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Gross’ conjecture for extensions ramified over

four points of P1

par Po-Yi HUANG

Résumé. Dans le papier ci-après, avec une hypothése modérée,
nous prouvons une conjecture de Gross pour l’élément Stickel-
berger de l’extension abelienne maximale sur le corps des fonc-
tions rationnelles non ramifiée en dehors d’un ensemble des quatre
places de degré 1.

Abstract. In this paper, under a mild hypothesis, we prove a
conjecture of Gross for the Stickelberger element of the maximal
abelian extension over the rational function field unramified out-
side a set of four degree-one places.

1. Introduction

Let K be a global function field, S be a non-empty finite set of places of
K. Consider the S-zeta function

ζS(s) =
∑

a⊂OS

(Na)−s,

where OS is the ring of S-integers, and the summation ranges over all ideals
a in this ring. It is well-known that this series converges for <(s) > 1 and
has a meromorphic continuation to the whole complex plane, with at most
a simple pole at s = 1 and no other singularities. The leading term of its
Taylor expansion at s = 0 has a good formula (Class Number Formula):

ζS(s) = −hSRS

ωS
sn + O(sn+1), as s → 0.

Here hS is the class number of OS , RS is the S-regulator, ωS is the number
of roots of unity in OS , and n = #S − 1, the rank of the units group, O∗

S
([5]).

Gross’ Conjecture is a generalization of the above class number formula.
In order to state it, we need to modify the above setting. We will follow
the notations used in [5]. First we fix a non-empty finite set T of places of
K such that T ∩S = ∅. Let US,T be the subgroup of O∗

S consisting of units
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congruent to 1 modulo T , which is known to be a free Z-module ([5]). The
modified zeta function is defined as

ζS,T (s) = ζS(s)
∏
q∈T

(1− (Nq)1−s).

Then ζS,T (s) is an entire function and the Taylor expansion at s = 0 be-
comes

ζS,T (s) = (−1)#T−1 ·
hS,T RS,T

ωS,T
sn + O(sn+1), as s → 0.

Here hS,T is the order of ray class group modulo T , RS,T is the regulator of
US,T , and ωS,T is the number of roots of unity in US,T , which, in our case,
equals to 1 ([5]).

Similarly, for a finite abelian extension L/K unramified outside S, with
G = Gal(L/K), and for each character χ ∈ Ĝ, the modified L-function is
defined as ([5])

LS,T (χ, s) = LS(χ, s)
∏
q∈T

(1− χ(φq)(Nq)1−s),

where
LS(χ, s) =

∑
a⊂OS

χ̂(a)(Na)−s

is the usual L-function. Here for a prime ideal p, χ̂(p) = χ(φp) where φp

denotes the Frobenius element at p, and for an integral ideal a, if a =
∏

pni
i ,

then χ̂(a) =
∏

χ̂(pi)ni .
Now we introduce the Stickelberger element θS,T . It is an element of

C[G], with the property that

χ(θS,T ) = LS,T (χ, 0), ∀ χ ∈ Ĝ.

In our case, θS,T ∈ Z[G]([5], Proposition 3.7). In the group ring Z[G], the
augmentation ideal I is the kernel of the homomorphism

Z[G] −→ Z∑
g∈G αgg 7→

∑
g∈G αg.

In other words, I is generated by {g−1 | g ∈ G}. Through the isomorphism
g 7→ g−1, we can identify G with I/I2 ([5]). Suppose that S = {v0, . . . , vn}.
For each place vi, let rvi : K∗

vi
−→ Gvi ⊂ G ∼= I/I2 be the local reciprocity

map. We choose a basis u1, . . . , un of US,T such that the sign of the determi-
nant det(vi(uj))1≤i,j≤n is positive and define the Gross regulator detG(λS,T )
as the residue class modulo In+1 of the determinant det(rvi(uj)− 1)1≤i,j≤n

([5]).
Since L/K is unramified outside S, rv(uj) = 1 for v 6∈ S, the product

formula says that the above definition is well-defined and is independent of
the choice of the basis u1, ..., un.
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Gross’ Conjecture ([5]) says that

(1) θS,T ≡ (−1)#T−1hS,T detG(λS,T ) (mod In+1).

Stickelberger elements and Gross regulators enjoy functorial properties.
Regarding to this aspect, we quote the following simple lemma ([11], Propo-
sition 1.4).

Lemma 1.1. Suppose that Gross’ Conjecture holds for the extension L/K
with respect to S and T . Let L′/K be a subextension of L/K, S ⊂ S′ and
T ⊂ T ′. Then the following are true.

(1) Gross’ Conjecture holds for L′/K with respect to S and T .
(2) Gross’ Conjecture holds for L/K with respect to S′ and T .
(3) Gross’ Conjecture holds for L/K with respect to S and T ′.

There are already many evidences of Gross’ Conjecture over function
fields as well as number fields, for instance, [1], [2], [3], [4], [6], [8], [9],
[10], [12], [13], in which various different methods are used. However, in
this note we take another approach and follow the method in [11]. In [11]
M. Reid proves the following theorem.

Theorem 1.2. Let K = Fq(x), L be any abelian extension of K unramified
outside S which is a set of three degree-one places of K, T be a set of places
such that the greatest common divisor of their degrees is relatively prime to
q − 1. Then Gross’ Conjecture holds.

We generalize the above theorem to the following.

Theorem 1.3. Let K = Fq(x), L be any abelian extension of K unramified
outside S which is a set of four degree-one places of K, T be a set of places
such that the greatest common divisor of their degrees is relatively prime to
q − 1. Then Gross’ Conjecture holds.

This main theorem is proved in Section 3.1, as a consequence of Theo-
rem 3.2 which is a special case and whose proof will be given at the end of
this paper. The proof is based on an expressing of the difference of both
sides of the conjecture as certain polynomial which, by a series of compu-
tations, is shown to equal to a sum of several products. The polynomial
will contains about 300 terms if these products are expanded as sums of
monomials. We first use the software ”Maple” to do the expansions of these
products as well as the cancelations of monomials with opposite signs and
reduce it to one with only 70 terms. Then we use some congruence relations
to show that it is actually zero.

It seems that one can use a similar method to deal with the case where
S contains n degree-one places for any given n, but if one does so, one will
also need to deal with computations whose complexity will increase rapidly
with n. To have this kind of method work for all n at one time, one needs
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to introduce additional tool to overcome this difficulty. We will discuss this
matter in the forthcoming paper [7].

2. Group Rings

Let G be a finite abelian group, Z[G] its group ring, and IG its aug-
mentation ideal. If there is no ambiguity, we use I instead of IG. In
this section, we study some basic congruence relations modulo I2, I3, I4.
Lemma 2.1 can be proved by straightforward computations. Other lemmas
except Lemma 2.3 (3) are from [11]. It is possible to generalize Lemma 2.3
to every r.

Lemma 2.1. The following are true.
(1) If A,B ∈ I, A ≡ A′ (mod I2) and B ≡ B′ (mod I2), then AB ≡

A′B′ (mod I3).
(2) If A,B, C ∈ I, A ≡ A′ (mod I2), B ≡ B′ (mod I2) and C ≡ C ′

(mod I2), then ABC ≡ A′B′C ′ (mod I4).
(3) If g1, g2 ∈ G, then g1g2 − 1 ≡ (g1 − 1) + (g2 − 1) (mod I2).

Lemma 2.2. Let g ∈ G be an element of order n. If n is odd, then
n(g − 1) ≡ 0 (mod I3). If n = 2m is even, then n(g − 1) ≡ m(g − 1)2

(mod I3). In both cases, n(g − 1) ∈ I2. If #G = n, then n annihilates
Ir/Ir+1.

Lemma 2.3. Let G = G1 × · · · × Gr, where every Gi is a cyclic group of
order n. Put m = n/2, if n is even, and put m = 0, if n is odd. Let gi be
a generator of Gi, and ai = gi − 1 ∈ Z[G]. Then the following are true.

(1) If r = 1, G = G1, then
∑

σ∈G(σ − 1) ≡ ma1 (mod I2).
(2) If r = 2, G = G1 × G2, then

∑
σ∈G(σ − 1) ≡ m2(a2

1 + a1a2 + a2
2)

(mod I3).
(3) If r = 3, G = G1 ×G2 ×G3, then

∑
σ∈G(σ − 1) ≡ m3(a3

1 + a3
2 + a3

3 +
a2

1a2 + a2
1a3 + a2

2a3 + a1a2a3) (mod I4).

Proof. (of (3))
We have

gi
1g

j
2g

k
3 − 1 = (gk

3 − 1)(gi
1g

j
2 − 1) + (gi

1g
j
2 − 1) + (gk

3 − 1), 0 ≤ i, j, k < n.

By Lemma 2.2, ma2
1a3 ≡ na1a3 ≡ ma1a

2
3 (mod I4), and consequently

we get

∑
σ∈G

(σ − 1) = (
n−1∑
k=0

(gk
3 − 1))(

∑
σ∈G1×G2

(σ − 1))

+ n
∑

σ∈G1×G2

(σ − 1) + n2
n−1∑
k=0

(gk
3 − 1)
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≡ ma3 ·m2(a2
1 + a1a2 + a2

2) + nm2(a2
1 + a1a2 + a2

2) + n2ma3 (mod I4)

≡ m3(a2
1a3 + a1a2a3 + a2

2a3 + a3
1 + a2

1a2 + a3
2 + a3

3) (mod I4).

�

Lemma 2.4. Suppose that g1, g2 ∈ G are of order n1, n2, and (n1, n2) = 1.
Then for any r,

g1g2 − 1 ≡ (g1 − 1) + (g2 − 1) (mod Ir).

Corollary 2.5. Let G1, G2 be finite groups of order n1, n2, and (n1, n2) =
1. Let G = G1 × G2, and πi : G → Gi be the natural projection. For
η ∈ Z[G],

η ∈ Ir
G ⇔ π1(η) ∈ Ir

G1
and π2(η) ∈ Ir

G2
.

3. Extensions Ramified over Four Points

3.1. A Reduction of the Proof. Let K = Fq(x) be the rational function
field over the finite field with q elements, and let S = {∞, x, x− 1, x− s},
a set of four degree-one places of K. Let Ktame

S be the maximal abelian
extension unramified outside S and at worst tamely ramified over S.

The following lemma is from Class Field Theory.

Lemma 3.1. We have Ktame
S = Fq( q−1

√
x, q−1

√
x− 1, q−1

√
x− s), and

Gal(Ktame
S /K) ∼= Ẑ× Z/(q − 1)Z× Z/(q − 1)Z× Z/(q − 1)Z.

Theorem 3.2. Let L = Fqw( q−1
√

x, q−1
√

x− 1, q−1
√

x− s), S = {∞, x,
x − 1, x − s}, s ∈ Fq \ {0, 1}. Let T contain a single place, T = {f(x)},
where f(x) is a monic irreducible polynomial and deg(f) = d. Then
Gross’ Conjecture holds in this case when both sides are multiplied by
(1 + q + q2 + · · ·+ qd−1)2, in other words,

(1 + q + q2 + · · ·+ qd−1)2θS,T

≡ (1 + q + q2 + · · ·+ qd−1)2hS,T detG(λS,T ) (mod I4).

We will postpone the proof of Theorem 3.2 until Section 3.4. Here we
use the theorem to prove Theorem 1.3. This proof is similar to the one in
[11].

Proof. (of Theorem 1.3)
By Corollary 2.5, we may assume that G is a p-group for some prime

number p. If p | q, then the Conjecture is already true ([12]). Consequently,
we may assume that L/K is a subextension of Ktame

S /K and (p, q) = 1.
If (p, q − 1) = 1, then the p-part of Gal(Ktame

S /K) corresponds to a
constant field extension, and Gross’ Conjecture holds.

Now suppose that p divides q− 1. By our hypothesis, T contains a place
whose degree is not divisible by p. Let a be such a place, and put T0 = {a}.
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Let w = pk. Then for some k, L/K is a subextension of Lw/K where
Lw = Fqw( q−1

√
x, q−1

√
x− 1, q−1

√
x− s). By Theorem 3.2, Gross’ Conjecture

for Lw/K holds when multiplied by the factor (1 + q + q2 + · · · + qd−1)2.
This implies that Gross’ Conjecture also holds for L/K when multiplied by
the same factor (Lemma 1.1 (1)). Since G is a p-group, the augmentation
quotient Ir/Ir+1 is p∞-torsion (Lemma 2.2). However, since (1 + q + q2 +
· · · + qd−1)2 ≡ d2 6≡ 0 (mod p), the Conjecture for S and T0 holds. Using
Lemma 1.1(3), we prove the theorem. �

3.2. Notations and Pre-Computations. For the rest of this paper, let
L = Fqw( q−1

√
x, q−1

√
x− 1, q−1

√
x− s) and G = Gal(L/K). We keep the

notations in Theorem 3.2. Then G = G∞ × G0 × G1 × Gs, where G∞ =
Gal(Fqw/Fq) ∼= Z/wZ, Gi = Gal(Fq( q−1

√
x− i)/Fq(x)) ∼= F∗q , i = 0, 1, s.

Denote
H = G0 ×G1 ×Gs.

Definition. Define the isomorphism τ : F∗q × F∗q × F∗q −→ H such that for
α, β, γ ∈ F∗q ,

τ(α, β, γ)( q−1
√

x) = α · q−1
√

x,

τ(α, β, γ)( q−1
√

x− 1) = β · q−1
√

x− 1,

τ(α, β, γ)( q−1
√

x− s) = γ · q−1
√

x− s.

Also, let F ∈ G∞ be the Frobenius element:

F : F∗qw −→ F∗qw

a 7→ aq.

For the rest of this paper, we denote G = G∞ · H. Thus an element
g ∈ G can be expressed as the product of its G∞-part and its H-part.

Lemma 3.3. If a 6∈ S is a degree-d′ place, which corresponds to a monic
irreducible polynomial h(x), then the G∞-part (resp. the H-part) of the
Frobenius element at a is given by F d′ (resp. τ((−1)d′h(0), (−1)d′h(1),
(−1)d′h(s))).

Proof. Similar to [11], Lemma 3.4. �

Definition. Define Λ = ∪∞i=0Λi where, for i = 0, 1, 2, . . .,

Λi
def= {h(x) ∈ Fq[x] | h is monic, deg(h) = i, h(0) 6= 0, h(1) 6= 0, h(s) 6= 0},

and define the map φ : Λ → H such that if deg(h) = d′ then

φ(h) = τ((−1)d′h(0), (−1)d′h(1), (−1)d′h(s)).

Also, for (α, β, γ) ∈ F∗q ×F∗q ×F∗q , denote δ(α, β, γ) = τ(α, β, γ)− 1 ∈ Z[G].
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The following result is similar to [11], Proposition 3.5, which is for the
case where #S = 3. Here we give a more straightforward proof which also
works for the general case.

Lemma 3.4. Let L, S, T be as in Theorem 3.2. Then we can express the
Stickelberger elements as

θS,T = (1− qdF dφ(f))(1 + F
∑
h∈Λ1

φ(h) + F 2
∑
h∈Λ2

φ(h))

+ F 3(1 + qF + q2F 2 + · · ·+ qd−1F d−1)
∑
σ∈H

σ.

Proof. Put Y = q−s and let

LS(s) =
∑

a⊂OS

φa(Na)−s, LS,T (s) =
∏
a∈T

(1− φa(Na)1−s) · LS(s).

Here, as before, φp is the Frobenius element at p if p is a prime ideal, and
φa =

∏
φni

pi
if a =

∏
pni

i . By Lemma 3.3, if h(x) is a monic polynomial and
(h) = a, then φa = F deg(h)φ(h).

Now we consider LS(s) and LS,T (s) as elements of Z[G][[Y ]]. Then we
have

LS(s) =
∑
h∈Λ

F deg(h)φ(h)(qdeg(h))−s =
∞∑
i=0

ViF
iY i,

where
Vi =

∑
h∈Λi

φ(h).

Let us consider V3. First, note that #Λ3 = (q − 1)3 = #H. It is easy
to show that the map φ|Λ3 : Λ3 → H is injective, hence is surjective.
Therefore,

V3 =
∑
σ∈H

σ.

Similarly, we have, for i ≥ 3,

Vi = qi−3
∑
σ∈H

σ.

Now, as T = {f(x)},

LS,T (s) = (1− qdF dφ(f)Y d)
∞∑
i=0

ViF
iY i.

The term V3F
3Y 3 multiplying with qdF dφ(f)Y d will cancel with the

term Vd+3F
d+3Y d+3, and, by this, the coefficient of Y d+3 is zero. Similarly,
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the coefficients of higher degree terms are also zero. Consequently, the
degree of LS,T is at most d + 2, and

LS,T (s) = (1− qdF dφ(f)Y d)(1 + V1FY + V2F
2Y 2) +

d+2∑
i=3

ViF
iY i.

Because θS,T = LS,T (0), the lemma is proved. �

For future computations, we define the following data.

Definition. We define the set of data t, α, β, γ, a, b, c, k, l, m, v, g0, g1, gs,
A,B, C, D as following. The element t is a fixed generator of the multiplica-
tive group F∗q . The elements α, β, γ in F∗q and the residue class a, b, c, k, l, m
in Z/(q − 1)Z are defined to satisfy the following

α = ta = (−1)df(0), β = tb = (−1)df(1), γ = tc = (−1)df(s).

tk = s, tl = s− 1, tm = −1.

The elements g0, g1, gs in H are such that

g0 = τ(t, 1, 1), g1 = τ(1, t, 1), gs = τ(1, 1, t).

Finally, define A = F − 1, B = g0 − 1, C = g1 − 1, D = gs − 1, and
v = 1 + q + q2 + · · ·+ qd−1.

Note that A,B, C, D generate I. An element is in Ir if and only if it can
be written as a finite sum of monomials in A,B, C, D, with each monomial
of total degree at least r.

The following lemma is a direct consequence of Lemma 2.2.

Lemma 3.5. We have the following identities:

(q − 1)B ≡ mB2 (mod I3), 2mB ≡ mB2 (mod I3),
(q − 1)C ≡ mC2 (mod I3), 2mC ≡ mC2 (mod I3),

and (q − 1)D ≡ mD2 (mod I3), 2mD ≡ mD2 (mod I3).

Note that we do not have (q − 1)A ≡ mA2 (mod I3).

3.3. The Computation of θS,T . In this section, we will find an expres-
sion (see Lemma 3.10) of θS,T (mod I4) in terms of those quantities defined
in Section 3.2. For this purpose, we need the following three technical lem-
mas, among which the first is in fact similar to a result in [11] and the others
are crucial here but otherwise not needed if one is dealing with the case
where #S ≤ 3. On the other hand, if one is going to treat the case where
#S ≥ 5, then more formulae of this type are needed and their cardinality
as well as their complexity increase with the number #S.
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Lemma 3.6. We have∑
g∈Λ1

(φ(g)− 1) ≡ (m− k)B − lC + (m− k − l)D (mod I2).

Proof. Using Lemma 2.1 (3) and definitions of the maps φ and δ, we have

∑
g∈Λ1

(φ(g)− 1) ≡

 ∏
g∈Λ1

φ(g)

− 1 (mod I2)

≡ δ((−1)q−3
∏

g∈Λ1

g(0), (−1)q−3
∏

g∈Λ1

g(1),

(−1)q−3
∏

g∈Λ1

g(s)) (mod I2)

Note that we always have (−1)q−3 = 1 for q either even or odd. By Wil-
son’s Theorem we have

∏
g∈Λ1

g(0) = (−1)/((−1) · (−s)) = tm−k and also∏
g∈Λ1

g(1) = (−1)/(1 · (1− s)) = t−l and
∏

g∈Λ1
g(s) = (−1)/(s · (s−1)) =

tm−k−l. The definition of the data B,C,D says that

δ(tm−k, t−l, tm−k−l) ≡ (m− k)B − lC + (m− k − l)D (mod I2),

and the lemma is proved. �

Lemma 3.7. We have∑
g∈Λ2

(φ(g)− 1) ≡ (k −m)B + lC + (k + l −m)D (mod I2).

Proof. The proof is similar to that for Lemma 3.6. Let

S1
def= {g(x) ∈ Fq[x] | g is monic, deg(g) = 2, g(0) 6= 0},

S2
def= {(x− 1)(x− i) | i ∈ Fq, i 6= 0},

S3
def= {(x− s)(x− i) | i ∈ Fq, i 6= 0}.

Then

Λ2 = S1 \ (S2 ∪ S3),
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hence, by Wilson’s Theorem again,

∏
g∈Λ2

g(0) =

 ∏
g∈S1

g(0)

 ·

 ∏
g∈S2

g(0)

−1

·

 ∏
g∈S3

g(0)

−1

·

 ∏
g∈S2∩S3

g(0)


= (−1)q · (−1) · (−1) · s
= −s.

Similarly, we have∏
g∈Λ2

g(1) = s− 1,
∏

g∈Λ2

g(s) = −s(s− 1).

Therefore,∑
g∈Λ2

(φ(g)− 1) ≡ δ(
∏

g∈Λ2

g(0),
∏

g∈Λ2

g(1),
∏

g∈Λ2

g(s)) (mod I2)

= δ(−s, s− 1,−s(s− 1)) (mod I2)

= δ(tk−m, tl, tk+l−m) (mod I2)

≡ (k −m)B + lC + (k + l −m)D (mod I2).

�

Lemma 3.8. We have∑
g∈Λ1∪Λ2

(φ(g)− 1) ≡ m2B2 + (m2 + ml)C2 + (lk − lm + km)D2

+ (m2 + ml)BC + (lk − lm + km)BD

+ (lk + mk)CD (mod I3).

Proof. The proof is similar to the previous one but involves more compu-
tations. Consider the projection η: G0 ×G1 ×Gs → G0 ×G1. Let

Γi = {h(x) ∈ Fq[x] | h is monic, deg(h) = i, h(0) 6= 0, h(1) 6= 0}.

Let π: ∪∞i=0Γi → G0 × G1 be such that π(g) = τ((−1)deg(g)g(0),
(−1)deg(g)g(1), 1). Then π|Λ = η ◦ φ. The map π|Γ2 is injective. As
#Γ2 = |G0| · |G1| = (q − 1)2, it is also surjective. By Lemma 2.3, we
have∑

g∈Γ2

(π(g)− 1) =
∑

σ∈G0×G1

(σ − 1) ≡ m2(B2 + BC + C2) (mod I3).
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Put Ω = Fq \ {0, 1}, S1 = {(x− s)} and S2 = {(x− s)(x− i) | i ∈ Ω}. We
have Γ1 ⊃ S1, Γ2 ⊃ S2 and Λ1 ∪ Λ2 = (Γ1 \ S1) t (Γ2 \ S2). Therefore,∑

g∈Λ1∪Λ2

(π(g)− 1) =
∑
g∈Γ2

(π(g)− 1)−
∑
g∈S2

(π(g)− 1) +
∑
g∈Γ1

(π(g)− 1)(2)

−
∑
g∈S1

(π(g)− 1)

≡ m2(B2 + BC + C2)− I+ II− III (mod I3),

where

I =
∑
i∈Ω

(π((x− s)(x− i))− 1)

II =
∑
i∈Ω

(π(x− i)− 1)

III = (π(x− s)− 1).

For each i ∈ Ω, define ai, bi ∈ Z/(q−1)Z such that i−0 = tai , i−1 = tbi .
Then by Wilson’s Theorem, we have

(3)
∑
i∈Ω

ai ≡ m (mod q − 1), and
∑
i∈Ω

bi ≡ 0 (mod q − 1).

We have π(x− i) = gai
0 gbi

1 , π((x− s)(x− i)) = gai+k
0 gbi+l

1 , and hence

II− I =
∑
i∈Ω

(gai
0 gbi

1 − 1)− (gai+k
0 gbi+l

1 − 1)

=
∑
i∈Ω

((B + 1)ai(C + 1)bi − 1)− ((B + 1)ai+k(C + 1)bi+l − 1)

≡
∑
i∈Ω

(aiB + biC + aibiBC +
(

ai

2

)
B2 +

(
bi

2

)
C2)

− ((ai + k)B + (bi + l)C + (ai + k)(bi + l)BC

+
(

ai + k

2

)
B2 +

(
bi + l

2

)
C2) (mod I3).

Note that the above congruence is from the binomial expansion. Now we
have

(
α+β

2

)
−

(
α
2

)
= αβ +

(
β
2

)
and #Ω = q − 2. These together with

Equation (3) and Lemma 3.5 imply
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II− I ≡ −(q − 2)(kB + lC)− (k
∑

ai + (q − 2)
(

k

2

)
)B2(4)

− (l
∑

bi + (q − 2)
(

l

2

)
)C2

− (k
∑

bi + l
∑

ai + (q − 2)kl)BC (mod I3)

≡ −(q − 2)(kB + lC) + (km +
(

k

2

)
)B2 +

(
l

2

)
C2

+ (lm + kl)BC (mod I3).

Also,

III = gk
0gl

1 − 1(5)

= (B + 1)k(C + 1)l − 1

≡ kB + lC + klBC +
(

k

2

)
B2 +

(
l

2

)
C2 (mod I3).

From (2), (4), (5), we get∑
g∈Λ1∪Λ2

(π(g)− 1) ≡ m2(B2 + BC + C2)− (q − 2)(kB + lC)

+ (km +
(

k

2

)
)B2 +

(
l

2

)
C2 + (lm + kl)BC

− (kB + lC + klBC +
(

k

2

)
B2 +

(
l

2

)
C2) (mod I3)

≡ −(q − 1)kB − (q − 1)lC + (m2 + km)B2 + m2C2

+ (m2 + ml)BC (mod I3).

Finally, we use Lemma 3.5 to obtain

(6)
∑

g∈Λ1∪Λ2

(π(g)−1) ≡ m2B2 +(m2 +ml)C2 +(m2 +ml)BC (mod I3).

Similar formulae can be obtained by using other projections. In fact, if
we put η′: G0 ×G1 ×Gs → G0 ×Gs and π′|Λ = η′ ◦ φ, then we have∑

g∈Λ1∪Λ2

(π′(g)− 1) ≡ m2B2 + (lk − lm + km)BD(7)

+ (lk − lm + km)D2 (mod I3),
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and also, if η′′: G0 ×G1 ×Gs → G1 ×Gs and π′′|Λ = η′′ ◦ φ, then∑
g∈Λ1∪Λ2

(π′′(g)− 1) ≡ (m2 + ml)C2 + (lk − lm + km)D2(8)

+ (lk + mk)CD (mod I3).

It is known that the kernel of the natural map

Z[G0 ×G1 ×Gs] → Z[G0 ×G1]× Z[G0 ×Gs]× Z[G1 ×Gs]

is contained in I3 ([10], Lemma 2). Therefore, the congruences (6), (7), (8)
together imply∑

g∈Λ1∪Λ2

(φ(g)− 1) ≡ m2B2 + (m2 + ml)C2 + (lk − lm + km)D2

+ (m2 + ml)BC + (lk − lm + km)BD

+ (lk + mk)CD (mod I3).

�

Lemma 3.9.

θS,T ≡ −vA3 + IV ·V−(φ(f)− 1) ·VI+v
∑
σ∈H

(σ − 1) (mod I4),

where

IV = 1− qd − (F d − 1)− (φ(f)− 1)

V = (F − 1)(
∑
g∈Λ1

(φ(g)− 1) + 2
∑
g∈Λ2

(φ(g)− 1)) +
∑

g∈Λ1∪Λ2

(φ(g)− 1)

VI = (q − 1)2 + (2q2 − 5q + 3)(F − 1) + (q2 − 3q + 3)(F − 1)2

Proof. We shall compute the right-hand side of the formula in Lemma 3.4.
First, we use the facts #Λ1 = q − 3 and #Λ2 = q2 − 3q + 3 to get

1 + F
∑
g∈Λ1

φ(g) + F 2
∑
g∈Λ2

φ(g) = 1 +

(q − 3) + (q − 3)(F − 1)

+
∑
g∈Λ1

(φ(g)− 1) + (F − 1)
∑
g∈Λ1

(φ(g)− 1)

(9)

+

(q2 − 3q + 3) + (q2 − 3q + 3)(F 2 − 1)

+
∑
g∈Λ2

(φ(g)− 1) + (F 2 − 1)
∑
g∈Λ2

(φ(g)− 1)
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= VI+VII,

where

VII =
∑

g∈Λ1∪Λ2

(φ(g)− 1) + (F − 1)
∑
g∈Λ1

(φ(g)− 1)

+ ((F − 1)2 + 2(F − 1))
∑
g∈Λ2

(φ(g)− 1).

Those terms involved in VII are basically computed in Lemma 3.6,
Lemma 3.7 and Lemma 3.8. In particular, we see that VII ∈ I2. We
need to compute (1− qdF dφ(f)) ·VII, and it is easy to see that this equals
to (

1− qd − qd(F d − 1)− qd(φ(f)− 1)− qd(F d − 1)(φ(f)− 1)
)
·VII .

Lemma 3.5 allow us to make some simplification of this. For instance,
since q ≡ 1 (mod q − 1) we have qd ·VII ≡ VII (mod I3) and hence

(1− qdF dφ(f)) ·VII ≡
(
1− qd − (F d − 1)− (φ(f)− 1)(10)

−(F d − 1)(φ(f)− 1)
)
·VII (mod I4).

Note that (F d − 1)(φ(f) − 1) ∈ I2 and, consequently, (F d − 1)
(φ(f) − 1) ·VII ∈ I4. Hence (1 − qdF dφ(f)) ·VII ≡ IV ·VII (mod I4).
Also, VII−V = (F − 1)2 ·

∑
g∈Λ2

(φ(g)− 1) which is in I3. By Lemma 3.5
again, the multiple of this term with the factor IV is actually in I4. From
these, we see that

(11) (1− qdF dφ(f)) ·VII ≡ IV ·V (mod I4)

By definition, φ(f) − 1 ∈ Z[H] ∩ I = (B,C,D), and we can also apply
Lemma 3.5 to get qd(φ(f)− 1) ≡ φ(f)− 1 (mod I2) and (B,C,D)r ·VI ∈
Ir+2 (here we use the fact that q − 1 | 2q2 − 5q + 3). From these, we get

(1− qdF dφ(f)) ·VI =
(
1− qdF d − qd(φ(f)− 1)

−qd(F d − 1)(φ(f)− 1)
)
·VI

≡ (1− qdF d) ·VI−(φ(f)− 1) ·VI (mod I4)(12)

Note that we have #H = (q − 1)3 and, by Lemma 2.3,
(13)∑
σ∈H

(σ− 1) ≡ m3(B3 + C3 + D3 + B2C + B2D + C2D + BCD) (mod I4).

Put
N = 1 + qF + q2F 2 + · · ·+ qd−1F d−1.
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Then it is easy to see

F 3N
∑
σ∈H

σ = (q − 1)3F 3N + N
∑
σ∈H

(σ − 1) + N(F 3 − 1)
∑
σ∈H

(σ − 1)(14)

≡ (q − 1)3F 3N + v
∑
σ∈H

(σ − 1) (mod I4)

We complete the proof by using Lemma 3.4, Equations (9), (11), (12),
(14) and the following straightforward computation:

(1− qdF d) ·VI+(q − 1)3F 3N

= N(1− qF )(1 + (q − 3)F + (q2 − 3q + 3)F 2) + (q − 1)3F 3N

= N(1− 3F + 3F 2 − F 3)

= N(1− F )3

≡ −vA3 (mod I4).

�

Lemma 3.10. We have

θS,T ≡ −vA3 + mvA
(
(k −m)B2 + lC2 + (k + l −m)D2

)
−A(dA + aB + bC + cD)

(
(k −m)B + lC + (k + l −m)D

)
+ mv

(
m2B3 + (m2 + ml)C3 + (lk − lm + km)D3

+(m2 + ml)B2C + (lk − lm + km)B2D + (lk + mk)C2D
)

− (dA + aB + bC + cD)
(
m2B2 + (m2 + ml)C2

+(lk − lm + km)D2 + (m2 + ml)BC

+(lk − lm + km)BD + (lk + mk)CD
)

+ m2(aB3 + bC3 + cD3) + mA(aB2 + bC2 + cD2)

−A2(aB + bC + cD) + vm3
(
B3 + C3 + D3 + B2C

+B2D + C2D + BCD
)

(mod I4).

Proof. We shall express the right-hand side of the formula in Lemma 3.9
as a polynomial in the data A,B, C, D, a, b, c, d, k, l, m, v. To do so, we first
apply Lemma 3.6, Lemma 3.7, Lemma 3.8, together with the facts that
F d − 1 ≡ dA (mod I2) and φ(f) − 1 ≡ aB + bC + cD (mod I2). Using
these, we are able to write the product(

−(F d − 1)− (φ(f)− 1)
)
·V
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as such kind of polynomial. In order to deal with the expression of the
product (1− qd) ·V as well as that of −(φ(f)− 1) ·VI, we also need to use
Lemma 3.5. Then we actually get

IV ·V ≡ mvA
(
(k −m)B2 + lC2 + (k + l −m)D2

)
−A(dA + aB + bC + cD)

(
(k −m)B + lC + (k + l −m)D

)
+ mv

(
m2B3 + (m2 + ml)C3 + (lk − lm + km)D3

+(m2 + ml)B2C + (lk − lm + km)B2D + (lk + mk)C2D
)

− (dA + aB + bC + cD)
(
m2B2 + (m2 + ml)C2

+(lk − lm + km)D2 + (m2 + ml)BC

+(lk − lm + km)BD + (lk + mk)CD
)

(mod I4),

−(φ(f)− 1) ·VI ≡ m2(aB3 + bC3 + cD3) + mA(aB2 + bC2 + cD2)

−A2(aB + bC + cD) (mod I4).

For the expression of v
∑

σ∈H(σ − 1), we just apply Equation (13). �

3.4. The Proof. In this section, we finish the proof of Theorem 3.2. To
do so, we first compute the Gross regulator by using a method similar to
the one used in [11].

It is difficult to find a basis of US,T . Instead of doing so, we consider the
following. The group of units US is generated by F∗q , x, x− 1, x− s. Put

u0 = x1+q+q2+···+qd−1
/((−1)df(0)) = xv/α,

u1 = (x− 1)1+q+q2+···+qd−1
/((−1)df(1)) = (x− 1)v/β,

us = (x− s)1+q+q2+···+qd−1
/((−1)df(s)) = (x− s)v/γ.

They are linearly independent. Let V be the group, generated by u0, u1, us.
The index (US : V ) is (q − 1)(1 + q + q2 + · · ·+ qd−1)3, and (US : US,T ) =
(qd − 1)/hS,T . Therefore (US,T : V ) = (1 + q + q2 + · · ·+ qd−1)2hS,T , and

(1 + q + q2 + · · ·+ qd−1)2hS,T detG(λS,T )

≡ det

 r0(u0)− 1 r0(u1)− 1 r0(us)− 1
r1(u0)− 1 r1(u1)− 1 r1(us)− 1
rs(u0)− 1 rs(u1)− 1 rs(us)− 1

 (mod I4)

where r0, r1, rs are the local reciprocity maps at 0, 1, s respectively.
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Lemma 3.11. The values of the local reciprocity maps are:

r0(u0) = F−vτ((−1)dα−1, (−1)d, (−s)−d),

r1(u1) = F−vτ(1, (−1)dβ−1, (1− s)−d),

rs(us) = F−vτ(s−d, (s− 1)−d, (−1)dγ−1),

r0(u1) = τ((−1)dβ−1, 1, 1), r0(us) = τ((−s)dγ−1, 1, 1),

r1(u0) = τ(1, α−1, 1), r1(us) = τ(1, (1− s)dγ−1, 1),

rs(u0) = τ(1, 1, sdα−1), rs(u1) = τ(1, 1, (s− 1)dβ−1).

Proof. Similar to [11], Proposition 3.7. �

Corollary 3.12. We have

(1 + q + q2 + · · ·+ qd−1)2hS,T detG(λS,T )

≡ det

 λ11 (dm− b)B (dm + dk − c)B
−aC λ22 (dm + dl − c)C

(dk − a)D (dl − b)D λ33

 (mod I4),

where λ11 = −vA + (dm − a)B + dmC + (dm − dk)D, λ22 = −vA
+ (dm− b)C + (dm− dl)D, λ33 = −vA− dkB − dlC + (dm− c)D.

Now we can prove Theorem 3.2.

Proof. (of Theorem 3.2)
By Lemma 3.10 and Corollary 3.12, the residue class

v2θS,T − v2hS,T detG(λS,T ) (mod I4)

can be expressed as a polynomial Z(A,B, C, D, a, b, c, d, k, l, m, v). Then
we use the software ”Maple” to expand those products into sums of mono-
mials as well as to do the cancelations of monomials with opposite signs.
The output is the following expression of Z. Note that the A3 term in Z
vanishes, and since v ≡ d (mod q − 1), we have (v − d)(B,C,D) ⊂ I2.
Therefore we can replace v by d in our expression of Z.

3 2 2 3 2 2 3 2 3 2 3 3 2 3 3 3 2 3 3 2

-2 d m A B + 2 d m A D - 2 d A D m + 2 d m C l + 2 d m D k + 2 d m B C + d m B D

2 3 2 2 3 2 3 3 3 3 3 3 2 2 2 2 2 2 2 2

- 2 d a B m - 2 d b C m + 2 d m B + 2 d m C + 2 d A a B m - d a B C m - d a B C m

2 2 2 2 3 2 2 2 2 2 2 2 3 3 2 2 3 2 2

- d b C m B - 2 d b C m l - d b C B m - d c D m B - 2 d c D k m + d m B C l - d m B D l

3 2 2 3 2 2 3 3 3 2 2

+ 2 d m B D k + d m C D k - 2 d A B C m l- 4 d A B D k m - 2 d A C D k m - d a B C m l

2 2 2 2 2 2 2 2 2 2 2

+ d a B D m l - 2 d a B D k m - d a B C m l + d a B D m l - 2 d a B D k m - 2 d a B C D k m

2 2 2 2 2 2 2 2 2 2

- d b C D k m - 2 d b C B m l - 2 d b C B D k m - d b C D k m - 2 d c D C m l - 2 d c D B C m l
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2 2 2 2 3 2 3 3 2 3 3 2 3 2 2 3

- 2 d c D B k m - 2 d c D C k m - 2 d A m C - B d m D - 2 d m C D + d m C k B - 2 d A m C k B

3 2 3 2 2 3 3 2 2 3 2 3 2 2

- 2 d A m C l + 4 d A m C D - 2 d A m C c D - 4 d A D m l C + 2 B d m A D + B d m C k + B d m C l

3 2 2 2 2 2 2 3 2 3 2 2 2 2 2

+ 2 B d m D l C + B d m D c - d m C b k B + 2 d m C D k B + 3 d m C D l + 2 d m C D c

2 3 2 3 2 3 2 3 2 2 3 2 2 2

- 2 D d m l k B - 2 D d k A m - 2 D d k m l C + 2 D d m k B + 3 D d m l C - B d m b C k

3 2 2 3 2 2 2 2 2 3 2

+ B d m D l - 2 d m C D l k B - 2 d m C D l c - 2 D d m b C l + D d k m C

Theorem 3.2 is proved by checking that Z ≡ 0 (mod I4). To do so, we
use the obvious congruences

mB2C ≡ mBC2, mB2D ≡ mBD2, mC2D ≡ mCD2 (mod I4),

which are consequences of Lemma 3.5. �
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