u2k

−1
2 )(8.9)

× I(−γ, u3k
−1
3 ) I(−γ, u4k

−1
4 )

and where n, k and u are four dimensional vectors with components, re-
spectively, ni, ki and ui, i = 1, 2, 3, 4.

We substitute the expression (8.6) for the integrand in (8.2). Then, in
order to apply Kloosterman’s method, we change the order of integration
and summation over a. We find that

Φ(l) = X4
∑
q≤X

q−4
∑

k1,...,k4≤D

γ(k1) . . . γ(k4)
k1 . . . k4

(8.10)

×
∑

n∈Nk

∫
β∈∆q

∑
a(q)∗

M(q,a)3β

eq(al)Sk(q, a,n)

× e(βl) Ik(βN,Xq−1n) dβ + O(X−A) ,

where

(8.11) ∆q =


(
− 1

qX , 1
qX

]
\

(
− 1

qQ , 1
qQ

]
if q ≤ P ,

(
− 1

qX , 1
qX

]
if P < q ≤ X .

To proceed further we have to express the condition M(q, a) 3 β in more
convenient form. We do this in a standard way by introducing a function
σ(v, q, β), defined for integers q, v such that 1 ≤ q ≤ X, −q/2 < v ≤ q/2
and real numbers β ∈ [−(qX)−1, (qX)−1]. For fixed v and q this function
is integrable with respect to β and satisfy

(8.12) |σ(v, q, β)| ≤ (1 + |v|)−1 for all v, q, β .
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Furthermore, if (a, q) = 1, if a (mod q) is defined by aa ≡ 1 (mod q) and
if q′ and q′′ are specified by (5.4), then

(8.13)
∑

− q
2
<v≤ q

2

σ(v, q, β) eq(av) =

{
1 if β ∈

(
− 1

q(q+q′) ,
1

q(q+q′′)

]
,

0 otherwise .

A construction of a function with these properties is available, for example,
in Heath–Brown [7], section 3.

Using (8.13) we can express the condition M(q, a) 3 β from the domain
of summation in (8.10).

If P < q ≤ X, then, according to (8.1), (8.11) and (8.13), we find that

(8.14)
∫

β∈∆q

∑
a(q)∗

M(q,a)3β

· · · =
∫

β∈∆q

∑
a(q)∗

∑
− q

2
<v≤ q

2

σ(v, q, β) eq(a v) . . . .

If q ≤ P then we integrate over β ∈ ∆q =
(
− 1

qX ,
1

qX

]
\

(
− 1

qQ ,
1

qQ

]
,

hence, having in mind (8.1), we see that the condition M(q, a) 3 β in (8.10)
is equivalent to

(
− 1

q(q+q′) ,
1

q(q+q′′)

]
3 β. Therefore we can use again (8.13)

to obtain (8.14).
We conclude that Φ(l) can be written in the form

Φ(l) = X4
∑
q≤X

q−4
∑

k1,...,k4≤D

γ(k1) . . . γ(k4)
k1 . . . k4

(8.15)

×
∑

n∈Nk

∫
β∈∆q

∑
− q

2
<v≤ q

2

σ(v, q, β) e(βl)

× Ik(βN,Xq−1n)W(q,k,n, l, v) dβ +O(X−A) ,

where

(8.16) W = W(q,k,n, l, v) =
∑
a(q)∗

eq(av + al)Sk(q, a,n) .

Using (4.1), (4.2), (8.12) and (8.15) we find that

Φ(l) � X4
∑
q≤X

q−4
∑

k1,...,k4≤D

′ τ(k1) . . . τ(k4)
k1 . . . k4

∑
n∈Nk

(8.17)

×
∑
|v|≤X

(1 + |v|)−1 T (q,k,n) |W(q,k,n, l, v)| ,

where
∑′ means that the summation is taken over squarefree odd ki and

(8.18) T = T (q,k,n) =
∫

β∈∆q

| Ik(βN,Xq−1n) | dβ .
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Consider the sum W. From (8.4), (8.8) and (8.16) we see that it can be
written as

W =
∑

x1,...,x4(q)

∑
a(q)∗

eq

(
a
(
k2

1x
2
1 + k2

2x
2
2 − k2

3x
2
3 − k2

4x
2
4

)
(8.19)

+ av + al + n1x1 + n2x2 − n3x3 − n4x4

)
.

In this form the sum W is very similar to a sum, considered by Brüdern
and Fouvry [2]. Applying the method, developed for the proof of Lemma 1
from [2], we find that if ki are squarefree odd integers, then

(8.20) W � q5/2+ε
{

(q, l) (q, k2
1) . . . (q, k2

4)
}1/2

.

Consider the quantity T , defined by (8.18). Obviously

(8.21) T (q,k,n) � X−2

∫ ∞

−∞
|Ik(γ,Xq−1n)| dγ .

Applying (8.5), (8.7), (8.9), (8.21) and Lemma 10(ii) of [8] we get

(8.22) T (q,k,n) � X−3+ε q
( 4∑

i=1

|ni|
ki

)−1
for n 6= 0 , n ∈ Nk .

If n = 0 and P < q ≤ X, then we use (8.5), (8.9), (8.21) and apply the
well known estimate

(8.23) I(β, u) � min
(
1, |β|−1/2

)
.

We get

(8.24) T (q,k,0) � X−2 for P < q ≤ X .

If n = 0 and q ≤ P , then we use (2.2), (8.11), (8.18) and (8.23) to obtain

(8.25) T (q,k,0) � X−2

∫ ∞

X2/(qQ)

dβ

β2
� q X−2 P−1 for q ≤ P .

From (8.17) we find that

(8.26) Φ(l) � Φ1 + Φ2 + Φ3 ,

where Φ1 is the contribution of the terms from the right–hand side of (8.17)
such that n 6= 0, Φ2 comes from the terms with n = 0 and P < q ≤ X
and, finally, Φ3 comes from the terms for which n = 0 and q ≤ P .
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To estimate Φ1 we use (8.20) and (8.22) and we get

Φ1 � X1+ε
∑
q≤X

q−1/2 (q, l)1/2
∑

k1,...,k4≤D

τ(k1) . . . τ(k4)
k1 . . . k4

×
(
(q, k2

1) . . . (q, k
2
4)

)1/2
∑

n∈Nk
n6=0

( 4∑
i=1

|ni|
ki

)−1
.

After some standard calculations, which are very similar to those in sec-
tion 5 of [8], we obtain

(8.27) Φ1 � D4X3/2+ε .

We leave the verification of this estimate to the reader.
For Φ2 we apply (8.20) and (8.24) to get

Φ2 � X2+ε
∑

P<q≤X

q−3/2 (q, l)1/2
( ∑

k≤D

τ(k) (q, k)
k

)4
(8.28)

� X2+ε P−1/2 .

To estimate Φ3 we apply, respectively, (8.20) and (8.25) and we find

Φ3 � X2+ε P−1
∑
q≤P

q−1/2 (q, l)1/2
( ∑

k≤D

τ(k) (q, k)
k

)4
(8.29)

� X2+ε P−1/2 .

The estimate (7.8) is a consequence of (8.26) – (8.29).
This proves the Proposition and now the proof of the Theorem is com-

plete.

Added in proof: Two interesting results, concerning the quantity E1(Y ),
defined in section 1, appeared since the present paper was submitted for
publication. J.Liu, Wooley and Yu [17] established the estimate E1(Y ) �
Y 3/8+ε and very recently Harman and Kumchev [6] proved that E1(Y ) �
Y 5/14+ε.
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