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On elementary equivalence, isomorphism and

isogeny

par Pete L. CLARK

Résumé. Motivé par un travail récent de Florian Pop, nous étu-
dions les liens entre trois notions d’équivalence pour des corps
de fonctions: isomorphisme, équivalence élémentaire et la condi-
tion que les deux corps puissent se plonger l’un dans l’autre, ce
que nous appelons isogénie. Certains de nos résulats sont pure-
ment géométriques: nous donnons une classification par isogénie
des variétiés de Severi-Brauer et des quadriques. Ces résultats
sont utilisés pour obtenir de nouveaux exemples de “équivalence
élémentaire entraine isomorphisme”: pour toutes les courbes de
genre zéro sur un corps de nombres et pour certaine courbe de
genre un sur un corps de nombres, incluant des courbes qui ne
sont pas des courbes elliptiques.

Abstract. Motivated by recent work of Florian Pop, we study
the connections between three notions of equivalence of function
fields: isomorphism, elementary equivalence, and the condition
that each of a pair of fields can be embedded in the other, which
we call isogeny. Some of our results are purely geometric: we
give an isogeny classification of Severi-Brauer varieties and quadric
surfaces. These results are applied to deduce new instances of
“elementary equivalence implies isomorphism”: for all genus zero
curves over a number field, and for certain genus one curves over
a number field, including some which are not elliptic curves.

1. Introduction

Throughout this paper k shall stand for a perfect field, with fixed alge-
braic closure k and absolute Galois group gk. Unless otherwise specified,
by a variety V/k we shall mean a nonsingular geometrically irreducible
projective k-variety.

Manuscrit reçu le 29 juillet 2004.



30 Pete L. Clark

1.1. The elementary equivalence versus isomorphism problem. A
fundamental problem in arithmetic algebraic geometry is to classify vari-
eties over a field k up to birational equivalence, i.e., to classify finitely gen-
erated field extensions K/k up to isomorphism. On the other hand, there
is the model-theoretic notion of elementary equivalence of fields – written
as K1 ≡ K2 – i.e., coincidence of their first-order theories. Model theo-
rists well know that elementary equivalence is considerably coarser than
isomorphism: for any infinite field F there exist fields of all cardinalities
elementarily equivalent to F as well as infinitely many isomorphism classes
of countable fields elementarily equivalent to F .

However, the fields elementarily equivalent to a given field F produced
by standard model-theoretic methods (Lowenheim-Skolem, ultraproducts)
tend to be rather large: e.g., any field elementarily equivalent to Q has infi-
nite absolute transcendence degree [10]. It is more interesting to ask about
the class of fields elementarily equivalent to a given field and satisfying
some sort of finiteness condition. This leads us to the following

Question 1. Let K1, K2 be function fields with respect to a field k. Does
K1 ≡ K2 =⇒ K1

∼= K2?

On the model-theoretic side, we work in the language of fields and not in
the language of k-algebras – i.e., symbols for the elements of k \ {0, 1} are
not included in our alphabet. However, in the geometric study of function
fields one certainly does want to work in the category of k-algebras. This
turns out not to be a serious obstacle, but requires certain circumlocutions
about function fields, which are given below.

By a function field with respect to k we mean a field K for which
there exists a finitely generated field homomorphism ι : k → K such that
k is algebraically closed in K, but the choice of a particular ι is not given.
Rather, such a choice of ι is said to give a k-structure on K, and we use
the customary notation K/k to indicate a function field endowed with a
particular k-structure. Suppose that ϕ : K1 → K2 is a field embedding
of function fields with respect to k. If k has the property that every field
homomorphism k → k is an isomorphism – and fields of absolute tran-
scendence degree zero have this property – then we can choose k-structures
compatibly on K1 and K2 making ϕ into a morphism of k-algebras: indeed,
take an arbitrary k-structure ι1 : k → K1 and define ι2 = ϕ ◦ ι1.

Question 1 was first considered for one-dimensional function fields over
an algebraically closed base field by Duret (with subsequent related work
by Pierce), and for arbitrary function fields over a base field which is either
algebraically closed or a finite extension of the prime subfield (i.e., a finite
field or a number field) by Florian Pop. They obtained the following results:
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Theorem 1. (Duret [6], Pierce [16]) Let k be an algebraically closed field,
and K1, K2 be one-variable function fields with respect to k such that K1 ≡
K2.
a) If the genus of K1 is different from 1, then K1

∼= K2.
b) If the genus of K1 is one, then so also is the genus of K2, and the
corresponding elliptic curves admit two isogenies of relatively prime degrees.

The conclusion of part b) also allows us to deduce that K1
∼= K2 in most

cases, e.g. when the corresponding elliptic curve E1/k has End(E1) = Z.
The absolute subfield of a field K is the algebraic closure of the prime

subfield (Fp or Q) in K. It is easy to see that two elementarily equivalent
fields must have isomorphic absolute subfields.

Theorem 2. (Pop [17]) Let K1, K2 be two function fields with respect to
an algebraically closed field k such that K1 ≡ K2. Then:
a) K1 and K2 have the same transcendence degree over k.
b) If K1 is of general type, K1

∼= K2.

We recall that having general type means that for a corresponding pro-
jective model V/k with k(V ) = K, the linear system given by a sufficiently
large positive multiple of the canonical class gives a birational embedding
of V into projective space. For curves, having general type means precisely
that the genus is at least two, so Theorem 2 does not subsume but rather
complements Theorem 1.

Pop obtains even stronger results (using the recent affirmative solution
of the Milnor conjecture on K-theory and quadratic forms) in the case of
finitely generated function fields.

Theorem 3. (Pop [17]) Let K1, K2 be two finitely generated fields with
K1 ≡ K2. Then there exist field homomorphisms ι : K1 → K2 and ι′ :
K2 → K1. In particular, K1 and K2 have the same absolute transcendence
degree.

Let K be a finitely generated field with absolute subfield isomorphic to
k. Then, via a choice of k-structure, K/k is the field of rational functions
of a variety V/k.

Corollary 4. Let K1/k be a function field of general type over either a
number field or a finite field. Then any finitely generated field which is
elementarily equivalent to K1 is isomorphic to K1.

Proof: By Theorem 3, there are field homomorphisms ϕ1 : K1 → K2 and
ϕ2 : K2 → K1, so ϕ = ϕ2◦ϕ1 gives a field homomorphism from K1 to itself.
If we choose k-structures ιi : k ↪→ Ki, on K1 and K2, then it need not be
true that ϕ gives a k-automorphism. But since k is a finite extension of its
prime subfield k0, Aut(k/k0) is finite, and some power Φ = ϕk of ϕ induces
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the identity automorphism of k. In other words, there exists a dominant
rational self-map Φ : V1/k → V1/k. By a theorem of Iitaka [9, §5.4], when
V has general type such a map must be birational. Hence (ϕ2 ◦ ϕ1)k is
an isomorphism of fields, which implies that ϕ2 is surjective, i.e., gives an
isomorphism from K2 to K1. This completes the proof.

1.2. Isogeny of function fields. Thus Theorem 3 is “as good as” The-
orem 2. But actually it is better, in that one can immediately deduce that
elementary equivalence implies isomorphism from a weaker hypothesis than
general type.

Definition: We say that two fields K1 and K2 are field-isogenous if there
exist field homomorphismsK1 → K2 andK2 → K1 and denote this relation
byK1 ∼ K2. If for a fieldK1 we haveK1 ∼ K2 =⇒ K1

∼= K2, we sayK1 is
field-isolated. If K1 and K2 are function fields with respect to k, they are
k-isogenous, denoted K1 ∼k K2, if for some choice of k-structure ι1 on K1

and ι2 on K2, there exist k-algebra homomorphisms ϕ1 : K1/k → K2/k and
ϕ2 : K2/k → K1/k. We say K1 is k-isolated if K1 ∼k K2 =⇒ K1

∼= K2.
Finally, if K1/k and K2/k are k-algebras, we say K1 is isogenous to K2

if there exist k-algebra homomorphisms ϕ1 : K1 → K2, ϕ2 : K2 → K1.
The distinction between field-isogeny and k-isogeny is a slightly unpleas-

ant technicality. It is really the notion of isogeny of k-algebras which is
the most natural (i.e., the most geometric), whereas for the problem of ele-
mentary equivalence versus isomorphism, Theorem 3 gives us field-isogeny.
There are several ways around this dichotomy. The most extreme is to
restrict attention to base fields k without nontrivial automorphisms, the
so-called rigid fields. These include Fp, R, Qp, Q and “most” number
fields. In this case, all k-structures are unique and we get the following
generalization of Corollary 4.

Corollary 5. Let K be a function field with respect to its absolute subfield
k and assume that k is rigid. Then if K is k-isolated, any finitely generated
field elementarily equivalent to K is isomorphic to K.

The assumption of a rigid base is of course a loss of generality (which is
not necessary, as will shortly become clear), but it allows us to concentrate
on the purely geometric problem of classifying function fields K/k up to
isogeny. In particular, which function fields are isolated? Which have finite
isogeny classes?

We make some general comments on the notion of isogeny of function
fields:

a) The terminology is taken from the theory of abelian varieties: indeed
if K1, K2 are function fields of polarized abelian varieties A1, A2, then
they are isogenous in the above sense if and only if there is a surjective
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homomorphism of group schemes with finite kernel ϕ : A1 → A2 (the point
being that in this case there is also an isogeny from A2 to A1).
b) By a model V/k for a function field K/k, we mean a nonsingular pro-
jective variety with k(V ) ∼= K. Thus the assertion that every function
field has a model relies on resolution of singularities, which is known at
present for transcendence degree at most two in all characteristics (Zariski,
Abhyankar) and in arbitrary dimension in characteristic zero (Hironaka).
None of our results – with the single exception of Proposition 6d), which is
itself not used in any later result – are conditional on resolution of singu-
larities.

We can express the notion of isogeny of two function fields K1/k and
K2/k in terms of any models V1 and V2 by saying that there are generically
finite rational maps ι : V1 → V2 and ι′ : V2 → V1.

As usual in classification problems, the easiest way to show that two
fields K1 and K2 are not isogenous is not to argue directly but rather to
find some invariant that distinguishes between them. It turns out that the
isogeny invariants we use are actually field-isogeny invariants.

Proposition 6. Let k be a field. The following properties of a function
field K/k are isogeny invariants. Moreover, when K is a function field with
respect to its absolute subfield k, then they are also field-isogeny invariants.
a) The transcendence degree of K/k.
b) When k has characteristic zero, the Kodaira dimension of a model V/k
for K.
c) For any model V/k of K, the rational points V (k) are Zariski-dense.
d) (assuming resolution of singularities) For any nonsingular model V/k of
K, there exists a k-rational point.

Proof: Part a) follows from the basic theory of transcendence bases. As for
part b), the first thing to say is that it is false in characteristic 2: there
are unirational K3 surfaces [3]. However in characteristic zero, if X → Y
is a generically finite rational map of algebraic varieties, then the Kodaira
dimension of Y is at most the Kodaira dimension of X. Moreover, the
Kodaira dimension is independent of the choice of k-structure.

For part c), If X → Y is a generically finite rational map of k-varieties
and the rational points on X are Zariski-dense, then so too are the rational
points on Y , so the Zariski-density of the rational points is an isogeny
invariant. Moreover, if σ is an automorphism of k, then the natural map
V → V σ = V ×σ k is an isomorphism of abstract schemes which induces a
continuous bijection V (k) → V σ(k). It follows that the Zariski-density of
the rational points is independent of the choice of k-structure.

For the last part, we recall the theorem of Nishimura-Lang [14]: let
X → Y be a rational map from an irreducible k-variety to a proper k-
variety; if X has a smooth k-rational point, then Y has a k-rational point.
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Let ι : K1 → K2 be a k-embedding of function fields (as in part c), the
desired conclusion is independent of the choices of k-structure, so we may
make choices such that ι is a k-map). Invoking resolution of singularities,
let V1 be a smooth proper k-model for K1. From V1 and ι we get an induced
model V2 of K2, namely the normalization of V1 in K2, together with a k-
morphism V2 → V1. The variety V2 is normal but not necessarily smooth;
however, by resolution of singularities there exists an everywhere defined
birational map Ṽ2 → V2, where Ṽ2/k is a smooth proper model. In all we
get a k-morphism of nonsingular varieties Ṽ2 → V1. Our assumption is that
Ṽ2(k) 6= ∅ (Nishimura-Lang assures that this condition is independent of
the choice of the model), so we have V1(k) 6= ∅, which was to be shown.

The “invariants” of Proposition 6 are really only useful in analyzing the
isogeny classes of varieties V/k without k-rational points. For instance, two
elliptic function fields Q(E1) and Q(E2) have the same invariants a), b),
c), d) if and only if the groups E1(Q) and E2(Q) are both finite or both
infinite: this is a feeble way to try to show that two elliptic curves are not
isogenous.

1.3. The Brauer kernel. In addition to the isogeny invariants of the
previous subsection, we introduce another class of invariants of a function
field k(V ), a priori trivial if V (k) 6= ∅, and having the advantage that their
elementary nature is evident (rather than relying on the recent proof of the
Milnor conjecture): the Brauer kernel.

Let V/k be a (complete nonsingular, geometrically irreducible, as always)
variety over any field k, and recall the exact sequence

(1) 0 → Pic(V ) → Pic(V/k)(k) α→ Br(k)
β→ Br(k(V ))

where Pic(V ) denotes the Picard group of line bundles on the k-scheme V
and Pic(V/k) denotes the group scheme representing the sheafified Picard
group, so that in particular Pic(V )(k) = Pic(V/k)gk gives the group of
geometric line bundles which are linearly equivalent to each of their Galois
conjugates. The map α gives the obstruction to a k-rational divisor class
coming from a k-rational divisor, which lies in the Brauer group of k. One
way to derive (1) is from the Leray spectral sequence associated to the étale
sheaf Gm and the morphism of étale sites induced by the structure map
V → Spec k. For details on this, see [2, Ch. IX].

We denote by κ = ker(β) = image(α) the Brauer kernel of V . Some
of its useful properties are: since a k-rational point on V defines a section
of β, V (k) 6= ∅ implies κ = 0. Moreover, since it is defined in terms of
the function field k(V ), it is a birational invariant of V . The subgroup κ
depends on the k-structure on k(V ) as follows: if σ is an automorphism
of k, then the Brauer kernel of V σ = V ×σ k is σ(κ). If k is a finite field,
κ = 0 (since Br(k) = 0).
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If k is a number field, then κ is a finite group, being an image of the
finitely generated group Pic(V )(k) in the torsion group Br(k). Moreover
the Galois conjugacy class of κ ⊂ Br(k) is an elementary invariant of
K = k(V ): knowing the conjugacy class of κ is equivalent to knowing which
finite-dimensional central simple k-algebras B (up to conjugacy) become
isomorphic to matrix algebras in K. But if [B : k] = n, B ⊗k K can be
interpreted in K (up to gk-conjugacy) via a choice of a k-basis b1, . . . , bn
of B and n3 structure constants clij ∈ k coming from the equations bi ·
bj =

∑n
l=1 c

l
ijbl and the clij themselves represented in terms of the minimal

polynomial for a generator of k/Q. Then we can write down the statement
that B⊗kK ∼= Mn(K) as the existence of an n2×n2 matrix A with nonzero
determinant and such that A(bi · bj) = A(bi) ·A(bj) for all 1 ≤ i, j ≤ n.1

Moreover, for any finite extension l/k, the conjugacy class of the Brauer
kernel of V/l (which can be nontrivial even when κ(V/k) = 0) is again an
elementary invariant of k(V ).

If k(V1) → k(V2) is an embedding of function fields, then clearly κ(V1) ⊂
κ(V2). It follows that the Brauer kernel is an isogeny invariant, and the
Galois-conjugacy class of the Brauer kernel is a field-isogeny invariant.

1.4. Statement of results. We begin with a result relating isomorphism,
isogeny, Brauer kernels and elementary equivalence of function fields of
certain geometrically rational varieties.

Theorem 7. For any field k and any positive integer n, let SBn be the set
of function fields of Severi-Brauer varieties of dimension n over k and Qn

the class of function fields of quadric hypersurfaces of dimension n over k.
a) Let K1, K2 ∈ SBn be cyclic elements.2 The following are equivalent:
i) K1

∼= K2.
ii) K1 and K2 are isogenous.
iii) K1 and K2 have equal Brauer kernels.
b) If K1, K2 ∈ Qn, n ≤ 2 and the characteristic of k is not two, the
following are equivalent:
i) K1

∼= K2.
ii) K1 and K2 are isogenous (as k-algebras).
iii) K1 and K2 have equal Brauer kernels, and for every quadratic extension
l/k, lK1 and lK2 have equal Brauer kernels.
c) Let K1 ∈ SBn and K2 ∈ Qn, n > 1. Assume the characteristic of k is
not two. The following are equivalent:
i) K1

∼= K2
∼= k(t1, . . . , tn) are rational function fields.

1In fact one can see that the conjugacy class of the Brauer kernel is an elementary invariant

whenever k is merely algebraic over its prime subfield.
2A Severi-Brauer variety X/k is said to be cyclic if its corresponding division algebra D/k

has a maximal commutative subfield l such that l/k is a cyclic (Galois) extension.
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ii) K1
∼= K2.

iii) K1 and K2 are isogenous.
iv) K1 and K2 have equal Brauer kernels.

Corollary 8. Suppose k is algebraic over its prime subfield. Let K1 ≡ K2

be two function fields satisfying the hypotheses of part a), part b) or part
c) of the theorem. Then K1

∼= K2.

Proof of Corollary 8: By the discussion of Section 1.3, the elementary equiv-
alence of K1 and K2 imply that their Brauer kernels are Galois conjugate.
It follows that for any choice of k-structure on K1, there exists a unique
k-structure on K2 such that we have κ(K1/k) = κ(K2/k). The theorem
then implies that K1

∼=k K2 as k-algebras with this choice of k-structure;
a fortiori they are isomorphic as abstract fields.

When n = 1, SB1 = Q1 and this class can be described equally well
in terms of genus zero curves, quaternion algebras and ternary quadratic
forms. The essential content of the theorem when n = 1 is that the Brauer
kernel of a genus zero curve which is not P1 is cyclic of order two, generated
by the corresponding quaternion algebra (Theorem 11). This fundamental
result was first proved by Witt [21].

It is well-known that the cyclicity hypothesis is satisfied for all elements
of the Brauer group of a local or global field and for any field when n ≤ 2.
Assuming a conjecture of Amitsur – see part c) of Theorem 12 – part a) of
the theorem is valid for all Severi-Brauer function fields.

Corollary 9. Let k be a number field and K a genus zero, one-variable
function field with respect to k. Then any finitely generated field elemen-
tarily equivalent to K is isomorphic to K.

Proof of Corollary 9: Let L be a finitely generated field such that L ≡ K.
Theorem 3 applies to show that there exist field embeddings ι1 : L ↪→ K
and ι2 : K ↪→ L. By an appropriate choice of k-structures, we may view ι2
as a k-algebra morphism, hence corresponding to a morphism of algebraic
curves CK → CL. By Riemann-Hurwitz, CL has genus zero, so the result
follows from Corollary 8.

Unfortunately the proof of Corollary 9 does not carry over to higher-
dimensional rational function fields. Indeed, consider the case of K =
k(t1, . . . , tn) = k(Pn), a rational function field. Then the isogeny class of
K is precisely the class of n-variable function fields which are unirational
over k. When n = 1 every k-unirational function field is k-rational, as
is clear from the Riemann-Hurwitz formula and the proof of Corollary 9
(and is well known in any case: Luroth’s theorem). If k is algebraically
closed of characteristic zero, then k-unirational surfaces are k-rational, an
often-noted conseqeuence of the classification of complex algebraic surfaces
[7, V.2.6.1]. However, for most non-algebraically closed fields this is false,
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as follows from work of Segre and Manin. Indeed, let K = k(S) be the
function field of a cubic hypersurface in P3. Then K is unirational over
k if and only if for any model S, S(k) 6= ∅ [13, 12.11]; recall that all our
varieties are smooth. So for all a ∈ k×, the cubic surface

Sa : x3
0 + x3

1 + x3
2 + ax3

3 = 0

is unirational over k. Segre showed that Sa is k-rational if and only if
a ∈ k×3; this was sharpened considerably by Manin [13, p. 184] to: k(Sa) ∼=
k(Sb) if and only if a/b ∈ k×3. Thus for any field in which the group of
cube classes k×/k×3 is infinite, the isogeny class of k(P2) is infinite.

Among one-dimensional arithmetic function fields, Question 1 is open
only for genus one curves. By exploring the notion of an “isogenous pair of
genus one curves” and adapting the argument of Pierce [16] in our arith-
metic context, we are able to show that elementary equivalence implies
isomorphism for certain genus one function fields.

Theorem 10. Let K = k(C) be the function field of a genus one curve
over a number field k, with Jacobian elliptic curve J(C). Suppose all of the
following hold:
• J(C) does not have complex multiplication over k.
• Either J(C) is k-isolated or J(C)(k) is a finite group.
• The order of C in H1(k, J(C)) is 1, 2, 3, 4, or 6.
Then any finitely generated field elementarily equivalent to K is isomorphic
to K.

Acknowledgements: The elementary equivalence versus isomorphism
problem was the topic of a lecture series and student project led by Flo-
rian Pop at the 2003 Arizona Winter School. In particular Corollary 9
and Theorem 10 address questions posed by Pop. It is a pleasure to ac-
knowledge stimulating conversations with Professor Pop and many other
mathematicians at the Arizona conference, among them Abhinav Kumar,
Janak Ramakrishnan, Bjorn Poonen and Soroosh Yazdani. I thank Ambrus
Pal and J.-L. Colliot-Thélène for useful remarks on geometrically rational
surfaces.

2. Curves of genus zero

The key to the case n = 1 in Theorem 7 is the following classical (but
still not easy) result of Witt [21] computing the Brauer kernel of a genus
zero curve.

Theorem 11. (Witt) Let C/k be a genus zero curve over an arbitrary field
k. The Brauer kernel of k(C) is trivial if and only if C ∼= P1. Otherwise
κ(k(C)) = {1, BC} with BC a quaternion algebra over k. Moreover the
assignment C 7→ BC gives a bijection from the set of isomorphism classes
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of genus zero curves without k-rational points to the set of isomorphism
classes of division quaternion algebras over k.

If we grant this result of Witt, the proof of Theorem 7 for function fields
of genus zero curves follows immediately: the Brauer kernel of a genus
zero curve classifies the curve up to isomorphism (and hence its function
field up to k-algebra isomorphism). Moreover, the Brauer kernel is an
isogeny invariant, so genus zero curves are isogenous if and only if they are
isomorphic.

We remark that Witt’s theorem gives something a bit stronger than the
k-isolation of the function field of a genus zero curve: it shows that a genus
zero curve without k-rational point is not dominated by any nonisomorphic
genus zero curve.

We give two “modern” approaches to Witt’s theorem: via Severi-Brauer
varieties and via quadratic forms. We admit that part of our goal is ex-
pository: we want to bring out the analogy between the Brauer group (of
division algebras) and the Witt ring (of quadratic forms) of a field k and
especially between two beautiful theorems, of Amitsur on the Brauer group
side and of Cassels-Pfister on the Witt ring side.

3. Severi-Brauer varieties

Since the automorphism groups of Mn(k) and Pn−1(k) are both
PGLn+1(k), Galois descent gives a correspondence between twisted forms
ofMn(k) – the n2-dimensional central simple k-algebras – and twisted forms
of Pn−1, the Severi-Brauer varieties of dimension n − 1. In particular, to
each Severi-Brauer variety V/k we can associate a class [V ] in the Brauer
group of k, such that two Severi-Brauer varieties of the same dimension V1

and V2 are isomorphic over k if and only if [V1] = [V2] ∈ Br(k).
As for the birational geometry of Severi-Brauer varieties, we have the

following result [1].

Theorem 12. (Amitsur) Let V1, V2 be two Severi-Brauer varieties of equal
dimension over a field k, and for i = 1, 2 let Ki = k(Vi) be the corresponding
function field, the so-called generic splitting field of Vi.
a) The subgroup Br(K1/k) of division algebras split by K1 is generated by
[V1].
b) It follows that if V1 and V2 are k-birational, then [V1] and [V2] generate
the same cyclic subgroup of Br(k).
c) If the division algebra representative for V1 has a maximal commutative
subfield which is a cyclic Galois extension of k, then the converse holds:
if [V1] and [V2] generate the same subgroup of Br(k), then V1 and V2 are
k-birational.



On elementary equivalence, isomorphism and isogeny 39

Amitsur conjectured that the last part of this theorem should remain
valid for all division algebras. As mentioned above, there has been some
progress on this up to the present day [11], but the general case remains
open.
Proof of Theorem 7 for cyclic Severi-Brauer varieties: let V1/k and V2/k
be cyclic Severi-Brauer varieties of dimension n. By Amitsur’s Theorem
(Theorem 12), κ(V1) = κ(V2) if and only if k(V1) ∼=k k(V2). As in the
one-dimensional case, it follows that each of these conditions is equivalent
to k(V1) and k(V2) being isogenous. Finally, when k is the absolute subfield
of k(V1) and k(V2), it follows from Theorem 3 that k(V1) ≡ k(V2).

4. Quadric hypersurfaces

In this section the characteristic of k is different from 2. Our second
approach to Witt’s theorem (Theorem 11) is via the quadratic form(s)
associated to a genus zero curve.

4.1. Background on quadratic forms. We are going to briefly review
some vocabulary and results of quadratic forms; everything we need can be
found in the wonderful books [12] and [18]. We assume familiarity with the
notions of anisotropic, isotropic and hyperbolic quadratic forms, as well as
with the Witt ring W (k), which plays the role of the Brauer group here:
it classifies quadratic forms up to a convenient equivalence relation so that
the equivalence classes form a group, and every element of W (k) has a
unique “smallest” representative, an anisotropic quadratic form.

The correspondence between genus zero curves over k and quaternion
algebras over a field of characteristic different from two is easy to make
explicit: to a quaternion algebra B/k we associate the ternary quadratic
form given by the reduced norm on the trace zero subspace (of “pure
quaternions”) of B. In coordinates, the correspondence is as follows:(

a, b

k

)
= 1 · k ⊕ i · k ⊕ j · k ⊕ ij · k 7→ Ca,b : aX2 + bY 2 − abZ2 = 0.

By Witt cancellation, it would amount to the same to consider the qua-
dratic form given by the reduced norm on all ofB; this quaternary quadratic
form has diagonal matrix 〈1, a, b, −ab〉.

On the other hand, the equivalence class of the ternary quadratic form is
not well-determined by the isomorphism class of the curve, for the simple
reason that we could scale the defining equation of Ca,b by any c ∈ k×,
which would change the ternary quadratic form to 〈−ca, −cb, cab〉. Thus
at best the similarity class of the quadratic form is well-determined by
the isomorphism class of Ca,b, and, as we shall see shortly, this does turn
out to be well-defined. Recall that the discriminant of a quadratic form is
defined as the determinant of any associated matrix, and that this quantity
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is well-defined as an element of k×/k×2. It follows that for any form q of
odd rank, there is a unique form similar to q with any given discriminant
d ∈ k×/k×2. In particular, in odd rank each similarity class contains a
unique form with discriminant 1, which we will call “normalized”; this
leads us to consider the specific ternary form qB = 〈−a, −b, ab〉. Moreover,
to a quadratic form q of any rank we can associate its Witt invariant
c(q), which is a quaternion algebra over k. This is almost but not quite the
Hasse invariant

s(〈a1, . . . , an〉) =
∑
i<j

(ai, aj) ∈ Br(k)

but rather a small variation, given e.g. by the following ad hoc modifica-
tions:3

c(q) = s(q), rank(q) ≡ 1, 2 (mod 8),

c(q) = s(q) + (−1,−d(q)), rank(q) ≡ 3, 4 (mod 8),

c(q) = s(q) + (−1,−1), rank(q) ≡ 5, 6 (mod 8),

c(q) = s(q) + (−1, d(q)), rank(q) ≡ 7, 8 (mod 8).

For our purposes, the principal merit of c(q) over s(q) is that c(qB) = [B],
the class of B in the Brauer group of k. In particular, c is a similarity
invariant of three-dimensional forms.

As a consequence of our identification of genus zero curves with quater-
nion algebras, we conclude that over any field k, ternary quadratic forms up
to similarity are classified by their Witt invariant, and ternary forms up to
isomorphism are classified by their Witt invariant and their discriminant,
cf. [18, Theorem 13.5].
Pfister forms: For a1, . . . , an, we define the n-fold Pfister form

〈〈a1, . . . , an〉〉 =
n⊗

i=1

〈1, ai〉 =⊥ 〈ai1 · · · aik〉,

where the orthogonal sum extends over all 2n subsets of {1, . . . , n}. Notice
that the full norm form on B is 〈1, −a〉⊗〈1, −b〉, a 2-fold Pfister form. This
is good news, since the properties of Pfister forms are far better understood
than those of arbitrary quadratic forms. As an important instance of this,
a Pfister form is isotropic if and only if it is hyperbolic [18, Lemma 10.4].
As n increases, Pfister forms become increasingly sparse among all rank 2n

quadratic forms (and, obviously, among all quadratic forms), but observe
that a quaternary quadratic form is similar to a Pfister form if and only if
it has discriminant 1.

3Or more canonically by the theory of Clifford algebras; see [12, Ch. 5].
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Quadric hypersurfaces: Finally, we need to link up the algebraic theory
of quadratic forms with the geometric theory of quadric hypersurfaces, our
second higher-dimensional analogue of the genus zero curves.

Let q(x1, . . . , xn) = a0x
2
1 + . . .+anx

2
n be a nondegenerate quadratic form

of rank n ≥ 3. Let Vq be the corresponding hypersurface in Pn given by
q = 0. Vq is geometrically irreducible and geometrically rational. More
precisely, k(Vq) is a k-rational function field if and only if q is isotropic: the
“only if” is obvious, and the converse goes as above: if we have a single
point p ∈ Vq(k), then we can consider the family of lines in Pn−1 passing
through p; the generic line meets Vq transversely in two points, giving a
birational map from Pn−2 to V . However, if n ≥ 4 then this need not be
true for every line, i.e., Vq need not be isomorphic to Pn−2.

Every isotropic quaternary quadratic form q can be written as H ⊥ g,
where H = 〈1,−1〉 is the hyperbolic plane and g is an arbitrary binary qua-
dratic form; by Witt cancellation, the equivalence classes of g parameterize
the isotropic quaternary quadratic forms up to equivalence. Since for all c ∈
k×, cH ∼= H, every isotropic quaternary form q is similar toH ⊥ 〈1,−d(q)〉,
and we conclude that isotropic quadric surfaces are classified up to isomor-
phism by their discriminant. The unique hyperbolic representative (with
discriminant 1) is given by the equation x2

0 − x2
1 + x2

2 − x2
3 = 0, and on this

quadric we find the lines L1 : [a : −a : b : −b] and L2 : [a : −b : −a : b]
with intersection the single point [a : −a : a : −a]: we’ve shown that a
hyperbolic quadric surface is isomorphic to P1 × P1.

Proposition 13. Let q, q′ be two quadratic forms over k. Then q is similar
to q′ if and only if Vq

∼= Vq′.

Proof: As above, it is clear that similar forms give rise to isomorphic
quadrics. In rank 3 we saw that the Witt invariant, which gives the iso-
morphism class of the conic, classifies the quadratic form up to similarity.
Since a quadric surface V is a twisted form of P1 × P1, the class of the
canonical bundle in Pic(V ) is represented by KV = −2(e1 + e2), whereas
the hyperplane class of V ⊂ P3 is represented by e1 + e2. If ϕ : V1

∼= V2 is
an isomorphism of quadric surfaces, it must pull KV2 back to KV1 , which,
since the Picard groups are torsionfree, implies that e1 + e2 on V2 pulls
back to e1 + e2 on V1. That is, any isomorphism of quadrics extends to
an automorphism of P3. Since Aut(P3) = PGL4, this gives a similitude
on the corresponding spaces. In rank at least 5, the Picard group of Vq

is infinite cyclic, generated by the canonical class KV . Moreover −KV is
very ample and embeds V into Pn+1 as a quadric hypersurface, so again
any isomorphism of quadrics extends to an automorphism of the ambient
projective space.

If q is a rank n quadratic form, we denote by k(q) the function field k(Vq)
of the associated quadric hypersurface.
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If q/k is a quadratic form, we say a field extension l/k is a field of
isotropy for q if q/l is isotropic, or equivalently if l(q) is a rational function
field.

On the other hand, we say l/k is a splitting field for q if q/l is hyper-
bolic, i.e., if q lies in the ideal W (l/k) of W (k) which is the kernel of the
natural restriction map W (k) →W (l).

The analogy with Severi-Brauer varieties and the Brauer group is irre-
sistible, but things are more subtle here. Of course the function field k(q)
is a field of isotropy for q: every variety has (generic) rational points over
its function field. On the other hand it is not guaranteed that q becomes
hyperbolic over k(q). Indeed, this is obviously impossible unless q has even
rank n = 2m, and then unless d(q) = d(Hm) = (−1)m – since k is al-
gebraically closed in k(q), d(q)/(−1)m does not become a square in k(q)
unless it is already a square in k. On the other hand, if q is (similar to)
a Pfister form, then isotropy implies hyperbolicity. So for quaternary qua-
dratic forms, we’ve shown part a) of the following result, the analogue of
Amitsur’s theorem (Theorem 12) in the Witt ring.

Theorem 14. (Cassels-Pfister)
a) An anisotropic form q is similar to a Pfister form if and only if q ∈
W (k(q)/k).
b) If q is similar to a Pfister form and q′ is an anisotropic form, then
q′ ∈ W (k(q)/k) if and only if q′ ∼= g ⊗ q for some quadratic form g. In
particular, W (k(q)/k) is the principal ideal of W (k) generated by q.
c) Let q′ be any quadratic form and q an anisotropic quadratic form. If
q ∈ W (k(q′)/k), then q is similar to a subform of q′ (We say that f is a
subform of g if there exists h such that g = f ⊥ h).

For the proof, see e.g. [18, Theorem 4.5.4].
An immediate consequence is that if q1 and q2 are two anisotropic Pfister

forms of equal rank such that k(q1) is a field of isotropy for q2, then q1 and
q2 are similar. Applying this to the normalized norm form of a genus zero
curve, we get our second proof of Theorem 11.

We end this section by collecting a few more results that will be useful
for the proof of Theorem 7b).

Theorem 15. Let q, q′ be quaternary quadratic forms over k with common
discriminant d, and put l = k(

√
d).

a) [18, 2.14.2] The form q is anisotropic if and only if ql is anistropic.
b) (Wadsworth [20]) If q′/l is similar to q/l, then q is similar to q′.
c) (Wadsworth [20]) If q is anistropic and k(q) ∼= k(q′), then q is similar
to q′.

4.2. An algebraic proof of Ohm’s theorem. We begin the proof of
Theorem 7b) by explaining how the results we have recalled on quadratic
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forms can be used to deduce the theorem of Ohm on the isogeny classifica-
tion of quadric surfaces. Indeed, thanks to the remarkable Theorem 15c),
the classification result is more precise than we have let on.

Theorem 16. (Ohm, [15]) Let q, q′ be two nondegenerate quaternary qua-
dratic forms over k with isogenous function fields. Then either:
a) q and q′ are both isotropic, so k(q) ∼= k(q′) ∼= k(t1, t2), or
b) q and q′ are both anisotropic in which case Vq

∼= Vq′, i.e., q and q′ are
similar.

That is, except in the case when both function fields are rational, quadric
surfaces with isogenous function fields are not only birational but isomor-
phic.

Proof: Since isotropic quadric function fields are rational and the condition
of being isotropic (i.e., of having a k-rational point) is an isogeny invariant,
we need only consider the case when both q and q′ are anisotropic quater-
nary quadratic forms. The proof divides into further cases according to the
values of the discriminants d = d(q), d′ = d(q′).

The first case is d = d′ = 1 (as elements of k×/k×2). In this case q and
q′ are both similar to Pfister forms. If they are isogenous over k, a fortiori
they are isogenous over k(q′), and since q′ becomes isotropic over k(q′), so
does q. Since q is similar to a Pfister form, this implies q ∈ W (k(q′)/k),
and by Theorem 14c) we conclude that q and q′ are similar.

Suppose d = d′ 6= 1. Let l = k(
√
d). By Theorem 15a), q/l and q′/l

remain anisotropic. Moreover they are now similar to Pfister forms, so
the previous case applies to show that q/l and q′/l are similar. But now
Theorem 15b) tells us that q and q′ are already similar over k!

The last case is d 6= d′. Since the discriminant is a similarity invariant
among quaternary quadratic forms, we must show that this case cannot
occur, i.e., that two anisotropic quadratic forms with distinct discriminants
cannot be isogenous. Let l = k(

√
d); it suffices to show that q/l and q′/l are

nonisogenous. Again, Theorem 15a) implies that q/l remains anisotropic,
whereas we may assume that q′/l is anistropic, for otherwise they could not
be isogenous. We finish as in the first case: by construction q/l is (similar
to) an anistropic Pfister form, so q/l ∈ W (l(q′)/l) and the Cassels-Pfister
theorem implies that q/l and q′/l are similar, but their discriminants are
different, a contradiction.

5. Geometry and Galois cohomology of quadric surfaces

Our strategy for proving Theorem 7b) in full is in fact to make the proof
of §4.2 geometric: that is, we will use Brauer kernels to give proofs of The-
orems 14 and 15 in the case of quaternary quadratic forms. The fact that
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two-dimensional quadric function fields are classified by their Brauer ker-
nels over k and over all quadratic extensions of k will come as a byproduct
of these proofs.

A convention: since we are working now with quadric surfaces, the asso-
ciated quadratic forms are well-defined only up to similarity. Thus we will
call a quadric surface “Pfister” if it can be represented by a Pfister form,
and we call a quadratic form “Pfister” if it is similar to a Pfister form.

5.1. Preliminaries on twisted forms. The first step is to consider not
just the quadric surfaces over k, but the larger set of all twisted forms of
the hyperbolic surface P1 × P1.

So let T = T (P1×P1) be the set of all Galois twisted forms of P1×P1, i.e.,
the set of all varieties X/k such that X/k ∼= P1×P1. We saw in the previous
section that every quadric surface Vq is an element of T . (More precisely,
every quadric surface becomes isomorphic to P1×P1 after an extension with
Galois group 1, Z/2Z or Z/2Z × Z/2Z, and no anistropic quadric surface
with nontrivial discriminant splits over a quadratic extension.)

By Galois descent, T = H1(k,G), where G is the automorphism group
of P1 × P1. G is a semidirect (or “wreath”) product:

1 → PGL2
2 → G→ Z/2Z → 1,

where the PGL2
2 gives automorphisms of each factor separately, and a split-

ting of the sequence is given by the involution of the two P1 factors. Thus
we have a split exact sequence of pointed sets

1 → QA(k)2 → T d→ k×/k×2,

where QA(k) stands for the set of all quaternion algebras over k. As we
shall see shortly, this map d gives a generalization of the discriminant of a
quadratic form to all twisted forms of P1×P1. The splitting just means that
we have an injection k×/k×2 ↪→ T : we choose the embedding corresponding
to the subset of all isotropic quadric surfaces (we have seen that these are
parameterized by their discriminant).

The part of T in the kernel of d is easy to understand: we just take two
different twisted forms C1, C2 of P1 – i.e., two genus zero curves over k –
and put X = C1 × C2. Using Witt’s theorem, we can identify the Brauer
kernel of such a surface: κ(k(C1 × C2)) = 〈BC1 , BC2〉.

For any twisted form X, let N = Pic(X)(k) be the Picard group of X/k
viewed as aGk-module. As abelian group, N is isomorphic to Pic(P1×P1) =
eZ
1 ⊕ eZ

2 , where e1 and e2 represent the two rulings. Write N(k) := NGk for
the Gk-equivariant line bundles on X/k, so N(k) is a free abelian group of
rank at most 2. The rank is at least one, since e1 +e2 ∈ N(k): the only two
elements of the Néron-Severi lattice with self-intersection 2 are ±(e1 + e2),
and e1 + e2 is distinguished from −(e1 + e2) by being ample; both of these
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properties are preserved by the Gk-action. Moreover, since N is torsion
free, for any L ∈ N(k) and any n ∈ Z+, L ∈ N(k) ⇐⇒ nL ∈ N(k). In
particular, the rank of N(k) is 2 if and only if N(k) is a trivial Gk-module.

Claim: N(k) has rank 2 if and only if d(X) = 1.
Proof: If d(X) = 1, X = C1 × C2, and choosing any point p2 ∈ C2(k), for
any σ ∈ Gk, σ(C1 × p2) = C1 × σ(p2), so that the Galois action preserves
the horizontal ruling; the same goes for the vertical ruling. The converse
is similar: to say that σ ∈ Gk acts trivially on the class of [e1] and [e2] is
to say that it does not interchange the rulings, hence lies in the subgroup
PGL2

2 of G.
Look now at the rank one case, where N(k) is an infinite cyclic group

with generator e1 + e2. Recall from §1.3 the basic exact sequence (1) and
especially the obstruction map α : Pic(V/k)(k) → Br(k). From the exact-
ness of this sequence it follows that the Brauer kernel of X is precisely the
obstruction to e1+e2 coming from a line bundle. Since −2(e1+e2) is repre-
sented by the canonical bundle, we get that for allX ∈ T , κ(X) ⊂ Br(k)[2].

Claim: α(e1 + e2) = 0 if and only if X is a quadric surface.
Proof: On P1 × P1, H = e1 + e2 is very ample and gives the embedding
into P3 as a degree 2 hypersurface. It follows that as soon as the class of
[e1 + e2] is represented by a k-rational divisor, the same holds k-rationally,
i.e., X is embedded in P3 as a degree 2 hypersurface. For the converse,
just cut the quadric by a hyperplane to get a rational divisor in the class
of e1 + e2.

Proposition 17. Let X/k be a quadric surface. If d(X) 6= 1, then the
Brauer kernel is trivial. If d(X) = 1, then X ∼= C × C and is classified up
to isomorphism by its Brauer kernel κ(X) = {1, BC}.

Proof: We just need to remark that when d(X) = 1, X = C1 × C2, and
since α(e1) = BC1 , α(e2) = BC2 are 2-torsion elements of Br(k), the fact
that α(e1 + e2) = 0 implies α(e1) = α(e2), so that C1

∼= C2.
Claim: For a quadric surface X ∈ T , the cohomologically defined quantity
d(X) ∈ k×/k×2 is just the discriminant d(qX) of any associated quadratic
form.
Proof: It is enough to show that d(X) = 1 if and only if d(qX) = 1, for
then the general case follows by passage to k(

√
d(X)) (or to k(

√
d(qX))).

Now d(X) = 1 means X ∼= C × C. But this means that for any extension
L/k such that X(L) 6= ∅, X/L ∼= P1 × P1. Taking L = k(X) and apply-
ing Theorem 14a), we conclude that qX is Pfister, i.e., has discriminant
1. Conversely, if qX is Pfister, then X/k(X) ∼= P1 × P1, and since k is
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algebraically closed in k(X), this gives the triviality of the Galois action on
{e1, e2}, hence the cohomological discriminant is 1.

This claim justifies our earlier remark that the cohomologically defined
map d : T → k×/k×2 is a generalization of the usual discriminant of a
quaternary quadratic form.

5.2. The proof of Theorem 7b). First we give a geometric proof of
Theorem 14 for quaternary quadratic forms: Since “Pfister quadrics” are
just those isomorphic to C×C, where C is a genus zero curve, we can turn
our previous argument on its head and deduce part b) of the Cassels-Pfister
theorem in rank 4 from Witt’s theorem. (Recall from §4 that part a) is easy
to show for quaternary quadratic forms.) Now let q′ be a rank 4 quadratic
form and q an anisotropic quadratic form, with associated quadric surfaces
V and V ′, such that q ∈ W (k(q′)/k). But since k is algebraically closed
in k(q′), this implies that d(q) = 1, so V ∼= C × C. If d(q′) = 1 also,
this reduces again to Theorem 11, so assume that d(q′) = d 6= 1 and let
l = k(

√
d). Consider the basic exact sequence

0 → Pic(V ′) → Pic(V ′)(k) α→ Br(k)
β→ Br(k(V ′)).

The hypothesis that q splits in k(V ′) means that BC is an element of
the Brauer kernel of k(V ′). But being a quadric surface with nontrivial
discriminant, κ(k(V ′)) = 0, a contradiction.
Proof of Theorem 15a) for quaternary forms: let q1, q2 be quaternary
forms with common discriminant d and corresponding quadrics V1, V2; put
l = k(

√
d); and let σ be the nontrivial element of gl/k.

First we must show that if V1/l is isotropic, then V1/k was isotropic.
But if X(l) is nonempty, then since the discriminant is 1 over l, then X
splits over l. So we can choose rational curves C1, C2 over l such that
σ(C1) = C2. But then σ(C1 ∩ C2) = σ(C1) ∩ σ(C2) = C2 ∩ C1 = C1 ∩ C2

gives a k-rational point.
We now give geometric proofs of Wadsworth’s results, i.e., parts b) and

c) of Theorem 15. The isotropic case of Theorem 15c) is easy, since isotropic
quadric surfaces are classified by their discriminant. Since we know that two
anisotropic Pfister quadrics are birational if and only if they are isomorphic,
Theorem 15c) follows from Theorem 15b), and we are reduced to showing
the following.

Proposition 18. Let V/k,W/k be two anisotropic quadric surfaces with
common discriminant d; put l = k(

√
d). If V1/l ∼= V2/l, then V1

∼= V2.

Proof: We write σ for the nontrivial element of Gl/k. Let S be the set of
all l/k twisted forms of V , and let Sd ⊂ S be the subset of twisted forms
W with d(W ) = d(V ). We claim that Sd = {V }, which gives the result we
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want. (In fact it is a stronger result, since we are a priori allowing twisted
forms which are not quadric surfaces.)

To prove the claim we clearly may “replace” V by any element of Sd. A
convenient choice is the variety V1/k constructed as follows: let B/k be the
quaternion algebra whose Brauer class is c(V ), the Witt invariant of the
quadric V , and let C/k denote the genus zero curve corresponding to B.
Let V1 := Resl/k(C/l) be the k-variety obtained by viewing C as a curve
over l and then taking the Weil restriction from l down to k.4

We have that V1/l ∼= C × C. Let G = Aut(V1). It is convenient (and
correct!) to view G as an algebraic k-group scheme. In particular this gives
the l-valued points G(l) the structure of a Gl/k-module, and this Galois
module structure is highly relevant, since S = H1(l/k,G(l)). Indeed we
have a short exact sequence of k-group schemes

(2) 1 → K → G→ Z/2Z = Sym{e1, e2} → 1

obtained by letting automorphisms of V1 act on the Gl/k-set of rulings
{e1, e2}; this exact sequence is of course a twisted analogue of the ex-
act sequence considered in 5.1. In particular, we still have that K is the
connected component of G, a linear algebraic group scheme; K(l) is, as a
group, isomorphic to Aut(C)(l)2 = PGL(B)(l)2, where the group PGL(B)
is the twisted analogue of PGL2 defined by the short exact sequence

1 → Gm → B× → PGL(B) → 1.

However, theGl/k-module structure onK(l) is twisted: since σ interchanges
e1 and e2, it also interchanges the two factors of PGL(B). That is, σ(x, y) =
(σ(y), σ(x)), so

K(k) = {(x, σ(x)) | x ∈ PGL(B)(l)} ∼= PGL(B)(l),

and one finds that K/k = Resl/k Aut(C/l). But then Shapiro’s Lemma
implies

#H1(l/k,K(l)) = #H1(l/l,Aut(C/l)) = 1.
Taking l-valued points and then Gl/k-invariants in (2), one gets an exact
cohomology sequence, of which a piece is

H1(l/k,K(l)) → H1(l/k,G(l)) d∗→ H1(l/k,Z/2Z) = ±1

where d∗ is a twisted analogue of our cohomological discriminant map. The
exactness means precisely that H1(l/k,K(l)) is the subgroup of twisted
forms X with d∗(X) = 1. Since our V1 represents the basepoint of

4It is a byproduct of the proof that V1 is a quadric surface. On the other hand, if we started

with a genus zero curve C whose corresponding quaternion algebra was in Br(l)\Br(l)Gl/k , then

the restriction of scalars construction would yield a twisted form V1/k such that V1/l ∼= C ×Cσ

is not a quadric surface (even) over l.
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H1(l/k,K(l)), certainly d∗(V1) = 1, so that forms with twisted discrim-
inant 1 are precisely those whose discriminant in the former sense is equal
to the discriminant of V1. That is to say: H1(l/k,K(l)) = Sd, so we are
done.
End of the proof of Theorem 7b): Combining the results of this section
with the argument of §4.2 we get a “geometric” proof of Ohm’s Theorem
16. It remains to see that function fields of quadric surfaces k(X) are
classified by their Brauer kernels over k and over all quadratic extensions
of k. Suppose k(q) and k(q′) are non-isomorphic function fields of quadric
surfaces. If one is isotropic and the other is anisotropic, then the isotropic
one has trivial Brauer kernels over all extension fields of k, whereas the
anisotropic one has a Brauer kernel of order two over k(

√
d). So suppose

that both are anisotropic. If d(q) 6= d(q′), then over k(
√
d), q has nontrivial

Brauer kernel and q′ has trivial Brauer kernel. If their discriminants are
the same, then by Proposition 18, l(q) and l(q′) remain nonisomorphic, so
have distinct nontrivial Brauer kernels. This shows the equivalence of the
first three conditions in part b) of Theorem 7.

6. Comparing quadrics and Severi-Brauer varieties

6.1. The proof of Theorem 7c). For the proof of Theorem 7c), it suf-
fices to show that for any n > 1, if K1 = k(V1) is the function field of a
nontrivial Severi-Brauer variety and K2 = k(V2) is the function field of an
anistropic quadric hypersurface, then κ(k(V1)) 6= κ(k(V2)).

But recall that the Picard group of a quadric hypersurface V2/k in di-
mension at least 3 is generated by the canonical bundle (e.g. [7, Exercise
II.6.5]), so the natural map Pic(V2) → Pic(V2)(k) is an isomorphism and
κ(k(V2)) = 0. On the other hand, a nontrivial Severi-Brauer variety has a
nontrivial Brauer kernel, the cyclic subgroup generated by the correspond-
ing Brauer group element.

When n = 2, the Brauer kernel of a nontrivial Severi-Brauer surface is
cyclic of order 3, whereas the Brauer kernel of any quadric is 2-torsion.

6.2. Brauer kernels and the index. Earlier we mentioned the fact that
if V has a k-rational point, κ(k(V )) = 0. This statement can be refined in
terms of the index of a variety V/k, which is the least positive degree of a
gk-invariant zero-cycle on V ; equivalently, it is the greatest common divisor
over all degrees of finite field extensions l/k for which V (l) 6= ∅. Note then
that the index is a (field-)isogeny invariant. Suppose l/k is a finite field
extension of degree n such that V (l) 6= ∅. Then κ(k(V )) = Br(k(V )/k) ⊂
Br(l/k). It follows that the index of V/k is an upper bound for the index
of any element of the Brauer kernel of k(V ) (recall that the index of a
Brauer group element is the square root of the k-vector space dimension
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of the corresponding division algebra D/k). In particular varieties with a
k-rational zero-cycle of degree one have trivial Brauer kernel.

Notice that quadrics and Severi-Brauer varieties have a very special prop-
erty among all varieties: namely the existence of a rational zero-cycle of
degree one implies the existence of a rational point. For Severi-Brauer va-
rieties, it is part of the basic theory of division algebras that the index of a
division algebra is equal to the greatest common divisor over all degrees of
splitting fields (and moreover the gcd is attained, by any maximal subfield
of D/k). For quadrics – whose index is clearly at most 2 – this follows from
Springer’s theorem, that an anistropic quadratic form remains anisotropic
over any finite field extension of odd degree.

To see how “special” this property is, observe that every variety over a
finite field has index one, since the Weil bounds (it is enough to consider
curves) imply that if V/Fq is a smooth projective variety, V (Fqn) 6= ∅ for
all n� 0, and in particular there exists n such that V/Fq has rational zero
cycles of coprime degrees n and n + 1. This gives amusingly convoluted
proofs of the familiar facts that the Brauer group of a finite field is trivial
and that every quadratic form in at least three variables over a finite field
is isotropic.

7. Curves of Genus One

In this section we suppose that all fields have characteristic zero.

7.1. Preliminaries on genus one curves. We shall begin by briefly
recalling certain notions concerning genus one curves and their Jacobian
elliptic curves. For a much more complete discussion of these matters, we
highly recommend Cassels’ survey article [4]. While hardly essential, we
find it convenient to describe the Jacobian using the language of the Picard
functor, a very careful treatment of which can be found in [2, Chapter 8].
For recent work on the relation between the period and the index of a genus
one curve, the reader may consult [5] and the references therein.

Let K = k(C) be the function field of a genus one curve. Recall that
C can be given the structure of an elliptic curve if and only if C(k) 6= ∅.
Moreover, if C is an arbitrary genus one curve, we can associate to it an el-
liptic curve, its Jacobian J(C) = Pic0(C), the group scheme representing
the subfunctor of Pic(C) consisting of divisor classes of degree zero. The
Riemann-Roch theorem gives a canonical identification C = Pic1(C); with
this identification, C becomes a principal homogeneous space (or torsor)
under J(C). By Galois descent, the genus one curves C/k with Jacobian
isomorphic to a given elliptic curve E are parameterized by the Galois coho-
mology group H1(k,E). There is a subtlety here: H1(k,E) parameterizes
isomorphism classes of genus one curves endowed with the structure of a
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principal homogeneous space for E, so a genus one curve up to isomor-
phism corresponds to an orbit of Aut(E/k) on H1(k,E). We will assume
that Aut(E/k) = ±1 (this excludes only the notorious j-invariants 0 and
1728) – later we will exclude all elliptic curves with complex multiplication
over the algebraic closure of k. So [C] and −[C] are in general distinct
classes in H1(k,E) but represent isomorphic genus one curves.

If a genus one curve has a k-rational zero-cycle of degree one, then by
Riemann-Roch it is an elliptic curve, i.e., index one implies the existence of
rational points for genus one curves. Another important numerical invariant
of a genus one curve C/k is its period, which is simply the order of [C]
in the torsion group H1(k, J(C)). A useful alternative characterization is
that the period is the least positive degree of a k-rational divisor class on
C.

It turns out that the period of a genus one curve is also an isogeny
invariant. At the request of the referee, we supply the proof. Let f :
C1 → C2 be a degree n morphism of curves (of any genus) over k, and let
[D] ∈ Pic(C1)(k) be a degree d rational divisor class on C1. This means
that [D] is represented by a divisor D rational over k, with the property
that for all automorphisms σ ∈ gk, Dσ ∼ D (i.e., the divisors are linearly
equivalent). LetD′ = f∗(D), the pushforward ofD to C2, soD′ is a degree d
divisor on C2/k. From [7, Ex. IV.2.6], the pushforward of divisors respects
linear equivalence, so descends to a map f∗ : Pic(C1/k) → Pic(C2/k). In
particular, for any σ ∈ gk, we have

(D′)σ = f∗(D)σ = f∗(Dσ) ∼ f∗(D) = D′,

so D′ represents a rational divisor class of degree d on C2. Thus if C1 and
C2 are isogenous genus one curves, the least degrees of k-rational divisor
classes on C1 and C2 are equal, so their periods are equal.

Recall that an isogeny of elliptic curves (in the usual sense) is just a finite
morphism of varieties ϕ : (E1, O1) → (E2, O2) preserving the distinguished
points. But notice that if f : E1 → E2 is any finite morphism of genus
one curves with rational points, it can be viewed as an isogeny by taking
O2 = f(O1). Moreover, if f : E1 → E2 is a finite morphism of elliptic
curves, then there is an induced map Pic0(f) = Pic0(E2) → Pic0(E1).
Since any elliptic curve is isomorphic to its Picard variety, this explains
why our notion of an isogenous pair of elliptic function fields is consistent
with the usual notion of isogenous elliptic curves: the morphism in the
other direction is guaranteed.

But if ϕ : C1 → C2 is a morphism of genus one curves without rational
points, then since C2 is not isomorphic to Pic0(C2), the existence of a finite
map ϕ′ : C2 → C1 is not guaranteed. Indeed, it need not exist: let C
be a genus one curve of period n > 1. Then the natural map [n] : C =
Pic1(C) → Picn(C) ∼= J(C) gives a morphism of degree n2 from C to its



On elementary equivalence, isomorphism and isogeny 51

Jacobian. Since J(C)(k) 6= ∅, there is no map in the other direction. So
the classification of genus one curves up to isogeny is more delicate than
the analogous classification of elliptic curves. We content ourselves here
with the following result.

Proposition 19. Let C, C ′/k be two genus one curves with common Ja-
cobian E, and assume that E does not have complex multiplication over k.
Then there exists a degree n2 étale cover C → C ′ if and only if [C ′] = ±n[C]
as elements of the Weil-Chatelet group H1(k,E).

Proof: As we saw above, there is a natural map

ψn : C = Pic1(C) → Picn(C)

induced by the map D 7→ nD on divisors. Upon base change to the alge-
braic closure and up to an isomorphism, this map can be identified with [n]
on J(C), so it is an étale cover of degree n2. Keeping in mind that n could
be negative, corresponding to a twist of principal homogeneous structure
by [−1], we get the first half of the result.

For the converse, let π : C → C ′ be any finite étale cover. Choosing
P ∈ C(k) and its image P ′ = π(P ) ∈ C ′(k), π/k : C/k → C/k is an elliptic
curve endomorphism. By assumption on E, π/k = [n] for some integer n,
and its kernel E[n] is the unique subgroup isomorphic to Z/nZ ⊕ Z/nZ.
It follows that the map π : C → C ′ factors as C → C/E[n] → C ′, hence
C/E[n] → C ′ is an isomorphism of varieties. It is not necessarily a mor-
phism of principal homogeneous spaces: it will be precisely when n > 0 in
π/k above. Taking into account again the possibility of n < 0 gives the
stated result.

Corollary 20. Let C/k be a genus one curve with non-CM Jacobian E/k.
The number of genus one curves C ′/k with J(C) ∼= J(C ′) which are k-
isogenous to C is NC := #(Z/nZ)×/(±1), where C ∈ H1(k,E) has exact
order n. In particular NC = 1 if and only if n one of: 1, 2, 3, 4, 6; and
NC →∞ with n.

Proof: For any positive integer a and any element C ∈ H1(k,E), multipli-
cation by a on the divisor group descends to give a map C = Pic1(C) →
Pica(C) = C ′, which is a twisted form of [a] on the Jacobian elliptic curve.
The class C ′ (together with its evident structure as a principal homogeneous
space for Pic0(C)) represents the element a[C] ∈ H1(k,E). Moreover, if
C has period n, then via a choice of rational divisor class of degree n we
get an identification of Picn(C) with Pic0(C). It follows that for any a
prime to n, C ′ = Pica(C) is an isogenous genus one curve with the same
Jacobian as C, and after quotienting out by 〈±1〉 to address the two possi-
ble principal homogeneous space structures on a given genus one curve, we
get ϕ(n)

2 mutually isogenous, pairwise nonisomorphic genus one curves with
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Jacobian isomorphic to E. That there are no more than this many curves
in the isogeny class follows immediately from the previous proposition, so
the proof is complete.

This result should be compared with Amitsur’s theorem (Theorem 12):
it is not true that two genus one curves, even with common Jacobian, which
have the same splitting fields must be birational.

Proposition 21. The field-isogeny class of a one-dimensional function
field with respect to a number field is finite.

Proof: When the genus is different from one, we have seen that field-isogeny
implies isomorphism, so it remains to look at the case of K a genus one
function field with respect to a number field k. Fix some k-structure on K
(there are, of course, only finitely ways to do this). For the sake of clarity,
let us first show that there are only finitely many function fields K ′/k which
are isogenous to K as k-algebras. It will then be easy to see that the proof
actually gives finiteness of the field-isogeny class.

Let C/k be the genus one curve such that K = k(C); let K ′/k be a
function field such that there exists a homomorphism ι : K ′ → K, which
on the geometric side corresponds to a finite morphism
ϕ : C → C ′, where C ′/k is another genus one curve with K ′ = k(C ′).

By passing to the (covariant, i.e., Albanese) Jacobian of ϕ/k we get an
isogeny of elliptic curves J(C) → J(C ′). By Shafarevich’s theorem, the
isogeny class of an elliptic curve over a number field is finite, so it is enough
to bound the number of function fields k(C ′) with a given Jacobian, say E′.
Let n be the common period of C and C ′, so that C ′ ∈ H1(k,E′)[n]. Let
S be the set places of k containing the infinite places and all finite places
v such that C(kv) = ∅; note that this is a finite set. But the existence of ϕ
means that C ′(kv) 6= ∅ for all v outside of S, so that

[C ′] ∈ ker(H1(k,E)[n] →
∏
v 6∈S

H1(kv, E)[n]).

But the finiteness of this kernel is extremely well-known, using e.g. Her-
mite’s discriminant bounds. (Indeed, this is the key step in the proof of
the weak Mordell-Weil theorem; see e.g. [19].)

Notice that we actually showed the following: a given genus one function
field K/k dominates only finitely many other genus one function fields. (In
fact K dominates only finitely many function fields in all, the genus zero
case being taken care of by the finiteness of the Brauer kernel κ(C).) It
follows that there are only finitely many isomorphism classes of fields L
which admit a field isomorphic to K as a finite extension; this completes
the proof.

7.2. The proof of Theorem 10. Let k be a number field and C1/k a
genus one curve of period 1, 2, 3, 4, or 6 whose Jacobian J(C1) has
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no complex multiplication over k and is isolated in its isogeny class. Let
K1 = k(C1) and K2 be any finitely generated field such that K1 ≡ K2. By
Theorem 3, K1 and K2 are isogenous as fields, so K2 is isomorphic as a field
to k(C2) where C2/k is another genus one curve. By modifying if necessary
the k-structure on C2, we get a finite morphism ϕ : C1 → C2 of k-schemes;
passing to J(ϕ) we deduce that J(C1) ∼ J(C2) and hence by hypothesis
that E = J(C1) ∼= J(C2). By Proposition 19, [C2] = a[C1] for some integer
a. Applying the same argument with the roles of C1 and C2 interchanged,
we get that [C1] and [C2] generate the same cyclic subgroup of H1(k,E),
and by the hypothesis on the period of C1 we conclude C1

∼= C2.
We remark that with hypotheses as above but C of arbitrary period n, we

find that k(C) could be elementarily equivalent only to one of
#(Z/nZ)×/(±1) nonisomorphic function fields, but distinguishing between
these isogenous genus one curves with common Jacobian seems quite diffi-
cult.

Finally, we must show that the assumption that J(C) is isolated can be
removed at the cost of assuming the finiteness of the Mordell-Weil group
J(C)(k). This is handled by the following result, which is a modification of
the (clever, and somewhat tricky) argument of Pierce [16] to our arithmetic
situation.

Proposition 22. Let K1 = k(C1) be the function field of a genus one curve
over a number field. Assume that J(C1) does not have complex multiplica-
tion (even) over the algebraic closure of k, and that J(C1)(k) is finite. Let
K2 ≡ K1 be any elementarily equivalent function field. Then K2 = k(C2)
is the function field of a genus one curve C2 such that J(C1) ∼= J(C2).

Proof: Let K2 be a finitely generated function field such that K1 ≡ K2. By
Theorem 3, we know thatK2 is field-isogenous toK1. As above, this implies
the existence of k-structures on K1 and K2 such that K1 = k(C1), K2 =
k(C2) and ι/k : C1 → C2 is a finite morphism.
Step 1: In search of a contradiction, we assume that the greatest common
divisor of the degrees of all finite maps J(C1) → J(C2) is divisible by some
prime number p.
Step 2: We claim that the assumption of Step 1 and the finiteness of
J(C2)(k) imply that there exists a finite set of étale maps {Ψi : Ci → C2},
each of degree p, such that for every finite morphism α : C1 → C2, there
exists, for some i, a morphism λi : C1 → Ci such that α = Ψi ◦ λi.
Proof of the claim: The induced map on the Jacobian J(α) : J(C1) →
J(C2) is of the form J(C1) → J(C1)/G for some finite subgroup scheme
G ⊂k J(C1), of order N = deg(α). Write N = Mpa with (M,p) = 1. Then
G[pa](k) is of the form Z/paZ⊕Z/pbZ for b < a, since otherwise J(α) would
factor through [pa] and yield a degree M isogeny J(C1) → J(C2), which
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would contradict Step 1. Put H := G[Mpa−1], so H ⊂k G ⊂k J(C1), and
#G/H(k) = p. Then J(α) factors as

J(C1) → J(C1)/H
Ψ→ J(C1)/G.

Note that Ψ has degree p. Via dualization, the possible maps Ψ are in
bijection with k-rational degree p isogenies with source J(C1)/G, of which
there are at most p+ 1. This establishes the claim for J(α) in place of α.

Next, since J(C1) acts on C1 by automorphisms, it makes sense to take
the quotients C1/G and C1/H. In fact any finite map α : C1 → C2 is “of
the form” q : C1 → C1/G, in the sense that there exists an isomorphism
φ : C1/G→ C2 as principal homogeneous spaces of J(C2) = J(C1)/G such
that α = φ◦q. However, α is not determined byG, because after quotienting
out by G one can perform a translation by any element of J(C2)(k). More
precisely, the collection of finite maps whose source is a given genus one
curve C1 and whose “kernel” in the above sense is a given finite subgroup
G ⊂k J(C1) is a principal homogeneous space for J(C2) = J(C1)/G. Since
we have assumed that J(C1) has finitely many k-rational points, so then
does the isogenous elliptic curve J(C2)(k), and in fact we can take for our
list of Ψi’s the at most (p + 1) ·#J(C2)(k) maps of the form τ ◦ q, where
q : C1/H → C1/G with G and H as above and τ : C2 → C2, Q → Q + P
for P ∈ J(C2)(k). This establishes the claim and completes Step 2.

Step 3: We choose a smooth affine model for C2/k and let x = (x1, . . . , xn)
denote coordinates. The statement “x ∈ C2” can be viewed as first-order:
let (Pj) be a finite set of generators for the ideal of C2 in k[x]; then x ∈ C2

is an abbreviation for “∀j Pj(x) = 0”. For each i, choose bi ∈ k(Ci) such
that k(Ci) = Ψ∗

i (k(C2))(bi), and let gi(X,Y ) ∈ k[X,Y ] be the minimal
polynomial for bi over Ψ∗

i (k(C2)). Finally, we define a predicate x ∈ C2 ∧
¬ Con(x) with the meaning that x lies on C2 and some coordinate is not
in k. We must stress that this is to be regarded as a single symbol – we
do not know how to define the constants in a function field over a number
field, but since C2 by assumption has only finitely many k-rational points,
we can name them explicitly. Consider the sentence:

∀ x ∃ y

(
x ∈ C2 ∧ ¬ Con(x)) =⇒

∨
i

gi(x, y) = 0

)

Note well that k(C2) does not satisfy this sentence: take x to be any generic
point of C2. But k(C1) does: giving such an element x ∈ k(C1) is equivalent
to giving a field embedding ι : k(C2) → k(C1), i.e. to a finite map ι : C1 →
C2. So ι = Ψi ◦ λi for some i, and we can take y = λ∗i bi:

g(x, y) = g(ι∗a, λ∗b) = λ∗i g(Ψ
∗
i a, b) = 0,



On elementary equivalence, isomorphism and isogeny 55

with x = ι∗(a), a a generic point of C2. So our sentence exhibits the
elementary inequivalence of k(C1) and k(C2), a contradiction.

Step 4: Therefore the assumption of Step 1 is false, and it follows that
there exist two isogenies between the non-CM elliptic curves C1/k, C2/k of
coprime degree, and (as in [16, Prop. 9]) this easily implies that j(C1) =
j(C2). In particular, the Jacobians J(C1) and J(C2) are isogenous elliptic
curves with the same j-invariant and without complex multiplication. This
implies that J(C1) and J(C2) are isomorphic over k: indeed, let ι : J(C1) →
J(C2) be any isogeny. Then, ι/Q must have Galois group Z/nZ ⊕ Z/nZ
for some n, so that J(C2) = J(C1)/ker(ι) = J(C1)/J(C1)[n] ∼= J(C1).

The end of the proof is the same as in the first case of the theorem: since
the period is 1, 2, 3, 4, or 6, we may conclude C1

∼= C2.

8. Final Remarks

The purpose of this short final section (added in revision) is to collect
some further remarks on the isogeny classification of function fields, and
also to give an extension of Theorem 7b).

I. The “isogeny invariants” of Proposition 6 are sufficient to classify quadric
hypersurfaces of any dimension up to isogeny. Indeed, if Q and Q′ are
quadric hypersurfaces defined over a field k, then k(Q) can be embedded
in k(Q′) if and only if dim(Q) ≤ dim(Q′) and k(Q′) is a field of isotropy
for Q [15, Thm. 1.1]. It is further known that quadric hypersurfaces of the
same dimension are isogenous exactly when they are stably birationally
equivalent.

II. The implication isogeny implies birational equivalence for quadrics is
also known in dimensions 3 and 4 [8], but not in any higher dimension.
For our logical applications, we are interested only in the number field
case. The case when k is totally imaginary is trivial, since any form in at
least 5 variables is isotropic. But taking, say, k = Q, even the birational
classification of quadrics seems to be quite subtle. E.g., it can be shown
that there is a unique anistropic quadric function field in dimension 3, but
not in dimensions 5 and 6.

III. The methods of Section 5 can be generalized to show that isogeny
implies birationality for all twisted forms of P1 × P1:

Theorem 23. Let X,X ′ ∈ T be two k/k-twisted forms of P1 × P1. The
following are equivalent:
(i) For every finite extension l of k, the Brauer kernels of X/l and X ′/l
are equal.
(ii) k(X) and k(X ′) are isogenous.
(iii) k(X) and k(X ′) are isomorphic.
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Proof: Clearly (iii) =⇒ (ii) =⇒ (i), so we must show that (i) =⇒ (iii).

Case 1: d = d′ = 1, so X ∼= C1 × C2, X
′ ∼= C3 × C4, where for 1 ≤

i ≤ 4, Ci is a genus zero curve. Setting the Brauer kernels equal gives
κ = 〈[C1], [C2]〉 = 〈[C3], [C4]〉. Note that κ = 0 if and only if X and X ′ are
trivial. If #κ = 2, then what we must show is that C × C is birational to
C × P1 (even though they are not isomorphic). However, they may both
be viewed as genus one curves over K = k(C), with corresponding Brauer
classes [C]|K and 0; but since [C]|K = 0, these are isomorphic as curves
over K, so in particular they are birational.

Similar reasoning applies to the case where X = C1 ×C2, X ′ = C3 ×C4

and κ(X) and κ(X ′) are both isomorphic to (Z/2Z)2. Then, if [C1] + [C2]
happens to be isomorphic to the class [C0] of another genus zero curve
C0/k, equating the Brauer kernels (and relabelling if necessary) we get
that either [C1] = [C3], [C2] = [C4] – in which case X ∼= X ′ – or [C3] =
[C1], [C4] = [C0], so X ′ ∼= C1×C0. But we can show as above that C1×C0

is birational to C1 × C2. Indeed, both are isomorphic as genus zero curves
over K = k(C1), since [C2] = [C0] in Br(K).

Case 2: d = d′ 6= 1; put l = k(
√
d). Equating Brauer kernels over k, we find

that X and X ′ are either both quadric surfaces or neither one is; in view of
what has already been proved, we may assume the latter, so their common
Brauer kernel is κ = α(e1 + e2) = [C] 6= 0. Since by assumption we also
have equal Brauer kernels over l, from Case 1 we have l(X) ∼= l(X ′). Note
that X/l and X ′/l remain anisotropic (our argument for this in §5.2 did
not use the fact that X was a quadric surface). Note that X/l is a quadric
surface if and only if [C]|l = 0 if and only if X ′/l is a quadric surface.

Suppose first that they are both quadric surfaces. We have seen that
anisotropic quadric surfaces with isomorphic function fields are in fact iso-
morphic. In other words, X and X ′ are l/k twisted forms of each other
with the same discriminant, so the proof of Proposition 18 shows that they
are already isomorphic over k.

If X/l and X ′/l are not quadrics, we can write X/l = C1 × C2 and
X ′/l = C3 × C4, with

[C1] + [C2] = [C]l = [C3] + [C4] 6= 0.

It is easy to check that this extra condition forces [C3] = [C1] or [C3] = [C2],
so that once again X/l and X/l′ are not merely birational but isomorphic,
which implies that X ∼= X ′.

Case 3: d 6= d′. By extending the base, we may assume d = 1, d′ 6= 1.
So X ∼= C1 × C2; equating Brauer kernels gives κ = 〈[C1], [C2]〉 = κ(X ′).
Since X ′ has nontrivial discriminant, κ = 〈[C]〉 is a cyclic group; in other
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words we may assume either that [C1] = [C] and [C2] = 1 or [C1] = [C2] =
[C]. Basechanging to l = k(

√
d′), X ′/l is still anisotropic, so is of the

form [C3] × [C4], where κ(l) = 〈[C3], [C4]〉 6= 0. Thus X/l must remain
anistropic, so that [C]l ∈ κ(l). Moreover, κ(l) must be stable under the
action of gl/k, so that either [C3] = [C4] = [C]l or [C4] = [C3]σ 6= [C3] and
[C3]+ [C3]σ = [C]l, where as usual σ denotes the nontrivial element of gl/k.
But the Brauer kernel of X/l clearly is still cyclic, hence the only possibility
is that [C3] = [C3]σ. But this would imply that X ′/l is a quadric surface,
which is not possible either, since the obstruction to its being a quadric
surface over k, namely [C], did not become trivial in l. We conclude that
this case cannot occur, completing the proof.

IV. It seems likely that similar methods would give an isogeny implies
isomorphism result for twisted forms of Pn1 × . . .× Pnr .

V. It is natural to wonder what is the largest class of geometrically rational
varieties for which isogeny implies birational isomorphism. Observe that
all the varieties V/k studied here share the following property, which we
will provisionally call prerationality: for any field extension l/k for which
V (l) 6= ∅, l(V ) is a rational function field. Note that all twisted forms of
products of projective spaces are prerational, as are all Del Pezzo surfaces
of degree at least 5 [13, Thm. 29.4]. It follows easily from the results of
this paper that isogeny implies birational isomorphism among Del Pezzo
surfaces of degree at least 7 (indeed, in every case we have not considered,
the function field must be rational [13, 29.4.4]). It would be interesting to
know whether isogeny implies isomorphism also for Del Pezzo surfaces of
degrees 5 and 6, or indeed for all prerational varieties.
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