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Restriction theory of the Selberg sieve, with

applications

par Ben GREEN et Terence TAO

Résumé. Le crible de Selberg fournit des majorants pour cer-
taines suites arithmétiques, comme les nombres premiers et les
nombres premiers jumeaux. Nous démontrons un théorème de
restriction L2-Lp pour les majorants de ce type. Comme ap-
plication immédiate, nous considérons l’estimation des sommes
d’exponentielles sur les k-uplets premiers. Soient a1, . . . , ak et
b1, . . . , bk les entiers positifs. On pose h(θ) :=

∑
n∈X e(nθ), où

X est l’ensemble des n 6 N tels que tous les nombres a1n +
b1, . . . , akn+bk sont premiers. Nous obtenons des bornes supérieu-
res pour ‖h‖Lp(T), p > 2, qui sont (en supposant la vérité de la con-
jecture de Hardy et Littlewood sur les k-uplets premiers) d’ordre
de magnitude correct. Une autre application est la suivante. En
utilisant les théorèmes de Chen et de Roth et un «principe de
transférence », nous démontrons qu’il existe une infinité de suites
arithmétiques p1 < p2 < p3 de nombres premiers, telles que cha-
cun pi + 2 est premier ou un produit de deux nombres premier.

Abstract. The Selberg sieve provides majorants for certain
arithmetic sequences, such as the primes and the twin primes.
We prove an L2–Lp restriction theorem for majorants of this type.
An immediate application is to the estimation of exponential sums
over prime k-tuples. Let a1, . . . , ak and b1, . . . , bk be positive inte-
gers. Write h(θ) :=

∑
n∈X e(nθ), where X is the set of all n 6 N

such that the numbers a1n+b1, . . . , akn+bk are all prime. We ob-
tain upper bounds for ‖h‖Lp(T), p > 2, which are (conditionally on
the Hardy-Littlewood prime tuple conjecture) of the correct order
of magnitude. As a second application we deduce from Chen’s the-
orem, Roth’s theorem, and a transference principle that there are
infinitely many arithmetic progressions p1 < p2 < p3 of primes,
such that pi + 2 is either a prime or a product of two primes for
each i = 1, 2, 3.

Manuscrit reçu le 22 juin 2004.
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1. Introduction and statement of results

The exponential sum over the primes1,

hN (θ) :=
∑
p6N

e(pθ)

has been very extensively studied. Here of course e(θ) := e2πiθ. Since the
time of Hardy and Littlewood such sums have been treated by dividing the
circle R/Z into the major arcs, which is to say points near a rational with
small denominator, and the complement of this set, the minor arcs.

The sum hN (θ) (or at least the very closely-related exponential sum over
the von Mangoldt function) is discussed in [36, Ch. 3], for example. There
it is shown how to use information concerning the distribution of primes
in arithmetic progressions in order to get an asymptotic for hN (θ) on the
major arcs. On the minor arcs, hN (θ) is shown to be rather small by an
entirely different method, also described in [36, Ch. 3]. One consequence
of these results is that for any p > 2 one has

(1.1) ‖hN‖Lp(T) := (
∫ 1

0
|hN (θ)|p dθ)1/p �p N

1−1/p log−1N.

Disregarding the multiplicative constant, (1.1) is easily seen to be tight,
this being a reflection of the prime number theorem, which in particular
gives |hN (θ)| ∼ N/ logN when |θ| � 1/N . In fact, one could estimate
‖hN‖p asymptotically.

In this paper we consider generalizations of this exponential sum in which
the primes are replaced by such sets as the twin primes. More precisely, let
F =

∏k
j=1(ajn+bj) be a polynomial which is product of k > 1 linear factors

with integer coefficients. We assume that aj 6= 0 and that the discriminant

∆ :=
∏

16i<j6k

(aibj − ajbi)

is non-zero, or in other words that no two linear factors are rational multi-
ples of each other. For any such F , we consider the set

X = X(F ) := {n ∈ Z+ : F (n) is the product of k primes }.

1The letter p will be used both for primes and for exponents in Hölder’s inequality; there
should be no danger of confusion. All summations over p are over the primes, and summations

over other variables are over the positive integers unless otherwise indicated. Most of the nota-
tion in the introduction is very standard – in the event of further clarification being required,
consultation of §2 is recommended.



Restriction theory of the Selberg sieve 149

For example, if F (n) := n(n+ 2), then X is the collection of twin primes.
For any q > 1, we introduce the quantity γ(q) = γ(q, F ) defined by

(1.2) γ(q) := q−1|{n ∈ Z/qZ : (q, F (n)) = 1}|.

Observe that 0 6 γ(q) 6 1. This number represents the proportion of
residue classes modulo q which could hope to contain an infinite number of
elements of X. We will impose the natural non-degeneracy condition

(1.3) γ(q) > 0 for all q > 1,

since X(F ) is clearly finite if this condition fails.

Remark. Note that to verify (1.3) it suffices by the Chinese remainder
theorem to verify it for prime q, and in fact one only needs to verify it for
finitely many prime q, as the claim is trivial if q is larger than both k and
the discriminant ∆ of F . Indeed for primes p, we have

(1.4) γ(p) = 1− k/p whenever p > k and p - ∆.

The exponential sum over the twin primes, or more generally exponential
sums of the form

(1.5) h(θ) = hN ;F (θ) :=
∑
n6N

n∈X(F )

e(nθ),

have not received much attention. One very good explanation for this is
that, for a fixed choice of F , the set X(F ) is not even known to be non-
empty. Thus there is certainly no hope of obtaining an asymptotic formula
for h on the major arcs, unless one is willing to obtain results on average
over choices of F , as was done in [2]. On the other hand, the Hardy-
Littlewood k-tuple conjecture asserts that for a fixed F

(1.6) hN ;F (0) = |X(F ) ∩ [1, N ]| = (1 + oF (1))SF
N

logk N

as N →∞, where SF is the singular series

(1.7) SF :=
∏
p

γ(p)
(1− 1

p)k
.

From (1.4) we see that the infinite product in (1.7) is absolutely convergent.
We will prove certain facts about SF later on, but to give the reader a feel
for it we remark that if |ai|, |bi| 6 N then SF �ε N ε. Also, the Lp

average of SF over any sensible family of F (for example F (n) = n(n+h),
h = 1, . . . , N) will be absolutely bounded.

The conjecture (1.6) is still very far from being settled; however it is well
known that sieve methods (either the Selberg sieve or the combinatorial
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sieve) give upper bounds of the form

(1.8) |X(F ) ∩ [1, N ]| �k SF (1 + oF (1))
N

logk N

for fixed F (see e.g. [19, Theorem 5.3]). This upper bound only differs
from (1.6) by a multiplicative constant depending on k. As an immediate
consequence of this bound and Parseval’s identity one may place an upper
bound on ‖hN,F ‖2 which (conditionally on the k-tuple conjecture) is of the
correct order of magnitude. Our first result (proven at the end of §4) asserts
that we in fact can obtain good estimates for all Lp norms, p > 2, of these
exponential sums:

Theorem 1.1. Let F be a product of k integer linear forms having non-zero
discriminant, obeying the non-degeneracy condition (1.3) and with coeffi-
cients ai, bi satisfying |ai|, |bi| 6 N . Let hN,F be the exponential sum over
X(F )∩ [1, N ] as defined in (1.5) above. Then for every 2 < p <∞ we have
the estimate

‖hN,F ‖p �p,k SFN
1−1/p(logN)−k.

The implied constant depends on k but is otherwise independent of F ; it is
explicitly computable.

Remark. In the converse direction, if the Hardy-Littlewood prime k-tuple
conjecture (1.6) is true, then one easily obtains the lower bound

‖hN,F ‖p � SFN
1−1/p(logN)−k,

at least for fixed F and N sufficiently large. This is a simple consequence of
(1.6) and the observation that hN,F (θ) > 1

2 |X(F )∩ [1, N ]| if |θ| 6 ck/N and
ck > 0 is sufficiently small. However, when p = 2, we see from Parseval’s
identity and the prime k-tuple conjecture (1.6) that

‖hN,F ‖2 = |X(F ) ∩ [1, N ]|1/2 �k S
1/2
F N1/2(logN)−k/2

and so Theorem 1.1 is expected to fail logarithmically at the endpoint p = 2.

The proof of Theorem 1.1 proceeds not by studying the set X(F )∩ [1, N ]
directly, but rather by constructing a slightly larger object βR, which we call
an enveloping sieve for X(F ) ∩ [1, N ]. This sieve function is considerably
easier to analyze than X(F ) ∩ [1, N ] itself, and in particular enjoys very
good Fourier properties. It then turns out that the only property we need
on X(F )∩ [1, N ] itself to deduce Theorem 1.1 is that it is majorized by this
sieve. In particular, this theorem will also hold if the set X(F ) is replaced
by other similar sets, for instance if primes are replaced by almost primes,
or with any subset of the almost primes. Combining this observation with
an argument of the first author [16], we prove the following result.
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Theorem 1.2. Define a Chen prime to be a prime p such that p + 2 is
either prime or a product of two primes. Then there are infinitely many
3-term arithmetic progressions of Chen primes.

Remark. Such a theorem, with 3 replaced by a more general integer k,
can probably be obtained by adapting the methods of [18], in which the
primes were established to contain arithmetic progressions of any length k,
though the explicit constants obtained by those methods are likely to be
substantially worse. Our techniques here are somewhat similar in spirit to
those in [18] in that they are based on establishing a transference princi-
ple, in this case from Roth’s theorem [29] concerning progressions of length
three in a dense subset of the integers, to the corresponding result concern-
ing dense subsets of a sufficiently pseudorandom enveloping set. In [18]
this transference principle was established (under quite strong pseudoran-
domness assumptions) by the finitary analogue of ergodic theory methods.
Here, we use a much simpler harmonic analysis argument to prove the
transference principle required for Theorem 1.2, and as such we require a
much less stringent pseudorandomness condition (basically, we require the
Fourier coefficients of the enveloping sieve to be under control).

Remark. We note that results along the lines of Theorem 1.2 can be
approached using sieve methods and the Hardy-Littlewood circle method
in a more classical guise. For example, Tolev [33] showed that there are
infinitely many 3-term progressions p1 < p2 < p3 of primes such that pi +2
is a product of at most ri primes, where (r1, r2, r3) can be taken to be
(5, 5, 8) or (4, 5, 11).

The authors would like to thank the anonymous referee for a particularly
attentive reading of the paper, and John Friedlander for a number of helpful
remarks concerning the material in the appendix.

2. Notation

We take the opportunity to introduce here some basic notation common
to the whole paper, most of which is standard in analytic number theory.
Some of our notation, such as the use of the expectation symbol E, is less
standard in this field but is very convenient for certain additive problems
of the type considered here. This is because there are ideas from ergodic
theory bubbling just beneath the surface.

Let k be a parameter. We write A �k B or A = Ok(B) to denote the
estimate A 6 CkB where Ck > 0 is a constant depending only on k. The
notation ok(1) will be reserved for a quantity which tends to zero as the
variable N tends to ∞, at a rate which may depend on k (and possibly
other subscripted parameters or objects).
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For a statement P , we will occasionally write 1P to denote the indicator
of P , thus 1P = 1 if P is true and 1P = 0 if P is false. If A is a set,
we use 1A to denote the function 1A(x) := 1x∈A. We will always write
|A| =

∑
x 1A(x) for the cardinality of A.

We write Zq for the cyclic group Z/qZ, and Z∗q := {a ∈ Zq : (a, q) = 1}
for the multiplicatively invertible elements of Zq. We will often identify Zq

with {0, . . . , q − 1} or with {1, . . . , q} in the obvious manner.

As we remarked, it is convenient to work with the language of measures
and conditional expectation in much the same way as the authors did in
[18]. If f : A → C is a function and B is a non-empty finite subset of A,
we write Ex∈Bf(x) for the average value of f on B, that is to say

Ex∈Bf(x) :=
1
|B|

∑
x∈B

f(x).

For the purposes of this paper this subscript notation is more convenient
than the more traditional notation E(f(x)|x ∈ B) of probability theory. In
many cases we shall just have B = A, in which case we abbreviate Ex∈Af(x)
as E(f).

As remarked earlier, we write e(θ) = e2πiθ. If m is a positive integer
then we introduce the related notation em for the additive character on Zm

defined by em(x) = e(x/m).

3. The enveloping sieve

We now begin the proof of Theorem 1.1. The strategy of the sieve
method is not to study the set X ∩ [1, N ] directly, but rather to construct
an enveloping sieve βR : Z+ → R+ which is concentrated on X ∩ [1, N ]
and for which one has satisfactory control of the Fourier coefficients of βR.
We will normalize β to have average value comparable to 1; from (1.6), we
would thus expect βR to roughly be of size logk N/SF on X ∩ [1, N ], and
this indeed will be the case; indeed, βR will be a pointwise majorant of
(most of) the normalized indicator function ckS−1

F logk N1X∩[1,N ].

Henceforth the polynomial F will be fixed. We shall replace the set
X = X(F ) by “localized” versions Xq for various moduli q, defined by

Xq := {n ∈ Zq : (q, F (n)) = 1}.

This set has already appeared in (1.2). Observe that when reduced (mod q)
all the elements in X, with at most kq exceptions, lie in Xq, the exceptions
arising from the cases when ajn+ bj ∈ {1, . . . , q} for some 1 6 j 6 k.
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We can now describe the important properties of enveloping sieve, which
is intended to majorize the set

XR! = {n ∈ Z : (d, F (n)) = 1 for all 1 6 d 6 R}

where R is a large integer (the sieve parameter) to be chosen later. Even-
tually we will set R := bN1/20c.

Proposition 3.1 (The enveloping sieve). Let F be the product of k integer
linear forms with non-zero discriminant, obeying the non-degeneracy con-
dition (1.3) and with coefficients ai, bi satisfying |ai|, |bi| 6 N . Let R 6 N
be a large integer. Then there is a non-negative function β := βR : Z → R+

with the following properties:

(i) (Majorant property) We have

(3.1) β(n) �k S−1
F logk R1XR!

(n)

for all integers n. In particular, β(n) is non-negative.
(ii) (Crude upper bound) We have

(3.2) β(n) �k,ε N
ε

for all 0 < n 6 N and ε > 0.
(iii) (Fourier expansion) We have

(3.3) β(n) =
∑

q6R2

∑
a∈Z∗q

w(a/q)eq(−an),

where w(a/q) = wR(a/q) obeys the bound

(3.4) |w(a/q)| �k,ε qε−1

for all q 6 R2 and a ∈ Z∗q. Also we have w(0) = w(1) = 1.
(iv) (Fourier vanishing properties) Let q 6 R2 and a ∈ Z∗q. If q is not

square-free, then w(a/q) = 0. Similarly, if γ(q) = 1 and q > 1, then
w(a/q) = 0.

Remark. The enveloping sieve βR is essentially a normalised version of
the one used by Selberg [31] in obtaining the upper bound (1.8). It will
be constructed quite explicitly in §7, where a full proof of Proposition 3.1
will also be supplied. One does not need to know the exact construction in
order to use Proposition 3.1 in applications. In §8 we offer some remarks
which explain the phrase “enveloping sieve”, as well as a comparison of βR

(in the case F (n) = n) and a somewhat different majorant for the primes
which we used in [18].
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4. The Hardy-Littlewood majorant property for the enveloping
sieve

In Proposition 3.1 we constructed a majorant βR for the set XR! which
enjoyed good control on the Fourier coefficients; indeed, from (3.4) it is
easy to obtain good Lp control on the Fourier coefficients of βR for p > 2,
although the bound in (3.4) causes unavoidable logarithmic losses at the
endpoint p = 2. When p = 4, 6, 8, . . . one can pass from this to good
control on h by Parseval’s formula, and hence by interpolation one can
obtain Theorem 1.1 in the case p > 4. However this simple argument does
not seem to suffice in the more interesting region2 2 < p < 4 because of the
logarithmic failure of the estimate at p = 2 remarked on in the introduction.
In this region 2 < p < 4 (or more generally for p /∈ 2N) there are no good
monotonicity properties in Lp of the Fourier transform to exploit; see [24,
p144] for a simple example where monotonicity in this sense breaks down,
and [1, 17, 23] for further discussion.

On the other hand, all known examples where monotonicity breaks down
are rather pathological. When the majorant βR enjoys additional Fourier
or geometric properties it is often possible to recover estimates of Hardy-
Littlewood majorant type. This is known as the restriction phenomenon
and has been intensively studied in harmonic analysis; see for instance [32]
for a recent survey of this theory.

The application of ideas from restriction theory to number theory was
initiated by Bourgain in the papers [3, 4] (among others). In [3], which is of
the most relevance to us, it is shown how to obtain bounds for ‖f̂‖p, where
f is a function supported on the primes. Such a bound was also obtained in
a paper of the first author [16], using the Brun sieve and somewhat precise
versions of the prime number theorem for arithmetic progressions. Our
arguments here, while certainly in a similar spirit, differ from the previous
arguments in that we rely purely on the properties of the majorant given
by Proposition 3.1; in particular we do not need any type of control of the
Riemann ζ- function or of related objects.

Proposition 4.1 gives a restriction estimate for β in the setting of the finite
abelian group ZN . The dual form of this estimate, which is Proposition 4.2,
will be of more interest for applications (indeed, Theorem 1.1 will be an
almost immediate consequence of it). As in many arguments in restriction
theory, the argument is based in spirit on the Tomas-Stein method, first
used in [34].

2For the application to finding progressions of length three, we in fact need this estimate for
some 2 < p < 3.



Restriction theory of the Selberg sieve 155

Proposition 4.1 (Lq Restriction estimate for β). Let R,N be large num-
bers such that 1 � R � N1/10 and let k, F , βR be as in Proposition 3.1.
Let f : ZN → C be arbitrary. Then for every 1 < q < 2 we have

(4.1) E16n6N |
∑

b∈ZN

f(b)eN (bn)|2βR(n) �q,k (
∑

b∈ZN

|f(b)|q)2/q.

Proof. We will first examine the left-hand side of (4.1) in the special case
when f is supported on a set B ⊆ ZN and ‖f‖∞ 6 1. We assert that for
every ε > 0 we have

(4.2) E16n6N |
∑

b∈ZN

f(b)eN (bn)|2βR(n) �ε,k |B|1+ε.

This statement, though at first sight weaker than (4.1), is actually equiva-
lent to it. To deduce (4.1) from (4.2), normalise so that

(4.3) (
∑

b∈ZN

|f(b)|q)2/q = 1.

In particular this implies that |f(b)| 6 1 for all b ∈ ZN . If we then define
the sets Bj ⊂ ZN for all j > 0 as Bj := {b ∈ ZN : 2−j−1 < |f(b)| 6 2−j},
then we have ∑

b∈ZN

f(b)eN (bn) =
∑
j>0

∑
b∈Bj

f(b)eN (bn).

Also, from (4.3) we have |Bj | 6 2(j+1)q. Applying (4.2) to Bj (and with
f(b) replaced by 2jf(b)) we have(

E16n6N |
∑
b∈Bj

f(b)eN (bn)|2βR(n)
)1/2 �q,ε,k 2−j |Bj |(1+ε)/2

6 2((1+ε)q/2−1)j

for any ε > 0. If we choose ε sufficiently small, then the exponent (1+ε)q/2−
1 is negative since q < 2. Summing this in j using the triangle inequality
in L2

β,N , defined as the space of complex sequences (an)N
n=1 together with

the inner product

〈(an), (bn)〉 = E16n6NanbnβR(n),

we see that (4.1) indeed follows (since q < 2).

It remains to prove (4.2) which, recall, was to be demonstrated on the
assumption that ‖f‖∞ 6 1 and that f is supported on B. When B is large,
say |B| > Rε, we can use the crude estimate βR(n) �k,ε R

ε2 (for instance)
from (3.2), combined with Parseval’s identity to conclude the bound

E16n6N |
∑
b∈B

f(b)eN (bn)|2βR(n) �k,ε R
ε2 |B| 6 |B|1+ε.



156 Ben Green, Terence Tao

Thus we may take |B| 6 Rε.

We will essentially be doing Fourier analysis on ZN , but exponentials
such as eq(a), which arise from the Fourier expansion (3.3), will also appear.
To facilitate this somewhat awkward juxtaposition it will be convenient to
introduce a smooth Fourier cutoff. Let ψ : R → R+, ‖ψ‖∞ 6 1, be a non-
negative even bump function supported on the interval [−1/10, 1/10] whose
Fourier transform ψ̂(y) :=

∫
R ψ(x)e(xy) dx is non-negative everywhere and

bounded away from zero when y ∈ [−1, 1]. Such a function can easily be
constructed, for instance by convolving a non-negative even bump function
supported on [−1/20, 1/20] with itself. Then we have

E16n6N |
∑
b∈B

f(b)eN (bn)|2βR(n) � 1
N

∑
n∈Z

|
∑
b∈B

f(b)eN (bn)|2βR(n)ψ̂(n/N).

We expand the right-hand side using the Fourier expansion of βR, (3.3), to
obtain

1
N

∑
n∈Z

∑
q6R2

∑
a∈Z∗q

∑
b,b′∈B

f(b)f(b′)w(a/q)eN (bn)eN (−b′n)eq(−an)ψ̂(n/N).

Now the Poisson summation formula implies that

1
N

∑
n∈Z

eN (bn)eN (−b′n)eq(−an)ψ̂(n/N) =
∑
m∈Z

ψ

(
N(m+

b− b′

N
− a

q
)
)
,

and hence by construction of ψ∣∣∣∣∣ 1
N

∑
n∈Z

eN (bn)eN (−b′n)eq(−an)ψ̂(n/N)

∣∣∣∣∣ 6 1‖ b−b′
N

−a
q
‖61/N

,

where ‖x‖ denotes the distance of x to the nearest integer. Applying this
and (3.4), and bounding the coefficients f(b), f(b′) by one, our task thus
reduces to proving that

(4.4)
∑

q6R2

∑
a∈Z∗q

∑
b,b′∈B

‖ b−b′
N

−a
q
‖61/N

qε/2−1 �ε |B|1+ε.

Let us first dispose of the contribution of the large q, for which q > |B|,
where it is possible to estimate qε/2−1 by |B|ε/2−1. Observe that for any
two distinct fractions a/q, a′/q′ with q, q′ 6 R2 and a ∈ Z∗q , a′ ∈ Z∗q′ , we
have ∥∥∥∥aq − a′

q′

∥∥∥∥ >
1
qq′

>
1
R4

>
2
N

since N � R10. This shows that for each fixed b, b′ there is at most one
fraction a

q which contributes to the sum (4.4). Thus the contribution of the
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large q is at most |B|2|B|ε/2−1, which is acceptable. It will thus suffice to
estimate the sum over small q, that is to say those q for which q 6 |B|, and
to that end it is enough to prove that

(4.5)
∑

q6|B|

∑
a∈Z∗q

∑
b,b′∈B

‖ b−b′
N

−a
q
‖61/N

q−1 �ε |B|1+ε/2.

We estimate the left-hand side by

c
∑

q6|B|

∑
a∈Zq

∑
b,b′∈B

q−1
∑
m∈Z

ψ̂

(
N(m− b− b′

N
+
a

q
)
)
,

where c = maxy∈[−1,1] |ψ̂(y)|−1, which by the Poisson summation formula
is

cN−1
∑

q6|B|

∑
a∈Zq

∑
b,b′∈B

q−1
∑
n∈Z

ψ(n/N)eN ((b− b′)n)eq(−an).

Performing the summation over a, this becomes

cN−1
∑

q6|B|

∑
b,b′∈B

∑
n∈Z
q|n

ψ(n/N)eN ((b− b′)n)

which we can rearrange as

(4.6) cN−1
∑
n∈Z

ψ(n/N)

∣∣∣∣∣∑
b∈B

eN (bn)

∣∣∣∣∣
2

d|B|(n),

where
d|B|(n) :=

∑
q6|B|
q|n

1.

The n = 0 term of this sum may be bounded, very crudely, by O(N−1|B|3).
Since |B| 6 Rε � N1/10, this term is certainly at most O(|B|) and hence
does not make an important contribution to (4.5). Let us thus discard
the n = 0 term, and bound the remaining terms using Hölder’s inequality.
Since ψ(n/N) is supported in the region |n| 6 N/2, we thus obtain

(4.6) �
(
E0<|n|6N/2|

∑
b∈B

eN (bn)|2+ε
) 2

2+ε
(
E0<|n|6N/2d|B|(n)

2+ε
ε

) ε
2+ε .

Parseval and the crude bound |
∑

b∈B eN (bn)| 6 |B| yield(
E0<|n|6N/2|

∑
b∈B

eN (bn)|2+ε
) 2

2+ε 6 (|B|1+ε)
2

2+ε = |B|1+
ε

2+ε .
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On the other hand, from standard moment estimates for the restricted
divisor function d|B| (see for instance [3, 30]) we have

E0<|n|6N/2d|B|(n)m �ε,m |B|ε

for any m > 1 (in fact one can replace |B|ε with log2m−1 |B| when m is
an integer - see [30]). Applying this with m := 2+ε

ε and working back, one
gets (4.6) �ε |B|1+ε/2, which in turn implies (4.5) and (4.4), and hence the
proposition.

As promised, we now give what is essentially a dual form of Proposition
4.1.

Proposition 4.2 (Lp extension estimate for β). Let R,N be large numbers
such that 1 � R � N1/10 and let k, F , βR be as in Proposition 3.1. Let
{an}n6N be an arbitrary sequence of complex numbers, and let p > 2 be a
fixed real number. Then we have

(4.7)
( ∑

b∈ZN

|E16n6NanβR(n)eN (−bn)|p
)1/p �p,k

(
E16n6N |an|2βR(n)

)1/2

and

(4.8) ‖E16n6NanβR(n)e(nθ)‖Lp(T) �p,k N−1/p
(
E16n6N |an|2βR(n)

)1/2
.

Proof. The first claim follows from Proposition 4.1 and a duality argument.
We will expand on this point somewhat using the language of operators,
since this will afford us an opportunity to at least partially explain the
terms restriction and extension. Everything we say could also be phrased
in terms of inequalities on exponential sums. Recall that L2

β,N is the space
of complex sequences (an)N

n=1 together with the inner product

〈(an), (bn)〉 = E16n6NanbnβR(n).

Consider also the space of complex-valued functions on ZN together with
the lq norms

‖f‖lq(ZN ) := (
∑

x∈ZN

|f(x)|q)1/q

and the inner product 〈f, g〉 :=
∑

x∈ZN
f(x)g(x). Here, {1, . . . , N} may

perhaps be thought of as a finite version of Z, whilst ZN plays the rôle of a
discretised circle T. Now define the restriction map T : lq(ZN ) → L2

β,N by

f 7→ (
∑

x∈ZN

f(x)eN (nx))N
n=1

(the reason for the name is that T can be thought of as the restriction of
the discrete Fourier transform on ZN to the weight β). One can check that
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the adjoint of T is the extension map T ∗ : L2
β,N → lp(ZN ) defined by

(an)N
n=1 7→ E16n6NanβR(n)eN (−nx).

Here, of course, p is the dual exponent to q defined by the relation p−1 +
q−1 = 1; note, however, that all of the spaces lr(ZN ) are equivalent as
vector spaces.

Now one can check that (4.1), the main result of Proposition 4.1, is
equivalent to

‖T‖lq(ZN )→L2
β,N

�p,k 1.

On the other hand (4.7) is equivalent to the statement

‖T ∗‖L2
β,N→lp(ZN ) �p,k 1.

By the duality principle for operator norms one sees that these two state-
ments are completely equivalent, and so (4.7) is an immediate deduction
from Proposition 4.1.

To prove (4.8), observe that for any 0 6 θ < 1 we can obtain the estimate∑
b∈ZN

|E16n6NanβR(n)e((b+ θ)n/N)|p �p,k

(
E16n6N |an|2βR(n)

)p/2

from (4.7) simply by multiplying each coefficient an by eN (θn). Integrating
this in θ from 0 to 1 gives (4.8).

Remark. A result of Marcinkiewicz [38] allows one to obtain (4.7) from
(4.8); see [16] for further discussion.

The utility of Proposition 4.2 is markedly increased by the next lemma.

Lemma 4.1. Suppose that R 6
√
N . Then

E16n6NβR(n) � 1.

Proof. We make further use of the smooth cutoff function ψ. We have

E16n6NβR(n) � 1
N

∑
n∈Z

ψ̂(n/N)βR(n).

Substituting in the Fourier expansion (3.3) of βR and using the Poisson
summation formula, we have

N−1
∑
n∈Z

ψ̂(n/N)βR(n) =
∑

q6R2

∑
a∈Z∗q

w(a/q)
∑
m∈Z

ψ̂
(
N(m− a

q
)
)
.
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Observe that since R2 6 N , the only time that ψ̂(N(m− a
q )) is non-zero is

when m = a = 0 and q = 1. Thus, by (3.4), we obtain

1
N

∑
n∈Z

ψ̂(n/N)βR(n) = w(0)ψ(0) � 1,

and the claim follows.

Observe that the last lemma, combined with Proposition 3.1(i), implies
the classical sieve estimate (1.8). With these preliminaries in place we can
now quickly conclude the proof of Theorem 1.1.

Proof of Theorem 1.1. Fix R := bN1/20c (for instance). Without loss of
generality we may assume N to be sufficiently large depending on k and
p. We now apply Proposition 4.2 to the sequence an := 1X∩XR!

(n)/β(n).
From (3.1), (4.8) and Lemma 4.1 we easily obtain∥∥ ∑

X∩XR!∩[1,N ]

e(nθ)
∥∥

Lp(T)
�p,k

SF

logk R
N1−1/p.

Since all but at most kR elements of X lie in XR!, the claim now follows
since R ∼ N1/20 and N is assumed sufficiently large.

Remark. A straightforward modification of the above argument also gives
the estimate∫ 1

0
|
∑
n6N

(
k∏

j=1

Λ(ajn+ bj))e(nθ)|p dθ �p,k S
p
FN

p−1,

where Λ is the von Mangoldt function.

5. A transference principle for 3-term arithmetic progressions

There is a well-known theorem of Roth [29], partially answering a ques-
tion of Erdős and Turán, which states that any subset of {1, . . . , N} with
size at least cN/ log logN contains an arithmetic progression of length 3. In
this section we will prove a result in this spirit for sets which are majorised
by a “pseudorandom measure”. In §6 we will apply this result to deduce
that there are infinitely many 3-term progressions of Chen primes (primes
p such that p+ 2 is prime or a product of two primes).

We refer to the result (Proposition 5.1) as a transference principle be-
cause, rather than prove it from first principles, we deduce it from Roth’s
theorem. For the reader familiar with [18], we remark that the transference
principle we prove here is shown to hold under harmonic analysis conditions
which should be regarded as much less stringent than the combinatorial
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conditions of that paper. However, our arguments here only apply to pro-
gressions of length 3. Indeed, it is by now well-understood that traditional
harmonic analysis arguments cannot suffice to deal with progressions of
length 4 or more (see [14] for a further discussion).

We begin by recalling a formulation of Roth’s theorem [29] due to Var-
navides [35].

Theorem 5.1. [29, 35] Let 0 < δ 6 1 be a positive numbers, and let N be a
large prime parameter. Suppose that f : ZN → R+ is a function satisfying
the uniform bounds

0 6 f(n) 6 1 for all n ∈ ZN

and the mean property
E(f) > δ.

Then we have

(5.1) En,d∈ZN
f(n)f(n+ d)f(n+ 2d) > c(δ)

for some constant c(δ) > 0 depending only on δ.

Remark. By combining Bourgain’s refinement [5] of Roth’s theorem with
the argument of Varnavides [35] one can obtain the more explicit value
c(δ) = exp(−Cδ−2 log(1 + 1

δ )) for c(δ); see also [16] for further discussion.
However, our arguments will not be sensitive to the exact value of c(δ).

We now generalise the above proposition to the case where f is not
bounded by 1, but is instead bounded by some suitably pseudorandom
function.

Definition. We shall normalize the Fourier transform f̂ : ZN → C of a
function f : ZN → C according to the formula

f̂(a) := En∈ZN
f(n)eN (an) for all a ∈ ZN ,

and recall the Fourier inversion formula

(5.2) f(n) =
∑

a∈ZN

f̂(a)eN (−an).

With this normalisation it is natural to measure the Fourier transform f̂
using the lp norms

‖f̂‖p
p :=

∑
a∈ZN

|f̂(a)|p

for 1 < p <∞, with the usual convention that ‖f̂‖∞ := supa∈ZN
|f̂(a)|.
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Proposition 5.1. Let N be a large prime parameter. Suppose that ν :
ZN → R+ and f : ZN → R+ are non-negative functions satisfying the
majorization condition

(5.3) 0 6 f(n) 6 ν(n) for all n ∈ ZN

and the mean condition

(5.4) En∈ZN
f(n) > δ

for some 0 < δ 6 1. Suppose that ν and f also obey the pseudorandomness
conditions

(5.5) |ν̂(a)− δa,0| 6 η for all a ∈ ZN

where δa,0 is the Kronecker delta, and

(5.6) ‖f̂‖q 6 M

for some η,M > 0 and some 2 < q < 3. Then we have

(5.7) En,d∈ZN
f(n)f(n+ d)f(n+ 2d) > 1

2c(δ)−Oδ,M,q(η)

where c(δ) > 0 is the same constant that appears in Theorem 5.1.

Remark. Observe that the ν ≡ 1, η = 0 case of this proposition is basi-
cally Theorem 5.1, with an (inconsequential) loss of 1

2 on the right-hand
side of (5.1). This theorem should be compared with [18, Theorem 3.5]. In
practice, the condition (5.6) seems to be most easily verified by first estab-
lishing a Hardy-Littlewood majorant property such as Proposition 4.2 for
all functions f majorized by ν, not just the specific function f of interest.

Proof. We repeat the arguments of [16, §6]. Let 0 < ε � 1 be a small
parameter to be chosen later, and let

(5.8) Ω := {a ∈ ZN : |f̂(a)| > ε}

be the set of large Fourier coefficents of f . Write B := B(Ω, ε) for the Bohr
set

(5.9) B := B(Ω, ε) := {m ∈ ZN : |1− eN (am)| 6 ε for all a ∈ Ω}.

We shall decompose f = f1 + f2, where f1 is the anti-uniform component
of f , defined by

(5.10) f1(n) := Em1,m2∈Bf(n+m1 −m2),

and f2 := f − f1 will be the uniform component. We can thus split the
left-hand side of (5.7) into eight components

(5.11) En,d∈ZN
fi(n)fj(n+ d)fk(n+ 2d)

where i, j, k ∈ {1, 2}.
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Let us first consider the term (5.11) corresponding to (i, j, k) = (1, 1, 1),
which will be the dominant term. The pseudorandomness condition (5.5)
can be used to obtain uniform bounds on f1. Indeed using that together
with (5.2), (5.3) and Parseval’s identity we obtain

|f1(n)| = |Em1,m2∈Bf(n+m1 −m2)

6 Em1,m2∈Bν(n+m1 −m2)

= |Em1,m2∈B

∑
a∈ZN

ν̂(a)eN (−an− am1 + am2)|

= |
∑

a∈ZN

ν̂(a)eN (−an)|Em∈BeN (−am)|2|

6
∑

a∈ZN

|ν̂(a)||Em∈BeN (−am)|2

6 1 + η
∑

a∈ZN

|Em∈BeN (−am)|2

= 1 + ηN/|B|.
Note, however, that by the pigeonhole principle we have

|B| > (cε)|Ω|N

for some absolute constant c > 0, while from (5.6) and Chebyshev’s in-
equality we have

|Ω| 6 (M/ε)q.

Finally, f1 is manifestly non-negative by (5.10) and (5.3). We thus conclude
that

0 6 f1(n) 6 1 +Oε,M,q(η) for all n ∈ ZN .

Furthermore from (5.4) we have

E(f1) = E(f) > δ.

Applying Theorem 5.1 (possibly modifying f1 by Oε,M,q(η) first) we obtain

(5.12) Ex,d∈ZN
f1(x)f1(x+ d)f1(x+ 2d) > c(δ)−Oε,δ,M,q(η).

Now we consider the other seven terms of the form (5.11), when at least
one of the i, j, k is equal to 2. The treatment of the seven cases is essentially
the same, so for simplicity we consider only i = j = k = 2. Observe that
for all a ∈ ZN we have

f̂1(a) = En∈ZN
Em1,m2∈Bf(n+m1 −m2)eN (an)

= En∈ZN
Em1,m2∈Bf(n+m1 −m2)eN (a(n+m1 −m2)×

× eN (−am1)eN (am2)

= f̂(a)|Em∈Be(−am)|2,

(5.13)
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and thus

(5.14) |f̂2(a)| = |f̂(a)|(1− |Em∈BeN (−am)|2) 6 |f̂(a)|.
This can be analysed in two different ways according as a does or does not
lie in Ω. When a 6∈ Ω we have

|f̂2(a)| 6 |f̂(a)| 6 ε

by (5.8). On the other hand, when a ∈ Ω, then |eN (−am) − 1| 6 ε for all
m ∈ B by definition (5.9), and hence in this case we have

|f̂2(a)| = |f̂(a)|(1− |Em∈BeN (−am)|2) 6 3εE(ν) 6 3ε(1 + η)

thanks to the a = 0 case of (5.5). Thus certainly

(5.15) ‖f̂2‖∞ = Oη(ε).

Now by orthogonality we obtain the well-known identity

En,d∈ZN
f2(n)f2(n+ d)f2(n+ 2d) =

∑
a∈ZN

f̂2(a)2f̂2(−2a).

Such an expression is often treated using an L2–L∞ inequality, but for us
this is too expensive since we lack good L2 control on ν (and hence on f2).
Instead, we shall use the Lq hypothesis (5.6). By Hölder’s inequality we
obtain

(5.16) |En,d∈ZN
f2(n)f2(n+ d)f2(n+ 2d)| 6 ‖f̂2‖q

q‖f̂2‖3−q
∞ .

From (5.6) and (5.14) we have

‖f̂2‖q 6 ‖f̂‖q 6 M.

Recalling (5.15) we therefore obtain, by (5.16), the bound

En,d∈ZN
f2(n)f2(n+ d)f2(n+ 2d) = O(M qε3−q).

By choosing ε sufficiently small depending on δ, M , q, this can be made
less than 1

14c(δ). The same goes for the six other terms of the form (5.11)
with (i, j, k) 6= (1, 1, 1). Combining this with (5.12), the claim follows.

6. Arithmetic progressions of Chen primes

In this section we prove Theorem 1.2, which stated that there are infin-
itely many 3-term progressions of Chen primes. A Chen prime, recall, is
a prime p such that p + 2 is a product of at most two primes, and Chen’s
famous theorem [6] is that there are infinitely many such primes. Chen
actually proved a somewhat stronger result, in which the smallest prime
factor of p + 2 can be bounded below by p1/10. It is important for us to
have this extra information. In Iwaniec’s unpublished notes [22] one may
find a proof of Chen’s theorem which leads to the value γ = 3/11. For the
purposes of this section we will use the term Chen prime to refer to a p
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for which p + 2 is either prime or a product p1p2, with p1, p2 > p3/11. We
quote, then, the following result from [22].3

Theorem 6.1. Let N be a large integer. Then the number of Chen primes
in the interval (N/2, N ] is at least c1N/ log2N , for some absolute constant
c1 > 0.

For our argument we do not need to know an exact value for c1. To have
a chance of deducing Theorem 1.2 from Proposition 5.1, we shall need a
suitably pseudorandom measure ν on the cyclic group ZN which majorises
the Chen primes on [N/4, N/2] in a reasonably efficient way. Unfortunately,
the Chen primes are so irregularly distributed in progressions a (mod q) (q
small) that there is no ν which would obey the pseudorandomness condition
(5.5) for an η which is small enough to be useful. To get around this
difficulty, we shall employ a device which we call the W -trick. Let t � 1
be a very large real number (independent of N) to be specified later, and
write W = Wt :=

∏
p6t p. Let XW ⊆ ZW denote the residue classes b ∈ ZW

such that b and b+ 2 are both coprime to W ; observe that

(6.1) |XW | = W
∏

36p6t

(1− 2
p
) � |W |/ log2 t.

Note that all but O(W ) of the Chen primes lie in one of the residue classes
associated to XW . From Theorem 6.1 we thus have∑
b∈XW

|{N/4 6 n 6 N/2 : Wn+ b is a Chen prime}| � WN

log2(WN)
−O(W ).

If we assume N sufficiently large depending on W (and hence on t), the
right-hand side is �WN/ log2N . From (6.1) and the pigeonhole principle
we may therefore choose b ∈ XW such that

(6.2) |X| � N log2 t

log2N
,

where X is the set

X := {N/4 6 n 6 N/2 : Wn+ b is a Chen prime}.

Fix b ∈ XW as above, and consider the polynomial F (n) := (Wn + b)
(Wn+ b+ 2). To compute SF , we observe that γ(p) = 1 when p 6 t and

3Theorem 6.1 is stronger than the result stated in [22] in one tiny way - Iwaniec shows that
there are many Chen primes in [0, N ], not (N/2, N ]. However it is completely clear that the proof

can be adapted in a simple way to cover this case. Alternatively, a pigeonhole argument could
be used to show that (N/2, N ] contains lots of Chen primes for many N , which would suffice for
our purposes.
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γ(p) = 1− 2/p otherwise. Since the Euler product
∏

p(1− 2/p)/(1− 1/p)2

is convergent, we see by the same computation used in (6.1) that

(6.3) log2 t� SF � log2 t.

Now let R := bN1/20c and let βR : Z → R+ be the enveloping sieve
associated to F by Proposition 3.1. We restrict this function to the set
{1, . . . , N}, which we identify with ZN , and let ν : ZN → R+ be the
resulting function.

Lemma 6.1. For all a ∈ ZN and ε > 0, we have

ν̂(a) = δa,0 +Oε(tε−1)

where δa,0 is the Kronecker delta function.

Proof. From (3.3) we have

ν̂(a) = En∈ZN
βR(n)eN (an) =

∑
q6R2

∑
b∈Zq

(b,q)=1

w(b/q)En∈ZN
eN (an)eq(−bn).

When 1 < q 6 t we have γ(q) = 1, and hence w(b/q) = 0 by Proposition
3.1(iv). By (3.4) we thus have
(6.4)
ν̂(a) = En∈ZN

eN (an) +Oε(tε−1
∑

t6q6R2

∑
b∈Zq

(b,q)=1

|En∈ZN
eN (an)eq(−bn)|).

Observe that En∈ZN
eN (an) is just δa,0. From standard estimates on the

Dirichlet kernel we have

(6.5) |En∈ZN
eN (an)eq(−bn)| � min(1,

1
N‖ a

N − b
q‖

).

All the fractions b/q, q 6 R2, are separated from each other by at least
1/R4 6 1/N . Thus we have 1/N‖ a

N − b
q‖ � R4/N with at most one

exception, which leads in view of (6.4) and (6.5) to

ν̂(a) = δa,0 +Oε(tε−1(1 +R4R
4

N
)).

The claim follows.

Proof of Theorem 1.2. We fix t to be an absolute constant to be chosen
later, and take N to be a sufficiently large prime depending on t. We define
the function f : ZN → R+ by

f(n) := c
log2N

log2 t
1X(n),

and verify the various conditions of Proposition 5.1 for f .
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First of all observe from Proposition 3.1(i) and (6.3) that we have the
majorization property (5.3) if c > 0 is chosen sufficiently small. Secondly,
from (6.2) we have the condition (5.4) with some absolute constant δ > 0
independent of N or t, as long as N is large enough. From Proposition 4.2
(specifically (4.7)) and Lemma 4.1 we obtain the bound ‖f̂‖5/2 6 M for
some M > 0 independent of N or t, if N is sufficiently large depending on
t. This confirms condition (5.6) (with q = 5/2).

Finally, from Lemma 6.1 we obtain (5.5) with η = Oε(tε−1) and M0 =
1 +Oε(tε−1).

Thus we may indeed apply Proposition 5.1, and doing so we obtain

Ex,d∈ZN
f(x)f(x+ d)f(x+ 2d) > c−Oε(tε−1)

for some absolute constant c > 0. By choosing ε := 1/2 (say) and t suffi-
ciently large, we thus obtain

Ex,d∈ZN
f(x)f(x+ d)f(x+ 2d) > c/2.

From the definition of f , this yields

|{(x, d) ∈ Z2
N : x, x+ d, x+ 2d ∈ X}| �t N

2/ log6N.

The degenerate case d = 0 yields at most O(N) pairs and can be discarded
when N is large. Since X is contained in [N/4, N/2] we see that x, x +
d, x + 2d is an arithmetic progression in Z and not just in ZN . Theorem
1.2 follows.

Remark. We have in fact shown that the number of triples (p1, p2, p3) of
Chen primes with p1 + p3 = 2p2 and with each pi 6 N is � N2/ log6N ; it
is possible to show from (1.8) that this bound is sharp up to an absolute
multiplicative constant. It is clear that if one had a lower bound π2(N) �
N/ log2N for the number of twin primes less than N (this, of course, is
one of the most famous open conjectures in prime number theory) then a
simple adaptation of our argument would produce infinitely many triples
(p1, p2, p3) of twin primes in arithmetic progression, and the number of such
triples less than N would be � N2/ log6N . Similar remarks hold for any
other constellation of primes.

7. Appendix: Construction of the enveloping sieve

In this appendix we construct the enveloping sieve for Proposition 3.1
and verify its properties. Some of the material here is rather standard and
will not be used directly in the rest of the paper, except via Proposition
3.1.
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Let us recall the setup. We took a fixed polynomial F and defined the
“locally sieved” sets

Xq = {n ∈ Zq : (q, F (n)) = 1}.
We begin by analyzing these locally sieved sets Xq. From (1.2) we have

(7.1) γ(q) = En∈Zq1(q,F (n))=1 = E(1Xq) =
1
q
|Xq|.

From the Chinese remainder theorem we see that |Xqq′ | = |Xq||Xq′ | when-
ever (q, q′) = 1, and also that |Xpm | = pm−1|Xp| whenever pm is a prime
power. From this and (7.1) we see that γ is a multiplicative function, and
indeed

(7.2) γ(q) =
∏
p|q

γ(p).

Observe that if q|M then the projection n 7→ n(mod q) will map XM to
Xq. Indeed, this map has uniform fibres:

Lemma 7.1. If q|M , then

En∈ZM ,n≡m(mod q)1XM
(n) =

γ(M)
γ(q)

1Xq(m)

for all m ∈ Zq.

Proof. Let r be the largest factor of M which is coprime to q. We observe
that if n(mod q) = m, then

1XM
(n) = 1Xq(m)1Xr(n(mod r)).

From the Chinese remainder theorem we thus see that

En∈ZM ,n≡m(mod q)1XM
(n) = 1Xq(m)E(1Xr) = 1Xq(m)γ(r)

and the claim follows from (7.2).

We now analyze the Fourier behaviour of the Xq. For each q ∈ N and
a ∈ Z we make the temporary definition

(7.3) t(a, q) := En∈Xqeq(an) =
1

qγ(q)

∑
n∈Xq

eq(an).

Note that the denominator is non-zero by (1.3).

Lemma 7.2. If q ∈ Z+ and a ∈ Z∗q, then t(a, q) = t(ak, qk) for any k ∈ Z+.

Proof. Let k′ be the largest factor of k which is coprime to q. Observe
that n ∈ Xqk if and only if n(mod q) ∈ Xq and n(mod k′) ∈ Xk′ . Since
eq(an) depends only on n(mod q), we thus see from the Chinese remainder
theorem that

En∈Xqk
eq(an) = En∈Xqeq(an),
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and the claim follows.

As a consequence of this we may define the normalised Fourier coeffi-
cients s(a/q) by

(7.4) s(a/q) := t(a, q).

We now record some useful identities and estimates for s(a/q).

Lemma 7.3. Let q, q′ ∈ Z+ and a, a′ ∈ Z. Then the following statements
hold.

(i) s(0) = 1.
(ii) s is periodic modulo 1. In particular when considering s(a/q), we

may think of a as an element of Zq.
(iii) If (q, q′) = 1, then

s(a/q + a′/q′) = s(a/q)s(a′/q′).

(iv) If a ∈ Z∗q and q is not square-free, s(a/q) = 0.
(v) If a ∈ Z∗q, q > 1, and γ(q) = 1, then s(a/q) = 0.
(vi) If a ∈ Z∗q, then |s(a/q)| 6

∏
p|q(1− γ(p))/γ(p).

Proof. The first two claims are immediate from (7.4). To confirm (iii),
define b(mod qq′) by the congruences b ≡ aq′(mod q) and b ≡ a′q(mod q′),
and r, r′ by the relations qr ≡ 1(mod q′), q′r′ ≡ 1(mod q). Then it is easy
to check that

(7.5) s(a/q)s(a′/q′) =
1

|Xq||Xq′ |
∑

n∈Xq

∑
n′∈Xq′

eqq′
(
b(q′r′n+ qrn′)

)
.

Observe that q′r′n+qrn′ is congruent to n(mod q) and to n′(mod q′). Hence
the right-hand side of (7.5) is indeed just

1
|Xqq′ |

∑
m∈Xqq′

eqq′(bm) = s(b/qq′) = s(a/q + a′/q′).

To prove (iv), we write q = p2k for some prime p and integer k, and observe
that Xp2k is periodic mod pk. Since a

q is not an integer divided by pk, we
see that the expression in (7.4) necessarily vanishes. The fifth claim (v)
follows by inspection. Finally, we prove (vi). By (iv) we may assume q is
square-free. By (iii) we may assume q is prime. But then (vi) follows by
writing ∑

n∈Xq

eq(an) =
∑
n∈Zq

eq(an)−
∑

n∈Zq\Xq

eq(an),

and observing that the former sum vanishes since a ∈ Z∗q , while the latter
sum is at most |Zq\Xq| = q(1− γ(q)) by (7.1).
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Now we can write 1XM
as a Fourier series, with coefficients determined

by the γ and s functions.

Lemma 7.4. For any M and any n ∈ ZM , we have

(7.6) 1XM
(n) = γ(M)

∑
q|M

∑
a∈Z∗q

s(a/q)eq(−an).

Proof. The right-hand side can be rewritten as

γ(M)
∑

b∈ZM

s(b/M)eM (−bn).

But from (7.3) and (7.4) we have γ(M)s(b/M) = En∈ZM
1XM

(n)eM (bn).
The claim then follows from the Fourier inversion formula.

Motivated by the identity (7.6), let us define the function4 αR : Z → R
by

(7.7) αR(n) :=
∑
q6R

∑
a∈Z∗q

s(a/q)eq(−an).

Thus αR is some sort of truncated version of 1XR!
/γ(R!), which is normal-

ized to have average value 1 (as can be seen by considering the q = 1 term
of the above sum, which is the only term which does not oscillate in n).

Lemma 7.5. Let h denote the multiplicative function

(7.8) h(q) := µ(q)2
∏
p|q

1− γ(p)
γ(p)

.

Then for all n ∈ XR!, we have αR(n) = G(R), where G(R) = G(F,R) is
the quantity

(7.9) G(R) :=
∑
q6R

h(q).

Remark. Note in particular that G(R) is positive (the q = 1 summand is
equal to 1).

Proof. Fix n ∈ XR!. Recall the definition (7.7) of αR. In the first instance
we will work with the inner sum

∑
a∈Z∗q s(a/q)eq(−an) occurring in that

definition. We may restrict q to be square-free since only such q contribute

4While at first glance this expression appears to be complex-valued, it is in fact real, as one

can see from conjugation symmetry, or from more explicitly real formulae for αR below such as
(7.10).
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to the sum (7.7) in view of Lemma 7.3 (iv). We have∑
a∈Z∗q

s(a/q)eq(−an) =
∑
a∈Z∗q

Em∈Xqeq(am)eq(−an)

= Em∈Xq

∑
a∈Zq

eq(a(m− n))1(a,q)=1

= Em∈Xq

∑
a∈Zq

eq(a(m− n))
∑

d|(a,q)

µ(d)

=
∑
d|q

µ(d)Em∈Xq

∑
a∈Zq :d|a

eq(a(m− n))

=
∑
d|q

µ(d)Em∈Xq

q

d
1m≡n(mod q/d)

=
∑
d|q

µ(d)Em∈Zq ,m≡n(mod q/d)1Xq(m)
Em∈Xq1Xq(m)

.

By Lemma 7.1, we have

Em∈Zq ,m≡n(mod q/d)1Xq(m)
Em∈Zq1Xq(m)

=
1

γ(q/d)
1Xq/d

(n).

Now we substitute into (7.7), the definition of αR. Since q is being supposed
square-free, d and q/d are coprime. Hence

(7.10) αR(n) =
∑
q6R

µ2(q)
∑

d|q:( q
d
,F (n))=1

µ(d)γ(d)
γ(q)

.

Since n ∈ XR, we have ( q
d , F (n)) = 1 for all q 6 R and d|q. Furthermore

from the multiplicativity of γ we have∑
d|q

µ(d)γ(d)
γ(q)

=
∏
p|q

1− γ(p)
γ(p)

= h(q),

and the claim follows.

The function αR is not quite a candidate for an enveloping sieve, because
it can be negative. To resolve this problem, we shall simply square (and
renormalize) αR, defining

(7.11) βR(n) :=
1

G(R)
|αR(n)|2.

Clearly βR is non-negative, has R! as a period, and equals G(R) onXR!. We
now give a Fourier representation for βR similar to (7.7), but with slightly
larger Fourier coefficients.
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Proposition 7.1. [28] We have the representation

βR(n) =
∑

q6R2

∑
a∈Z∗q

w(a/q)eq(−an),

where the coefficients w(a/q) obey the bounds

(7.12) |w(a/q)| 6 3$(q)|s(a/q)|

(here $(q) denotes the number of prime factors of q). Also we have w(0) =
1.

Remark. More precise asymptotics for w(a/q) are available, see [28] (and
see [27] for an even more precise statement in the case F (n) = n). We will
not need these refinements here, however.

Proof. We follow the arguments of Ramaré and Ruzsa [28]. Our starting
point is the formula (7.10), which was derived for all n (not just those in
XR!). Writing q = dr, we thus have5,

(7.13) αR(n) =
∑

d,r:dr6R

µ(d)
γ(r)

1(r,F (n))=1.

Inserting (7.13) into (7.11), we obtain

βR(n) =
1

G(R)

∑
d1,r1,d2,r2

d1r1,d2r26R

µ(d1)µ(d2)
γ(r1)γ(r2)

1([r1,r2],F (n))=1,

where [r1, r2] denotes the least common multiple of r and r′. Also note
that αR, and hence βR, is periodic with period R!. By Fourier inversion,
we then have

βR(n) =
∑
q|R!

∑
a∈Z∗q

w(a/q)eq(−an)

where

w(a/q) :=
1

G(R)
En∈ZR!

∑
d1,r1,d2,r2

d1r1,d2r26R

µ(d1)µ(d2)
γ(r1)γ(r2)

1([r1,r2],F (n))=1eq(an).

Fix a, q. Observe that the quantity 1([r1,r2],F (n))=1, as a function of n, is pe-
riodic with period [r1, r2]. Thus En∈ZR!

1([r1,r2],F (n))=1eq(an) vanishes unless
q divides [r1, r2], in which case the expression is equal to s(a/q)γ([r1, r2])

5Note that the contribution of the q which are not square free can be added in, since it is easy

to show that
P

dr=q
µ(d)
γ(r)

1(r,F (n))=1 = 0 for all such q. Indeed, if p2|q, then the contributions

of the cases p|d, p|r and p 6 |d, p2|r to this sum will cancel each other out.
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by (7.4). In particular, since [r1, r2] 6 R2, we know that w(a/q) vanishes
when q > R2, and in the remaining cases q 6 R2 we have

w(a/q) =
s(a/q)
G(R)

∑
d1,r1,d2,r2

d1r1,d2r26R
q|[r1,r2]

µ(d1)µ(d2)
γ(r1)γ(r2)

γ([r1, r2]).

From (7.2) and (7.8) we have

γ([r1, r2])
γ(r1)γ(r2)

=
∏

p|(r1,r2)

1
γ(p)

=
∏

p|(r1,r2)

(1 + h(p)) =
∑

t|(r1,r2)

h(t),

and thus

(7.14) w(a/q) =
s(a/q)
G(R)

∑
t6R

h(t)
∑

d1,r1,d2,r2
d1r1,d2r26R

q|[r1,r2]
t|(r1,r2)

µ(d)µ(d′).

Thus to prove (7.12), it suffices by (7.9) to show that

|
∑

d1,r1,d2,r2
d1r1,d2r26R

q|[r1,r2]
t|(r1,r2)

µ(d1)µ(d2)| 6 3$(q)

for all t 6 R. While this is in fact true for all q, it in fact suffices in light of
Proposition 7.3 (iv) to verify it for square-free q, in which case the formulae
are slightly simpler.

Fix t. We take advantage of the constraint t|(r1, r2) to write rj = tr̃j ,
lj = dj r̃j , and q̃ := q/(q, t), and observe that the constraint q|[r1, r2] is
equivalent to q̃|[r̃1, r̃2]. Also, q̃ is square-free. Thus we reduce to proving
that

(7.15) |
∑

l1,l26R/t

A(l1, l2)| 6 3$(q)

where
A(l1, l2) :=

∑
r̃1|l1,r̃2|l2
q̃|[r̃1,r̃2]

µ(l1/r̃1)µ(l2/r̃2).

This expression can be worked out quite explicitly:

Lemma 7.6. Let q̃ be square-free. Then the quantity A(l1, l2) vanishes
unless l1, l2|q̃ and q̃|l1l2, in which case |A(l1, l2)| = 1.
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Proof. It suffices to prove this claim in the “local” case when l1, l2, q̃
are all powers of a single prime p, since the general case then follows by
splitting l1, l2, q̃ into prime factors and exploiting the multiplicativity of the
summation in A(l1, l2). If q̃ = 1 then the constraint q̃|[r̃1, r̃2] is vacuous and
the claim follows from Möbius inversion. Since q̃ is square-free, the only
remaining case is when q̃ = p. In this case, q̃|[r̃1, r̃2] if and only if not both
of r̃1, r̃2 equal one, and so

A(l1, l2) =
∑

r̃1|l1,r̃2|l2

µ(l1/r̃1)µ(l2/r̃2)− µ(l1)µ(l2).

Applying Möbius inversion (or direct computation) we thus see that the ex-
pression A(l1, l2) equals −1 when (l1, l2) = (p, p), equals +1 when (l1, l2) =
(p, 1), (1, p), and vanishes otherwise, and the claim follows.

From this lemma we see that there are at most 3$(q̃) 6 3$(q) pairs
(l1, l2) for which A(l1, l2) is non-zero, and in each of these cases we have
|A(l1, l2)| = 1. The claim (7.15) follows. Using (7.14), this proves (7.12).

In the case a = 0 and q = 1, a closer inspection of the above argument
shows that the quantity in absolute values in (7.15) is in fact exactly equal
to 1. In view of (7.14), Lemma 7.3 (i) and (7.9), this gives w(0) = 1 as
desired. This concludes the proof of Proposition 7.1.

Finally, we rewrite αR (and hence βR) in the more familiar notation of
the Selberg sieve. This will allow us to conclude the crude estimate for βR

demanded in Proposition 3.1 (ii).

Lemma 7.7. We have

αR(n) = G(R)
∑
d6R

d|F (n)

λd,

where λd is defined for squarefree d by

(7.16) λd :=
µ(d)Gd(R/d)
γ(d)G(R)

,

and the quantity Gd is defined by

Gd(x) :=
∑
q6x

(q,d)=1

h(q).

Remark. The notation here is reasonably consistent with what is normal
in sieve theory, as may be found for example in [19]. For some further
discussion of the weights λd in the special case F (n) = n, see Appendix 8
below.
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Proof. We start with (7.13) and use Möbius inversion to write

1(r,F (n))=1 =
∑

m|r,m|F (n)

µ(m),

and hence

αR(n) =
∑

m6R:m|F (n)

µ(m)
∑

s,r:sr6R,m|r

µ(s)
γ(r)

.

Writing r =: mr′ and q := sr′, we thus have

αR(n) =
∑

m6R:m|F (n)

µ(m)
∑

q6R/m

∑
r′|q

µ(q/r′)
γ(mr′)

.

From (7.2) a calculation gives∑
r′|q

µ(q/r′)
γ(mr′)

=
1(q,m)=1

γ(m)

∏
p|q

µ2(q)
( 1
γ(q)

− 1
)

=
1(q,m)=1

γ(m)
h(q),

and the claim follows.

Lemma 7.8. Suppose that d is squarefree. Then |λd| 6 1.

Proof. This is a well-known fact in sieve theory. The proof (which may
be found in [19, p. 100]) consists in observing that

G(R) =
∑
l|d

h(l)Gd(R/l) >
( ∑

l|d

h(l)
)
Gd(R/d) =

Gd(R/d)
γ(d)

,

which implies the result immediately.

Proof of Proposition 3.1. To prove (i), it suffices in view of Lemma 7.5 to
show that

G(R) �k
logk R

SF
.

In [19, Lemma 4.1], the bound

G(R) �k

∏
p<R

1
γ(p)

is obtained. The claim (i) now follows from (1.7) and the classical bound∏
k<p6R(1− k/p) �k (logR)−k.

Let us now consider (ii), that is the statement βR(n) �ε N
ε. By Lemmas

7.7 and 7.8 we have the bound β(n) 6 G(R)d(F (n))2. Recall that 1−γ(p) 6
k/p for all p (cf. (1.4)), together with the non-degeneracy assumption (1.3),
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which implies that γ(p) > 1/p. For any ε > 0, we may therefore infer the
bound

h(q) = µ(q)2
∏
p|q

1− γ(p)
γ(p)

6 kkµ(q)2
∏
p|q
p>k

k/p

1− k/p
(7.17)

�k k
$(q) logk q/q �k,ε q

ε−1

for any ε > 0. Here, we have invoked well-known inequalities for the divisor
function (recall that |ai|, |bi| 6 N , whence |F (n)| �k N

2k). Using (7.17),
and recalling (7.9), we infer that

G(R) �k,ε R
ε/2 6 N ε/2,

concluding the proof of (ii). We remark that more precise bounds on G(R)
may be found in [19].

To prove (iii) and (iv), it suffices by Lemma 7.3 (vi) and Proposition 7.1
to show that

3$(q)
∏
p|q

(1− γ(p))/γ(p) �ε q
ε−1

for all square-free q. But the left-hand side is just 3$(q)h(q), whence by
(7.17) and the classical bound $(q) � log q/ log log q we are done.

8. Appendix: A comparison of two enveloping sieves.

Let us begin with a few further remarks concerning what we mean by
an enveloping sieve. The idea of considering the sieve βR not simply as a
tool for obtaining upper bounds but as an interesting function in its own
right is one we got by reading papers of Ramaré [27] and Ramaré-Ruzsa
[28]. Ramaré generously acknowledges that the essential idea goes back to
Hooley [20]. It is in those papers (and in fact so far as we know only in
those papers) that one finds the term enveloping sieve.

The name, though perhaps nonstandard, seems to us to be appropriate
for describing a situation where one uses a single majorant for the primes to
deal simultaneously with a whole family of problems which might normally,
by themselves, be dealt with by a family of different sieves.

In Proposition 3.1 take F (n) = n, so that G(R)−1βR, as defined in (7.11),
is a majorant for the primes themselves (or at least the primes > R). The
expansion of βR as a Fourier series in Proposition 3.1 can be thought of as
a way of using a sieve for the primes to tell us about the behaviour of the
primes restricted to arithmetic progressions a(mod q). This might normally
be handled by a separate procedure for each (a, q).
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The authors [18] used a somewhat different majorant for the primes,
which we call β′R below (a closely related object was called ν in [18]). We
were concerned with the estimation of correlations

(8.1) En6Nβ
′
R(n+ h1) . . . β′R(n+ hm).

Here, then, a single sieve β′R is being used to deal with configurations
(n+h1, . . . , n+hm) which might more normally be treated using a Selberg
sieve adapted to the polynomial F (n) = (n + h1) . . . (n + hm). This, we
think, should also qualify as a use of an enveloping sieve.

Let us return to the function βR(n). By Lemma 7.7 it is given by the
formula

βR(n) = G(R)(
∑
d|n

d6R

λSEL
d )2.

G(R) is as defined in (7.9). In this particular case we have from (7.8) that
h(m) = 1/φ(m) and so

G(R) =
∑
m6R

µ2(m)
φ(m)

.

The weights λSEL
d (SEL stands for Selberg) are defined by (7.16); when

F (n) = n we have γ(d) = φ(d)/d, and thus

(8.2) λSEL
d :=

µ(d)Gd(R/d)
γ(d)G(R)

=
dµ(d)

φ(d)G(R)

∑
q6R/d
(q,d)=1

1/φ(q).

Why did we consider βR? For us, the motivating factor was that the
Fourier transform of βR could be described quite accurately, as was done
for example in Proposition 7.1. There are many other uses for βR, one
of the most famous being to the so-called Brun-Titchmarsh problem of
proving an upper bound for the number of primes in an interval [x, x+ y).
The function βR and the associated weights λSEL

d were first considered by
Selberg and constitute the simplest instance of Selberg’s upper bound sieve
(also known as the Λ2-sieve).

As is well-known, the weights λSEL
d arise from a certain natural quadratic

optimization problem. Indeed for any real weights λd such that λ1 = 1 the
function

ψ(n) := (
∑
d|n

d6R

λd)2
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forms a pointwise majorant for the primes > R. For a given integer N we
might choose R to be a small power of N and then attempt to choose the
λd so that

∑
n6N ψ(n) is as small as possible. After changing the order of

summation one finds that

(8.3)
∑
n6N

ψ(n) = N
∑

d1,d26R

λd1λd2

[d1, d2]
+O(R2 sup

d6R
λ2

d).

In practice the error will be small, and we become interested in minimising
the quadratic form

Q(λ) :=
∑

d1,d26R

λd1λd2

[d1, d2]
=

∑
δ6R

φ(δ)(
∑
δ|d

λd

d
)2

subject to λ1 = 1. Q(λ) may be written as
∑

δ6R φ(δ)u2
δ where

(8.4) uδ :=
∑
δ|d

λd/d;

in these new coordinates the condition λ1 = 1 translates to∑
δ6R

µ(δ)uδ = 1.

Observe that under these conditions we have

(8.5) Q(λ) =
∑
δ6R

φ(δ)
(
uδ −

µ(δ)
G(R)φ(δ)

)2

+G(R)−1,

which makes it completely clear that the minimum of Q(λ) is 1/G(R) and
that this occurs when uδ = µ(δ)/φ(δ)G(R). This corresponds to the choice
λd = λSEL

d .

Now it is well-known that G(R) ∼ logR. In fact one has the asymptotic

(8.6) G(R) = logR+ γ +
∑

p

log p
p(p− 1)

+ o(1).

This may be found in [27], for example; Montgomery [25] traces the result
back at least as far as Ward [37].

We remark that all this together with Lemma 7.8 (which, in our new
notation, tells us that |λSEL

d | 6 1) allows us to recover the fact that if
R = N1/2−ε then ∑

n6N

βR(n) = N(1 + oε(1)).

This also follows quickly from Proposition 3.1 (cf. Lemma 4.1).
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As remarked earlier, we had occasion in our paper [18, Chapter 8] to
consider a somewhat different majorant for the primes > R. To enable a
comparison with βR, we write this majorant in the form

(8.7) β′R(n) = G(R)(
∑
d|n

d6R

λGY
d )2

where

λGY
d =

µ(d) log(R/d)
logR

.

Objects of this type were extensively analysed by Goldston and Yıldırım
[11, 12, 13], and in particular they saw how to asymptotically evaluate
certain correlations of the form (8.1) provided R 6 N cm . This was a
crucial ingredient in our work in [18], but we should remark that other
aspects of the function β′R were investigated much earlier, and indeed β′R
was known to Selberg. It has also featured in works of Friedlander-Goldston
[8], Goldston [10] and Hooley [21], among others. The consideration of the
weights λGY and the associated majorant β′R may be motivated by looking
at an asymptotic for the weights λSEL

d . In [27, Lemma 3.4], for example,
one finds the result

(8.8) Gd(R/d) = log(R/d) + γ +
∑
p>2

log p
p(p− 1)

+
∑
p|d

log p
p

,

which leads in view of the definition (8.2) and (8.6) to the asymptotic

λSEL
d ∼ µ(d) log(R/d)

logR
= λGY

d .

At the very least, this suggests looking at β′R as defined in (8.7) above. The
oscillatory effect of the Möbius function means that there is no a priori
guarantee that β′R is a close approximation to βR. It turns out however
that βR and β′R are, for many purposes, rather similar.

One way to see this is to inspect the quadratic form Q(λGY). The as-
ymptotic

Q(λGY) =
1

logR
+O(

1
log2R

)

follows from a result of Graham [15] and can easily be proved using Gold-
ston and Yıldırım’s method (as exposited, for example, in [18, Ch. 9]).
Comparing with (8.5) and using the asymptotic (8.6) one sees that∑

δ6R

φ(δ)(uGY
δ − uSEL

δ )2 = O(
1

log2R
).
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Here, of course, uGY and uSEL are related to λGY and λSEL respectively by
the transformation (8.4). If R� N1/2−ε then this translates via (8.3) to a
bound ∑

n6N

( ∑
d|n

d6R

λGY
d − λSEL

d

)2 = O(
N

log2R
),

which implies that∑
n6N

(
β
′1/2
R (n)− β

1/2
R (n)

)2
= O(

N

logR
).

Using the Cauchy-Schwarz inequality we now get

‖β′R − βR‖1 := E16n6N |β′R(n)− βR(n)|

6
(
E16n6N (β′1/2

R (n)− β
1/2
R (n))2

)1/2×

×
(
E16n6N (β′1/2

R (n) + β
1/2
R (n))2

)1/2

= O(
1

logR
)1/2 · (‖βR‖1 + ‖β′R‖1)1/2

= O(
1√

logR
).

On the other hand, from Lemma 4.1 we have ‖βR‖1 = O(1). From the
triangle inequality we thus obtain

Lemma 8.1. Suppose that R� N1/2−ε. Then βR and β′R are close in that
they satisfy the L1-estimate ‖β′R − βR‖1 = O((logR)−1/2).

Such an estimate is not, in itself, enough to allow us to deduce enough
information about the Fourier expansion of β′R to prove a restriction the-
orem analogous to that obtained in §4 for βR. Such Fourier information
could, we believe, be obtained by an analytic method similar to that in [13],
but there seems little use for such a result. Going in the other direction,
one might ask whether it is possible to obtain combinatorial information
concerning correlations of the form (8.1) for βR. In view of (8.8) it looks
as though any such effort might require one to address the function

HR(n) :=
∑
d|n

d6R

µ(d),

concerning oneself in particular with the 2mth moment of this function.
When m = 1 this was investigated by Dress, Iwaniec and Tenenbaum [7]
and when m = 2 by Motohashi [26]. At this point there are already some
rather thorny issues involved, and it does not seem worth the effort of
pursuing the matter simply to obtain correlation estimates for βR. The
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function HR is of some interest in its own right, however, and had an
auxilliary role for instance in the ground-breaking work [9].

Let us conclude with the following remark. As far as enveloping sieves
for the primes are concerned, it seems that both βR and β′R have their own
role to play. βR is useful if one wants to do harmonic analysis, whereas
β′R is far more appropriate if one wishes to do combinatorics. The two
majorants are, however, rather closely related.
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