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Complete solutions of a family of cubic Thue

equations

par Alain TOGBÉ

Résumé. Dans cet article, nous utilisons la méthode de Baker,
basée sur les formes linéaires en logarithmes, pour résoudre une
famille d’équations de Thue liée à une famille de corps de nombres
de degré 3. Nous obtenons toutes les solutions de l’équation de
Thue

Φn(x, y) = x3 + (n8 + 2n6 − 3n5 + 3n4 − 4n3 + 5n2 − 3n + 3)x2y

− (n3 − 2)n2xy2 − y3 = ±1,

pour n ≥ 0.

Abstract. In this paper, we use Baker’s method, based on linear
forms of logarithms, to solve a family of Thue equations associated
with a family of number fields of degree 3. We obtain all solutions
to the Thue equation

Φn(x, y) = x3 + (n8 + 2n6 − 3n5 + 3n4 − 4n3 + 5n2 − 3n + 3)x2y

− (n3 − 2)n2xy2 − y3 = ±1,

for n ≥ 0.

1. Introduction

A Diophantine equation of the form

F (x, y) = k,

is called a Thue equation, where F ∈ Z[X, Y ] is an irreducible binary form
of degree d ≥ 3 and k is a non-zero rational integer, the unknown x and
y being rational integers. The name is given in honour of A. Thue [9]
who proved that it has only finitely many solutions. Upper bounds for the
solutions have been given using Baker’s theory on linear forms in logarithms

Manuscrit reçu le 19 mai 2004.



286 Alain Togbé

of algebraic numbers (see [1]). So the goal of this paper is to solve the
following Thue equation

Φn(x, y) = x3 + (n8 + 2n6 − 3n5 + 3n4 − 4n3 + 5n2 − 3n + 3)x2y

− (n3 − 2)n2xy2 − y3 = ±1.(1.1)

using Baker’s method. Since E. Thomas and M. Mignotte ([8], [6]) have
solved the first parameterized family of Thue equations of positive dis-
criminant, several families of parametrized Thue equations have been stud-
ied. The success of the method is undeniable as it is widely used. In
[4], C. Heuberger, A. Togbé, and V. Ziegler applied the method to solve
the first family of Thue equations of degree 8. A list of families of Thue
equations studied recently can be obtained at http://www.opt.math.tu-
graz.ac.at/∼cheub/thue.html. In this list, the most frequent methods used
are Baker’s method and the hypergeometric method. In 2004, we have
applied Baker’s method to completely solve a family of Thue equations re-
lated with a family of cubic number fields defined by O. Lecacheux and L.
C. Washington (see [10]). We will use exactly the same method to obtain
the main result of this paper that is the following:

Theorem 1.1. For n ≥ 0, the family of parametrized Thue equations

Φn(x, y) = x3 + (n8 + 2n6 − 3n5 + 3n4 − 4n3 + 5n2 − 3n + 3)x2y

− (n3 − 2)n2xy2 − y3 = ±1.(1.2)

has only the integral solutions

(1.3) ±{(1, 0), (0, 1)},

except for n = 0, 1 where we have:

(1.4)

{
±{(0, 1), (1, 0), (1,−1), (1, 2), (2,−3), (3,−1)} if n = 0,

±{(0, 1), (1, 0), (1,−1)} if n = 1.

Recently, (see [5], pages 100–103), Y. Kishi studied the following family

φn(x) = x3 + (n8 + 2n6 − 3n5 + 3n4 − 4n3 + 5n2 − 3n + 3)x2

− (n3 − 2)n2x− 1.(1.5)

This defines one of the two new families of cubic number fields. Therefore
solving the related Thue equation is of great interest. There are three real
roots θ(1), θ(2), θ(3) of φn(x). For a solution (x, y) of (1.1), we have the
norm equation

(1.6) Φn(x, y) =
3∏

j=1

(
x− θ(j)y

)
= NQ(θ(1))/Q

(
x− θ(j)y

)
= ±1.
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This means that x−θ(j)y is a unit in the order O := Z[θ(1), θ(2)], associated
with φn. Easily, one can check that:

• the couples in (1.3) are solutions to (1.1);
• Φn(−x,−y) = −Φn(x, y); hence if (x, y) is a solution to (1.1), so

is (−x,−y). Without loss of generality, we will consider only the
solutions (x, y) to (1.1) with y positive.

The structure of our proof is as follows. In Section 2, we will determine
some asymptotic expressions of φn(x) and prove that {θ(1), θ(2)} is almost
a fundamental system of units of the number field Kn related with φn(x).
In Section 3, we will study approximation properties of solutions to (1.1)
and determine an upper bound for log y. This is an important step for the
proof of Theorem 1.1. We use some upper and lower bounds on linear forms
in logarithms of algebraic numbers to prove that this equation has only the
trivial solutions for large n in Section 4. Solutions for the other values of
n are discussed in Section 5 using heavy computational verifications and
Kash [3]. Most of the computations involve manipulations with asymptotic
approximations done using Maple.

2. Associated Number Field

As the roots θ(1), θ(2), θ(3) of φn(x) are not exact, we compute some
asymptotic expressions of θ(1), θ(2), θ(3):

θ(1) = −n8 − 2n6 + 3n5 − 3n4 + 4n3 − 5n2 + 3n− 3

− 1
n3

+
2
n5

− 1
n6

− 1
n7

+
4 + δ1

n8
,(2.1)

θ(2) =
1
n3

− 1
n5

+
1
n6

+
−2 + δ2

n8
,

θ(3) = − 1
n5

+
1
n7

+
−2 + δ3

n8
,

where |δk| < 0.1 for n ≥ 22 and k = 1, 2, 3. We will use the following result
that is a modification of Lemma 2.3 in [10]:

Lemma 2.1. Let a1, a2, a3, n ∈ R with n ≥ 29, |a1| ≤ 1, |a2| ≤ 2, |a3| ≤ 3.
Then

log
(
1 +

a1

n
+

a2

n2
+

a3

n3

)
=

a1

n
+

a2 − a2
1/2

n2
+

a3
1/3− a1a2 + a3 + δ̄

n3

for some δ̄ ∈ R with |δ̄| < 0.1.

One can check this result as it is proved exactly as Lemma 2.3 in [10].
Therefore we use (2.1) to determine some asympotic expressions for log

∣∣θ(i)
∣∣
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and log
∣∣θ(i) − θ(k)

∣∣:
log |θ(1)| = 8 log(n) +

2
n2

− 3
n3

+
δ4

n4
,

log |θ(2)| = −3 log(n)− 1
n2

+
δ5

n3
,(2.2)

log |θ(3)| = −5 log(n)− 1
n2

+
2
n3

+
δ6

n4
,

where |δ4| < 3/2, |δ5| < 3/2, |δ6| < 1 for n ≥ 29 and

log |θ(1) − θ(2)| = 8 log(n) +
2
n2

− 3
n3

+
δ7

n4
,

log |θ(2) − θ(2)| = 8 log(n) +
2
n2

− 3
n3

+
δ8

n4
,(2.3)

log |θ(2) − θ(3)| = −3 log(n) +
1
n3

+
δ9

n4
,

where |δk| < 5/2 for k = 7, 8, 9 and n ≥ 29.
As we are using Baker’s method, we need a system of units for Kn that

can be fundamental or almost fundamental. So let us prove that {θ(1), θ(2)}
is an almost fundamental system of units of the number field Kn related
with φn(x).

Lemma 2.2. Let us consider O = Z[θ(1), θ(2)] the order associated with
φn, and 〈−1, θ(1), θ(2)〉 a subgroup of the unit group. We have

(2.4) I := [O× : 〈−1, θ(1), θ(2)〉] ≤ 2,

for n ≥ 29.

Proof. We would like to determine an upper bound for the index of
〈−1, θ(1), θ(2)〉 in the unit group O× of Kn by estimating the regulators
of the two groups. The discriminant DO = D(φn) is given by

D(φn) = (n2 − n + 1)2(n3 + n− 1)2

× (n4 + 2n3 + 4n2 + 3n + 3)2(n4 − n3 + n2 − 3n + 3)2.

From Theorem 1 of [2], the regulator R of a totally real cubic field K of
discriminant D satisfies:

R ≥ 1
16

log2(D/4).

Let R be the regulator of 〈−1, θ(1), θ(2)〉. Then we have

R =

∣∣∣∣∣log
∣∣θ(1)

∣∣ log
∣∣θ(2)

∣∣
log
∣∣θ(2)

∣∣ log
∣∣θ(3)

∣∣
∣∣∣∣∣ .
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Applying (2.2), we obtain

(2.5) 49 log2(n) +
22
n2

log(n) < R < 49 log2(n) +
(

24
n2

− 36
n3

)
log(n) +

3
n4

.

In fact, using asymptotic expressions, one can get:

(2.6) R = (49 + δ10) log2(n),

where |δ10| < 0.009, for n ≥ 29. So R > 0 and θ(1), θ(2) are independent
units. From [7], page 361, we find a bound for the index

I = [O× : 〈−1, θ(1), θ(2)〉]
by

(2.7) I =
R

RO
<

49 log2(n) +
(

24
n2 − 36

n3

)
log(n) + 3

n4

1
16 log2 (D(φn)/4)

≤ 2,

for n ≥ 29. Hence I = {1, 2}. �

Therefore, in the next sections we will use I = 2.

3. Approximation Properties of Solutions

Let (x, y) ∈ Z2 be a solution to (1.1). We define β := x − θy, with
θ := θ(1). We define the type j of a solution (x, y) of (1.1) such that

(3.1)
∣∣∣β(j)

∣∣∣ := min
i=1,2,3

{∣∣∣β(i)
∣∣∣} .

So we have seen with (1.6) that each β(i) is a unit in Kn. For the proof
of Theorem 1.1, we need the expressions of the β(i). The following lemma
will be very useful to obtain their asymptotic expressions:

Lemma 3.1. Let n ≥ 29 and (x, y) be a solution to (1.1) of type j such
that y ≥ 2. Then

(3.2)
∣∣∣β(j)

∣∣∣ ≤ cj
1
y2

, where cj =

{
4

n16 if j = 1,
4
n5 if j = 2, 3,

(3.3) log
∣∣∣β(i)

∣∣∣ = log(y)+ log
∣∣∣θ(i) − θ(j)

∣∣∣+ 1/2 + δ11

n2
, i 6= j, |δ11| < 0.1.

Proof. For i 6= j, we have

y
∣∣∣θ(i) − θ(j)

∣∣∣ ≤ 2
∣∣∣β(i)

∣∣∣ ,
then

(3.4)
∣∣∣β(j)

∣∣∣ = 1∏
i6=j

∣∣β(i)
∣∣ ≤ 4

y2
· 1∏

i6=j

∣∣θ(i) − θ(j)
∣∣ .
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Since ∏
i6=j

∣∣∣θ(i) − θ(1)
∣∣∣ ≥ n16, for n ≥ 29 and j = 1,

∏
i6=j

∣∣∣θ(i) − θ(j)
∣∣∣ ≥ n5, for n ≥ 29 and j = 2, 3,

so we obtain (3.2). Therefore, for n ≥ 29, we have |θ(j) − x/y| < 1/(2y2),
hence x/y is a convergent to θ(j). Moreover, we know that∣∣β(i)

∣∣
y
∣∣θ(i) − θ(j)

∣∣ =

∣∣∣∣∣1 +
β(j)

y(θ(i) − θ(j))

∣∣∣∣∣ ,
then taking the log of the previous expression and using (2.1) and (3.2) we
have

(3.5) log
∣∣∣β(i)

∣∣∣ = log y + log
∣∣∣θ(i) − θ(j)

∣∣∣+ 1/2 + δ11

n2
,

with i 6= j, |δ11| < 0.1 for n ≥ 29. This completes the proof. �

Now we will use the almost fundamental system of units and the asymp-
totic expressions (2.2), (2.3), (3.2), and (3.3) to determine an upper bound
for log y. Obtaining this bound is very crutial for the proof of Theorem 1.1.

Lemma 3.2. Let (x, y) be a solution to (1.1) with y ≥ 2 and n ≥ 29. Then

(3.6) log y ≥ 7
12

log(n)[7n2 log(n)− 16].

Proof. If (x, y) is a solution to (1.1), then β is a unit in Z[θ]. By Lemma
2.2, there are integers u1, u2 such that

(3.7) βI = ±
(
θ(1)
)u1

(
θ(2)
)u2

.

So using the conjugates of β and taking the absolute values, we have

(3.8)


|(β(1))I | = |θ(1)|u1 |θ(2)|u2 ,

|(β(2))I | = |θ(2)|u1 |θ(3)|u2 ,

|(β(3))I | = |θ(3)|u1 |θ(1)|u2 ;

therefore we obtain

(3.9)


log |β(1)| = u1

I log |θ(1)|+ u2
I log |θ(2)|,

log |β(2)| = u1
I log |θ(2)|+ u2

I log |θ(3)|,

log |β(3)| = u1
I log |θ(3)|+ u2

I log |θ(1)|.
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For each j, from (3.9), we consider the subsystem not containing β(j)

that we solve to determine u1 and u2 using Cramer’s method. Then we use
the asymptotic expressions (2.2), (2.3), (3.2), and (3.3) to obtain

(3.10)
u1

I
=



(
13

49 log(n) −
165

2401n2 log(n)2
+ δ12

n3

)
log(y) + 104

49

+ 937
4802n2 log(n)

+ δ13
n3 if j = 1,(

11
49 log(n) −

117
2401n2 log(n)2

+ δ14
n3

)
log(y) + 55

49

+ 741
4802n2 log(n)

+ δ15
n3 if j = 2,(

− 2
49 log(n) + 48

2401n2 log(n)2
+ δ16

n3

)
log(y)− 1

+ 2
49n2 log(n)

+ δ17
n3 if j = 3,

(3.11)
u2

I
=



(
2

49 log(n) −
48

2401n2 log(n)2
+ δ18

n3

)
log(y) + 16

49

− 139
2401n2 log(n)

+ δ19
n3 if j = 1,(

13
49 log(n) −

165
2401n2 log(n)2

+ δ20
n3

)
log(y) + 16

49

+ 1045
4802n2 log(n)

+ δ21
n3 if j = 2,(

11
49 log(n) −

117
2401n2 log(n)2

+ δ22
n3

)
log(y)

+ 27
98n2 log(n)

+ δ23
n3 if j = 3,

where |δk| < 0.1 for 12 ≤ k ≤ 23 and n ≥ 29. Then we get

(3.12)
vj

I
=



(
6

49n2 log2 n
+ δ24

n3

)
log y + 8

7n2 log n
+ δ25

n3 if j = 1,(
6

49n2 log2 n
+ δ26

n3

)
log y − 19

49n2 log n
+ δ27

n3 if j = 2,(
6

49n2 log2 n
+ δ28

n3

)
log y + 1

n2 log n
+ δ29

n3 if j = 3.

where |δk| < 0.1 for 24 ≤ k ≤ 29. In fact, for each j, vj is a linear
combination of uk defined by:

(3.13)
vj

I
:=


2u1

I − 13u2
I if j = 1,

13u1
I − 11u2

I − 11 if j = 2,

11u1
I + 2u2

I + 11 if j = 3.

We need to specify that a generator σ of the Galois group G of Kn is
defined by

(3.14) σ(x) =
(n3 − 1)x− 1

(n6 + n4 − 2n3 + n2 − n + 1)x + n
.

As y ≥ 2 and vj is an integer, we have vj ≥ 1. Therefore, (3.12) helps to
obtain (3.6). �
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4. Large Solutions

Suppose that (x, y) ∈ Z2 is a non trivial solution of type j. We choose
indices (i, k) depending on j:

(i, k) =


(2, 3) if j = 1,

(3, 1) if j = 2,

(1, 2) if j = 3.

We use the following Siegel identity

β(k)(θ(j) − θ(i))
β(i)(θ(j) − θ(k))

− 1 =
β(j)(θ(k) − θ(i))
β(i)(θ(j) − θ(k))

.

We put

λj =
θ(j) − θ(i)

θ(j) − θ(k)
, τj =

β(j)

β(i)

(
θ(k) − θ(i)

θ(j) − θ(k)

)
and we obtain the following linear form in logarithms

(4.1) Λj =
u1

I
log

∣∣∣∣∣θ(k)

θ(i)

∣∣∣∣∣+ u2

I
log

∣∣∣∣∣ θ(j)

θ(k)

∣∣∣∣∣+ log |λj | = log |1 + τj |.

Lemma 4.1. We have Λj 6= 0.

Proof. Suppose that Λj = 0, then from (4.1) we have τj = 0 or τj = −2. It
is impossible that τj = 0 because the polynomial φn(x) has three distinct
nonzero roots. In the other side, if τj = −2, then by the Siegel identity
used the conjugate τj+1 (the index is reduced mod 3) of τj would be equal
to 1. This is also impossible in the normal closure of Kn. �

From (4.1), we have

log |Λj | = log log |1 + τj | ≤ log |τj | = log

∣∣∣∣∣β(j)

β(i)

(
θ(k) − θ(i)

θ(j) − θ(k)

)∣∣∣∣∣ .
So by (2.3), (3.2), and (3.3), we obtain the following upper bounds of Λj :

(4.2) log |Λj | ≤ −3 log y + log 4 +

{
−35 log n− 3

n2 if j = 1,

−2 log n− 0.1
n2 if j = 2, 3.
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Our goal is to use Theorem 4.3 in [10] to obtain lower bounds for Λj .
So in order to use linear forms in two logaritms, by (3.13) and (4.1), we
rewrite Λj as

13IΛ1 = u1 log

∣∣∣∣∣∣
(

θ(3)

θ(2)

)13(
θ(1)

θ(3)

)2
∣∣∣∣∣∣+ log

∣∣∣∣∣λ13I
1

(
θ(3)

θ(1)

)v1
∣∣∣∣∣ ,(4.3a)

13IΛ2 = u2 log

∣∣∣∣∣∣
(

θ(2)

θ(1)

)13(
θ(1)

θ(3)

)11
∣∣∣∣∣∣+ log

∣∣∣∣∣∣λ13I
2

(
θ(1)

θ(3)

)v2+11I
∣∣∣∣∣∣ ,(4.3b)

11IΛ3 = u2 log

∣∣∣∣∣∣
(

θ(3)

θ(2)

)11(
θ(1)

θ(2)

)2
∣∣∣∣∣∣+ log

∣∣∣∣∣∣λ11I
3

(
θ(2)

θ(1)

)v3−11I
∣∣∣∣∣∣ .(4.3c)

We consider D = 3 and

∆j =

∣∣∣∣∣ log |γ1| log |γ2|
log |σ(γ1)| log |σ(γ2)|

∣∣∣∣∣
for j = 1, 2, 3.
• For j = 1, we consider

γ1 =

(
θ(3)

θ(2)

)13(
θ(1)

θ(3)

)2

; γ2 = λ13I
1

(
θ(3)

θ(1)

)v1

.

The algebraic numbers γ1 and γ2 are multiplicatively independent be-
cause ∆1 > 1910 log2 n. After studying the conjugates of γ1 and γ2, we
obtain

h(γ1) ≤
1
3

log

∣∣∣∣∣∣
(

θ(1)

θ(2)

)13(
θ(2)

θ(3)

)2
∣∣∣∣∣∣ ;

h(γ2) ≤
1
3

log

∣∣∣∣∣∣
(

θ(1) − θ(2)

θ(3) − θ(2)

)13I (
θ(1)

θ(3)

)v1

∣∣∣∣∣∣ .
• For j = 2, we take

γ1 =

(
θ(2)

θ(1)

)13(
θ(1)

θ(3)

)11

; γ2 = λ13I
2

(
θ(1)

θ(3)

)v2+11I

.

The algebraic numbers γ1 and γ2 are multiplicatively independent be-
cause ∆2 > 1910 log2 n. The study of the conjugates of γ1 and γ2 leads
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to

h(γ1) ≤
1
3

log

∣∣∣∣∣∣
(

θ(1)

θ(3)

)13(
θ(3)

θ(2)

)11
∣∣∣∣∣∣ ;

h(γ2) ≤
1
3

log

∣∣∣∣∣∣
(

θ(1) − θ(2)

θ(3) − θ(2)

)13I (
θ(1)

θ(3)

)v2+11I
∣∣∣∣∣∣ .

• For j = 3, we take

γ1 =

(
θ(3)

θ(2)

)11(
θ(1)

θ(2)

)2

; γ2 = λ11I
3

(
θ(2)

θ(1)

)v3−11I

.

The algebraic numbers γ1 and γ2 are multiplicatively independent be-
cause ∆3 < −69531 log2 n. After studying the conjugates of γ1 and γ2,
therefore we have

h(γ1) ≤
1
3

log

∣∣∣∣∣∣
(

θ(1)

θ(2)

)11(
θ(1)

θ(3)

)2
∣∣∣∣∣∣ ;

h(γ2) ≤
1
3

log

∣∣∣∣∣∣
(

θ(1) − θ(2)

θ(3) − θ(2)

)11I (
θ(1)

θ(3)

)v3+11I
∣∣∣∣∣∣ .

Thus the choice of h1, h2, and b′ depending on j is given in Table 1
below.

Case h1 h2 b′

j = 1 49 log n +
13
n2

(
52

49n2 log n
+

12
49n4 log2 n

)
log y

+
286
3

log n +
572
21n2

n2

240

j = 2 49 log n +
13
n2

52 log y

49n2 log n
+

572
3

log n +
5288
147n2

431n2

232320

j = 3 49 log n +
13
n2

(
52

49n2 log n
+

12
49n4 log2 n

)
log y

+176 log n +
136
3n2

11n2

5760

Table 1. Choice of h1, h2, and b′ depending on j.
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Thus we get

log |Λ1| ≥ −1971.54
(
log
(

n2

240

)
+.14

)2(
49 log n+

13
n2

)
×
((

52
49n2 log n

+
12

49n4 log2 n

)
log y+

286
3

log n+
572
21n2

)
−log 13I,(4.4a)

log |Λ2| ≥ −1971.54
(

log
(

431n2

232320

)
+ .14

)2(
49 log n +

13
n2

)

×
(

52 log y

49n2 log n
+

572
3

log n +
5288
147n2

)
− log 13I,

(4.4b)

log |Λ3| ≥ −1971.54
(
log
(

11n2

5760

)
+.14

)2(
49 log n+

13
n2

)
×
((

52
49n2 log n

+
12

49n4 log2 n

)
log y+176 log n+

136
3n2

)
−log 11I.(4.4c)

By combining (4.2), (4.4) and Lemma 3.2, we obtain the following result:

Lemma 4.2. Let (x, y) ∈ Z2 be a solution to (1.1) of type j which is not
listed in (1.3). Then n ≤ Nj, where

(4.5) Nj :=


11907 if j = 1,

16452 if j = 2,

10595 if j = 3.

5. Solutions for 0 ≤ n ≤ Nj

The aim of this section is to verify that for 0 ≤ n ≤ Nj the only solutions
to (1.1) are those listed in (1.3). As a first step, we use linear forms in
logarithms once again in order to obtain an upper bound for log y:

Lemma 5.1. For 29 < n ≤ Nj, we have

(5.1) log y ≤


6.57 · 1021 log n if j = 1,

7.04 · 1021 log n if j = 2,

6.32 · 1021 log n if j = 3.

Proof. We note that (3.12) and Lemma 3.2 yield

v1 ≤
12.02

49n log2 n
log y, v2 ≤

12
49n log2 n

log y, v3 ≤
12.02

49n log2 n
log y.(5.2)
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From the asymptotic expansions of u1 and u2 for all j, see (3.10) and
(3.11), we observe that for 1 ≤ j ≤ 3

(5.3) U := max {|u1| , |u2|} =

{
u1, if j = 1,

u2, if j = 2, 3,

then we have

(5.4) U ≤ Ũj :=
dj

log n
log y with dj =

{
0.54, if j = 1, 2,

0.45, if j = 3.

Applying Theorem 5.2, in [10] page 75, to Λj as it is defined in (4.1),
estimating U by (5.4), and combining the lower bound with (4.2) result in

−3 log y ≥ log |IΛj | ≥ −C(3, 6)h1h2h3 log
(
Ũj

)
.

Here we take n = 3, d = 6, and

(5.5) h1 = h2 =
13
3

log n +
1
n2

, h3 =
11I

3
log(n) +

2I

3n2
.

Consequently, considering that 29 ≤ n ≤ Nj , we obtain

dj

log n log y

log
(

dj

log n log y
) ≤


7.143 · 1019 if j = 1,

7.644 · 1019 if j = 2,

5.751 · 1019 if j = 3.

This yields (5.1). �

We write (4.3) as

(5.6) mjIΛj = log |γj1|+ vj log |γj2|+ v′j log |γj3| ,

where the notations are defined in Table 2.

j mj γj1 γj2 γj3 v′j

1 13 λ13I
1

θ(3)

θ(1)

(
θ(3)

θ(2)

)13 (
θ(1)

θ(3)

)2

u1,

2 13 λ13I
2

(
θ(1)

θ(3)

)11I
θ(1)

θ(3)

(
θ(2)

θ(1)

)13(
θ(1)

θ(3)

)11

u2,

3 11 λ11I
3

(
θ(1)

θ(2)

)11I
θ(2)

θ(1)

(
θ(3)

θ(2)

)11(
θ(1)

θ(2)

)2

u2.

Table 2. Notations for (5.6)
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We divide (5.6) by log |γj3|, use (4.2), (3.6), and n ≥ 29, and obtain

(5.7)
∣∣δj1 + vjδj2 + v′j

∣∣ < 10−50696,

where δji := log |γji| / log |γj3| for i = 1, 2.
In order to apply lemma 5.3 in [10] page 77, we note that (5.1) and (5.2)

imply

2 + 2|v1| ≤
1.62 · 1021

n log n
, 2 + 2|v2| ≤

1.73 · 1021

n log n
, 2 + 2|v3| ≤

1.56 · 1021

n log n
.

(5.8)

For all pairs (j, n) with 1 ≤ j ≤ 3 and 29 < n ≤ Nj , we calculate ap-
proximations δ̃j1 and δ̃j2 such that |δj1 − δ̃j1| < Q−2 and |δj2 − δ̃j2| < Q−2.
In fact, we start with Q = 10m, if it is not successfull we try successively
10m+1, 10m+2, 10m+3, . . . until we obtain the desired results. We use a
high precision for the computations. In general, we did the computations
with a precision of 100 digits. For all pairs of (j, n), we compute the suc-
cessive convergents of δ̃j2 until we find a convergent p/q of δ̃j2 with q < Q
such that

q‖qδ̃j1‖ >
1

n log n
·


1.62 · 1021 if j = 1,

1.73 · 1021 if j = 2,

1.56 · 1021 if j = 3.

Here are a few remarks about the computations. The program was de-
veloped in Maple 9 and executed on a Pentium 4 with 3.92 GHz running
under Linux 7.2.

• For j = 1, 2, 3 (together) and 29 ≤ n ≤ 10595, we ran the program,
starting with Q = 1026. It took in average 7.74 seconds for each value
of n.

• For j = 1 and 10595 ≤ n ≤ 11907, we ran the program starting with
Q = 1028. It took in average 1.83 seconds for each value of n.

• For j = 2 and 10595 ≤ n ≤ 16452, we ran the program starting with
Q = 1028. It took in average 2.96 seconds for each value of n.

To finish the proof of Theorem 1.1 and since some of our asymptotic
expansions are not valid for 0 ≤ n ≤ 29, we use Kant [3] (Kash Version 2.4)
to solve (1.1) for 0 ≤ n ≤ 29. We exactly get the solutions listed in (1.3).
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