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On three questions concerning 0,1-polynomials

par Michael FILASETA, Carrie FINCH et Charles NICOL

Résumé. Nous répondons à trois questions concernant la réducti-
bilité (ou irréductibilité) de 0, 1-polynômes, polynômes qui n’ont
pour seuls coefficients que 0 ou 1. La première question est de
déterminer si une suite de polynômes qui se présente naturellement
est finie. Deuxièmement, nous discutons si tout sous-ensemble
fini d’un ensemble infini de nombres entiers positifs peut être
l’ensemble des exposants d’un 0, 1-polynôme réductible. La trois-
ième question est similaire, mais pour l’ensemble des exposants
d’un polynôme irréductible.

Abstract. We answer three reducibility (or irreducibility) ques-
tions for 0, 1-polynomials, those polynomials which have every
coefficient either 0 or 1. The first concerns whether a naturally
occurring sequence of reducible polynomials is finite. The second
is whether every nonempty finite subset of an infinite set of pos-
itive integers can be the set of positive exponents of a reducible
0, 1-polynomial. The third is the analogous question for exponents
of irreducible 0, 1-polynomials.

1. Introduction

In this paper, we address three questions related to the reducibility or
irreducibility of 0, 1-polynomials.

For the first, we define a sequence of 0, 1-polynomials recursively as fol-
lows. Let f0(x) = 1. For j a positive integer, let fj(x) = xkj + fj−1(x)
where kj is chosen to be the least positive integer > deg fj−1 such that
fj(x) is reducible. The first several polynomials in this sequence are

f0(x) = 1, f1(x) = 1 + x3, f2(x) = 1 + x3 + x15,

f3(x) = 1 + x3 + x15 + x16, f4(x) = 1 + x3 + x15 + x16 + x32,

f5(x) = 1 + x3 + x15 + x16 + x32 + x33,

f6(x) = 1 + x3 + x15 + x16 + x32 + x33 + x34,
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and

f7(x) = 1 + x3 + x15 + x16 + x32 + x33 + x34 + x35.

The problem is to decide whether this sequence is infinite. In other words,
is it true that for each positive integer j, there is an integer kj > deg fj−1

for which xkj + fj−1(x) is reducible? We show that the sequence is finite
and, in fact, f7(x) is the last element of the sequence.

The next two questions are related to one another. We consider an
infinite set

S = {k1, k2, . . .} ⊆ Z+.

Is it possible for S to have the property that for every nonempty subset
{e1, . . . , en} of S, the polynomial

(1.1) 1 + xe1 + · · ·+ xen

is reducible? Next, is it possible for S to have the property that for every
nonempty subset {e1, . . . , en} of S, the polynomial in (1.1) is irreducible?
We show that the answer to the first question here is, “No,” and the answer
to the second question is, “Yes.” This latter result requires a bit more
work; as such, Section 4, which addresses this question, can be viewed as
containing the main result of the paper.

Throughout the paper, we will make use of the following. A term of a
polynomial

∑n
j=0 ajx

j refers to one of the monomials ajx
j with aj 6= 0.

The nth cyclotomic polynomial will be denoted by Φn(x). Also, ζn =
e2πi/n. It is well known and easy to show that if n is a positive integer
and k is an integer, then ζk

n = ζ
k/d
n/d for any common divisor d of n and

k. Furthermore, in this case, ζ
k/ gcd(n,k)
n/ gcd(n,k) is a primitive mth root of unity

where m = n/ gcd(n, k) (i.e., ζ
k/ gcd(n,k)
n/ gcd(n,k) is a root of Φm(x)). For p a prime,

r a nonnegative integer and n an integer, pr||n means pr|n and pr+1 - n.
For m a positive integer and r the number of distinct prime factors of m,
we use µ(m) to denote the Möbius function defined by µ(m) = 0 if m
is not squarefree and µ(m) = (−1)r if m is squarefree. For f(x) ∈ C[x]
with f(x) 6≡ 0, define f̃(x) = xdeg ff(1/x). The polynomial f̃ is called
the reciprocal of f(x). The constant term of f̃ is always non-zero. If the
constant term of f is non-zero, then deg f̃ = deg f and the reciprocal of f̃
is f . If α 6= 0 is a root of f , then 1/α is a root of f̃ . If f(x) = g(x)h(x)
with g(x) and h(x) in C[x], then f̃ = g̃h̃. If f = ±f̃ , then f is called
reciprocal. If f is not reciprocal, we say that f is non-reciprocal. If f is
reciprocal and α is a root of f , then 1/α is a root of f . The product
of reciprocal polynomials is reciprocal so that a non-reciprocal polynomial
must have a non-reciprocal irreducible factor. For f(x) ∈ Z[x], we refer
to the non-reciprocal part of f(x) as the polynomial f(x) removed of its
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irreducible reciprocal factors in Z[x] having a positive leading coefficient.
For example, the non-reciprocal part of 3(−x + 1)x(x2 + 2) is −x(x2 + 2)
(the irreducible reciprocal factors 3 and x− 1 have been removed from the
polynomial 3(−x + 1)x(x2 + 2)).

2. The first question

Let g(x) = f7(x). We want to show that for every integer n ≥ 36, the
polynomial F (x) = xn + g(x) is irreducible. We do this in two steps. First,
we show that there are no irreducible reciprocal factors of F (x). Then
we show that there can be at most one irreducible non-reciprocal factor of
F (x). The argument for the first step will work for all positive integers n,
and the argument for the second step will require n ≥ 83. One can check
computationally that F (x) is irreducible for 1 ≤ n ≤ 82, so in the end the
condition n ≥ 36 for our application can be relaxed to n ≥ 1.

Assume that R(x) is an irreducible reciprocal factor of F (x) = xn +g(x).
We initially do not use the specific form of g(x). Since R(x) is reciprocal and
it divides F (x), we deduce R(x) divides F̃ (x) = g̃(x)xn−deg g + 1. Hence,
R(x) is a factor of

g̃(x)F (x)− xdeg gF̃ (x) = g(x)g̃(x)− xdeg g.

Now, we consider the specific form of g(x). We compute the polynomial
g(x)g̃(x)−xdeg g explicitly and factor it. The polynomial has two reciprocal
irreducible factors and R(x) must be one of them. More precisely, R(x) is
either

x6 + x5 + x4 + x3 + x2 + x + 1

or

x64 + x61 − x60 + x54 − · · · − x43 + 2x42 + x41 − · · ·+ x10 − x4 + x3 + 1.

Suppose R(x) = x6 + x5 + x4 + x3 + x2 + x + 1. Then R(x) divides x7 − 1
so that x7k ≡ 1 (mod R(x)) for every positive integer k. If n ≡ r (mod 7)
where r ∈ {0, 1, . . . , 6}, then

F (x) ≡ xr + x6 + x5 + x4 + x3 + x2 + x + 2 ≡ xr + 1 6≡ 0 (mod R(x)).

This contradicts that R(x) is a factor of F (x). So R(x) must be the second
polynomial above of degree 64. A computation shows that R(x) then has
a root α = 0.5812485 · · · − 0.9634977 . . . i with 1.125 < |α| < 1.126. We
obtain

|g(α)| < g(1.126) < 231 < 1.12547 < |α|47.
By the triangle inequality, F (α) 6= 0 for all n ≥ 47. Therefore, F (x) is not
divisible by R(x) for n ≥ 47. Since R(x) is of degree 64, we deduce that
F (x) is not divisible by R(x) for all positive integers n. Thus, we obtain
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a contradiction to our assumption that F (x) has an irreducible reciprocal
factor.

Next, we consider irreducible non-reciprocal factors of F (x). In this case,
we want to show that F (x) has only one non-reciprocal irreducible factor
whenever n ≥ 83. We will make use of the following lemma which follows
from Lemma 1 and Lemma 3 in [1].

Lemma 2.1. The non-reciprocal part of a 0, 1-polynomial f(x) is reducible
if and only if there is a 0, 1-polynomial w(x) different from f(x) and f̃(x)
such that w(1) = f(1) and w(x)w̃(x) = f(x)f̃(x).

Assume that the non-reciprocal part of F (x) is reducible. Taking f(x) =
F (x) in Lemma 2.1, we deduce that there is a 0, 1-polynomial w(x) different
from F (x) and F̃ (x) satisfying w(1) = F (1) and ww̃ = FF̃ .

As F (1) = 9, we see that w(x) has 9 terms. Since n ≥ 83, the polynomial
F̃ (x) has a constant term of 1 and each other term of degree ≥ 48. Hence,

FF̃ = 1 + x3 + x15 + x16 + x32 + x33 + x34 + x35 + · · · ,

where the remaining exponents are each ≥ 48. Since w(x) is a 0, 1-polynom-
ial with 9 non-zero terms, there are integers e1, e2, . . . , e7, with

0 < e1 < e2 < · · · < e7 < n,

such that
w(x) = 1 + xe1 + xe2 + · · ·+ xe7 + xn.

By replacing w with w̃ if necessary, we may suppose that e1 ≤ n−e7. With
this added condition, our contradiction will be obtained by showing that
w(x) = F (x).

From ww̃ = FF̃ , we deduce(
1 + xe1 + xe2 + · · ·+ xe7 + xn

)
(2.1)

×
(
1 + xn−e7 + xn−e6 + · · ·+ xn−e1 + xn

)
= 1 + x3 + x15 + x16 + x32 + x33 + x34 + x35 + · · · .

If the product on the left is expanded, then excluding the term 1, the
smallest degree term will have exponent e1 or n − e7. Since e1 ≤ n − e7,
we deduce that e1 = 3. The next smallest degree term on the left of (2.1)
is either e2 or n− e7, so that one of these must be 15. On the other hand,
if n − e7 = 15, then the exponent e1 + n − e7 = 18 would also appear on
the right of (2.1). It follows that e2 = 15. We consider the next smallest
exponent on both sides of (2.1) and deduce that one of e3 and n− e7 is 16.
The equation n− e7 = 16 cannot hold since 3+16 = 19 is not an exponent
on the right of (2.1). Thus, e3 = 16. Similarly, we obtain e4 = 32, e5 = 33,
e6 = 34, and e7 = 35, the only slight modification being that n − e7 6= 32
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since 15 + 32 = 47 does not appear as an exponent on the right of (2.1)
(the exponent 3 + 32 = 35 does). We conclude w(x) = F (x) as claimed,
obtaining a contradiction to Lemma 2.1. Thus, the non-reciprocal part of
F (x) is irreducible. This establishes what we set out to show.

3. The second question

In this section, we establish the following:

Theorem 3.1. Let S be a set of positive integers having the property that if
{e1, . . . , en} is a nonempty subset of S, then the polynomial 1+xe1+· · ·+xen

is reducible. Then |S| ≤ 2. More precisely, if a, b, and c are three positive
integers, then at least one of the trinomials 1 + xa + xb, 1 + xa + xc, and
1 + xb + xc is irreducible.

Observe that the three integers a, b, c above may be assumed to be dis-
tinct as it is clear that 1 + 2xe is irreducible for any positive integer e. We
will make use of a result observed independently by W. Ljunggren [4] and
H. Tverberg [8].

Lemma 3.1. Let u and v be distinct positive integers. If 1 + xu + xv is
reducible, then it has a cyclotomic factor.

Another result we will use is due to Schinzel and the first author; it is a
consequence of Corollary 1 in [3].

Lemma 3.2. Suppose f(x) ∈ Z[x] has N non-zero terms and is divisible
by a cyclotomic polynomial. Then there is an integer m having all its prime
factors ≤ N such that Φm(x) divides f(x).

In addition, we use the following simple result.

Lemma 3.3. Let z1 and z2 be arbitrary complex numbers with absolute
value 1. If 1 + z1 + z2 = 0, then {z1, z2} = {ζ3, ζ

2
3}.

Proof. Note that 1+ z1 + z2 = 0 implies that z1 = a+ bi and z2 = c− bi for
some a, b, and c. Since z1 and z2 are on the unit circle, c = ±a. If c = −a,
then 1 + z1 + z2 = 1 6= 0. If c = a, then 1 + z1 + z2 = 0 implies 1 + 2a = 0
so that a = −1/2. The conclusion follows. �

We note that the above lemmas allow us to describe the sets S = {a, b}
of two distinct positive integers with the property that for each nonempty
U ⊆ S the polynomial 1 +

∑
e∈U xe is reducible. As the binomials 1 + xa

and 1 + xb must be reducible, we see that each of a and b must have an
odd prime divisor. Lemma 3.1 implies that since 1 + xa + xb is reducible,
the trinomial has a cyclotomic factor. Let ζm by a root of 1 + xa + xb. By
Lemma 3.3, we must have {ζa

m, ζb
m} = {ζ3, ζ

2
3}. In order for ζa

m ∈ {ζ3, ζ
2
3},

it is necessary and sufficient that m = 3d and a = a′d for some positive
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integers d and a′ with 3 - a′. We fix a to be an arbitrary positive integer
with an odd prime divisor. Then we fix d dividing a such that 3 does
not divide a/d. At least one such d always exists, as we can take d = a.
Setting m = 3d, we want that d|b, 3 - (b/d) and b/d 6≡ a/d (mod 3).
Indeed, with a and d so fixed and m = 3d, it is necessary and sufficient for
{ζa

m, ζb
m} = {ζ3, ζ

2
3} that b satisfies these three conditions. With the added

condition that b has an odd prime divisor (as does a), this also describes
completely the sets S = {a, b} with the property that for each nonempty
U ⊆ S the polynomial 1 +

∑
e∈U xe is reducible.

Let a, b, and c be distinct positive integers, and assume 1 + xa + xb,
1 + xa + xc, and 1 + xb + xc are all reducible. From Lemma 3.1, we deduce
that there are positive integers m1, m2 and m3, not necessarily distinct,
satisfying

ζm1 is a root of 1 + xa + xb

ζm2 is a root of 1 + xa + xc

ζm3 is a root of 1 + xb + xc.

We may suppose by Lemma 3.2 that each mj has only prime factors from
the set {2, 3}. For j ∈ {1, 2, 3}, we define nonnegative integers kj and `j

by mj = 2kj3`j . Let k = max{k1, k2, k3} and ` = max{`1, `2, `3}. Observe
that from Lemma 3.3, we have {ζa

m1
, ζb

m1
} = {ζ3, ζ

2
3}, {ζa

m2
, ζc

m2
} = {ζ3, ζ

2
3},

and {ζb
m3

, ζc
m3
} = {ζ3, ζ

2
3}.

Given this set-up, we have the following lemma.

Lemma 3.4. For each j ∈ {1, 2, 3}, 3` exactly divides mj. Furthermore,
3`−1 exactly divides each of a, b, and c.

Proof. By the definition of `, 3`||mj for some j ∈ {1, 2, 3}. Without loss of
generality, we may suppose that 3`||m1. Since ζa

m1
∈ {ζ3, ζ

2
3}, we must have

3`−1||a. Also, ζb
m1

∈ {ζ3, ζ
2
3} implies 3`−1||b. As ζa

m2
∈ {ζ3, ζ

2
3} and 3`−1||a,

we deduce 3`||m2. Now, ζc
m2

∈ {ζ3, ζ
2
3} implies 3`−1||c. Finally, since

ζb
m3

∈ {ζ3, ζ
2
3} and 3`−1||b, we deduce 3`||m3, completing the proof. �

We use Lemma 3.4 to establish the following lemma, which allows us to
complete the proof of Theorem 3.1.

Lemma 3.5. Let d ∈ {a, b, c}. Suppose i and j are such that 1 ≤ i, j ≤ 3
with i 6= j.

(i) If {ζd
mi

, ζd
mj
} = {ζ3} or {ζ2

3}, then ki ≡ kj (mod 2).
(ii) If {ζd

mi
, ζd

mj
} = {ζ3, ζ

2
3}, then ki 6≡ kj (mod 2).

Proof. We first prove (i). If {ζd
mi

, ζd
mj
} = {ζ3} or {ζ2

3}, then the ratio of ζd
mi

to ζd
mj

is 1. Recall from Lemma 3.4 that 3`−1||d, 3`||mi and 3`||mj . Write
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d = 3`−1d′; then we have 3 - d′ and

1 =
ζd
mi

ζd
mj

=
ζ3`−1d′

2ki3`

ζ3`−1d′

2kj 3`

= ζ
d′(2kj−2ki )

2ki+kj 3
.

We deduce that 3|(2kj − 2ki). As the order of 2 modulo 3 is 2, we obtain
ki ≡ kj (mod 2), completing the proof of (i). For (ii), we use essentially
the same technique. Suppose ζd

mi
= ζ3 and ζd

mj
= ζ2

3 . Then we have

1 =
ζ2d
mi

ζd
mj

= ζ
d′(2kj+1−2ki )

2ki+kj 3
.

We deduce 3|(2kj+1 − 2ki) so that kj + 1 ≡ ki (mod 2). Hence, ki 6≡ kj

(mod 2) in this case. This completes the proof of Lemma 3.5. �

We are now ready to complete the proof of Theorem 3.1. We use that
{ζa

m1
, ζb

m1
} = {ζ3, ζ

2
3}, {ζa

m2
, ζc

m2
} = {ζ3, ζ

2
3}, and {ζb

m3
, ζc

m3
} = {ζ3, ζ

2
3}. We

deduce that it is not possible for all three of the equations

ζa
m1

= ζa
m2

, ζb
m1

= ζb
m3

, and ζc
m2

= ζc
m3

to hold (since, for example, exactly three of the expressions above are ζ3).
Relabeling if necessary, we may suppose that ζa

m1
= ζ3 and ζa

m2
= ζ2

3 . By
Lemma 3.5, k1 6≡ k2 (mod 2).

The equations 1 + ζa
m1

+ ζb
m1

= 0 and 1 + ζa
m2

+ ζc
m2

= 0 imply ζb
m1

= ζ2
3

and ζc
m2

= ζ3, respectively. From {ζb
m3

, ζc
m3
} = {ζ3, ζ

2
3}, we must have one

of the following:
(I) ζb

m3
= ζ3 and ζc

m3
= ζ2

3 .
(II) ζb

m3
= ζ2

3 and ζc
m3

= ζ3.

If (I) holds, then {ζb
m1

, ζb
m3
} = {ζc

m2
, ζc

m3
} = {ζ3, ζ

2
3}. Then Lemma 3.5

implies k1 6≡ k3 (mod 2) and k2 6≡ k3 (mod 2). This is a contradiction
since, of the three integers k1, k2 and k3, at least two must share the same
parity. If (II) holds, then {ζb

m1
, ζb

m3
} = {ζ2

3} and {ζc
m2

, ζc
m3
} = {ζ3}. In this

case, k1 ≡ k3 (mod 2) and k2 ≡ k3 (mod 2). This is a contradiction since
k1 and k2 have different parity but both have the same parity as k3.

This completes the proof of Theorem 3.1.

4. The third question

To resolve the third question mentioned in the introduction, we obtain
a result of a more general nature that doesn’t restrict ourselves to 0, 1-
polynomials.

Theorem 4.1. Fix a0, a1, a2, . . . to be an infinite bounded sequence of non-
negative integers with a0 6= 0. Suppose further that there are infinitely many
positive integers j such that a4j/a0 is not 4 times a fourth power in Q. Then
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there is an infinite set S of positive integers (depending on the sequence of
aj) having the property that for each finite subset T of S, the polynomial
a0 +

∑
t∈T atx

t is irreducible over the rationals.

We begin with some preliminary lemmas. The first such lemma is a
special case of a theorem due to A. Schinzel [6] (see [2]).

Lemma 4.1. Let f(x) and g(x) be relatively prime polynomials in Z[x]
with f(0)g(0) 6= 0. Suppose that −f(x)g(x) is not a square and f(x)g(x)
is not 4 times a fourth power in Z[x]. Then there exists a natural number
K0 such that, for every k ≥ K0, either f(x)x4k

+ g(x) is irreducible or it
has an irreducible reciprocal factor.

For our application of the above lemma, we use the following.

Lemma 4.2. For f(x) = b ∈ Z+ and g(x) = a0 +
∑

k∈V bx4k
with V a

nonempty set of nonnegative integers, each of f(x)g(x) and −f(x)g(x) is
not a square in Z[x].

Proof. Suppose A(x) = B(x)2 for some B(x) ∈ Z[x]. Suppose further that
A(x) has at least two terms so that B(x) does as well. If the highest two
degree terms in B(x) are of degrees n1 = deg B and n2, then it is easy
to see that the highest two degree terms in A(x) are of degrees 2n1 and
n1 + n2. It follows that the two highest degree terms of A(x) have degrees
≥ (deg A)/2. One checks that this is impossible for A(x) = f(x)g(x) and
A(x) = −f(x)g(x), completing the proof. �

Our next lemma, concerns polynomials of the form

F (x) = c0 + c1x + c2x
2u2 + · · ·+ crx

2ur
,

where r is a positive integer, the cj ’s are non-zero integers and the uj ’s are
all positive integers.

Lemma 4.3. Let F (x) be as above, and suppose m is a positive integer
such that F (ζm) = 0. Then m is squarefree.

Proof. The lemma follows from a result of H. B. Mann [5] which asserts
that if

(4.1) a0 + a1ζ
e1
m + · · ·+ arζ

er
m = 0

where the aj ∈ Q and the ej are positive integers and if no proper sub-sum
of the terms on the left of (4.1) is equal to zero, then m/ gcd(m, e1, . . . , er)
divides the product of the primes ≤ r + 1. We start with F (ζm) = 0 and
break this sum of r + 1 terms into sub-sums adding to zero maximized in
the sense that each sub-sum cannot itself be broken up further into proper
sub-sums adding to zero. Thus, we have F (x) = G1(x) + · · ·+ Gt(x), say,
where for each j ∈ {1, 2, . . . , t}, the sum Gj(ζm) divided by a power of
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ζm is an equation of the form (4.1) for which Mann’s theorem applies. If
the constant and linear term of F (x) both belong to the same Gj(x), then
the expression m/ gcd(m, e1, . . . , er) in Mann’s result is m and we deduce
immediately that m is squarefree. On the other hand, suppose c0 is a
term in Gi(x) and c1x is a term in Gj(x) with i 6= j. As Gi(ζm) = 0 and
Gj(ζm) = 0, we deduce that each of Gi(x) and Gj(x) have at least two
terms. Mann’s result applied to Gi(ζm) implies that m is not divisible by
the square of an odd prime. On the other hand, if we apply the result
instead to Gj(ζm)/ζm, an expression of the form given in (4.1) with a0 = c1

and every ej odd, then we deduce that m cannot be divisible by 4. The
conclusion that m is squarefree follows. �

The next two lemmas will be used to establish the subsequent lemma.
We omit their proofs as they are fairly easy to obtain.

Lemma 4.4. Let m be a positive integer. Then

Φm(x) = xϕ(m) − µ(m)xϕ(m)−1 + · · · .

In other words, the sum of the roots of Φm(x) is µ(m).

Lemma 4.5. Let m = p1p2 · · · p` where the pj are distinct odd primes.
Then the number of squares modulo m that are relatively prime to m is
ϕ(m)/2`.

A lemma that will play a crucial role in our approach is the following.

Lemma 4.6. Let r be an integer ≥ 2, let c0, c1, . . . , cr be arbitrary non-zero
integers, and let k′1, k

′
2, . . . , k

′
r be integers satisfying 0 ≤ k′1 < k′2 < · · · < k′r.

Suppose the polynomial

F (x) = c0 + c1x
4k′1 + · · ·+ crx

4k′r

has a cyclotomic factor Φm(x). Then m divides 22k′1+1.

Proof. Let F (x) be as in the lemma. Then Φm(x) | F (x) implies

c0 + c1ζ
4k′1
m + · · ·+ crζ

4k′r
m = 0.

Setting ξ = ζ4k′1
m , we have that ξ is a cyclotomic root of unity and

c0 + c1ξ
4k′1−k′1 + · · ·+ crξ

4k′r−k′1 = 0.

In other words, ξ is a root of the polynomial c0 + c1x +
∑r

j=2 cjx
4

k′j−k′1 .
Thus, without loss of generality, we may restrict our consideration to the
case that k′1 = 0. So we now want to show that if

(4.2) F (x) = c0 + c1x + c2x
4k′2 + · · ·+ crx

4k′r (1 ≤ k′2 < · · · < k′r, r ≥ 2),

is divisible by a cyclotomic polynomial Φm(x), then m is either 1 or 2.
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By Lemma 4.3, we have m is squarefree. Observe that if m is odd, then
we want to show m = 1. Thus, in this case, it suffices to show that m
cannot be an odd squarefree integer ≥ 3. Now, consider the case that m is
even. Set m′ = m/2. We want to show that m′ = 1. Suppose otherwise.
Since m′ is odd, we have m′ ≥ 3. Also,

ζm = ζm′
m ζm′+1

m = −ζ
(m′+1)/2
m′ .

Let
G(x) = c0 − c1x + c2x

4k′2 + · · ·+ crx
4k′r = F (−x).

Since G(ζ(m′+1)/2
m′ ) = F (ζm) = 0, we obtain that −ζm = ζ

(m′+1)/2
m′ is a root

of G(x). Also, gcd(m′, (m′+1)/2) = 1 so that G(x) has ζm′ as a root where
m′ is squarefree, odd, and ≥ 3. By replacing c1 in (4.2) with −c1 and m by
m′, we see that (now regardless of whether m is even or not) it suffices to
show that if F (x) is as in (4.2) and F (ζm) = 0, then m cannot be an odd
squarefree integer ≥ 3. We assume otherwise and obtain a contradiction.

We let ` denote the number of prime factors of m as in Lemma 4.5,
and note that ` ≥ 1. For j relatively prime to m, define σj to be the
automorphism of Q(ζm) sending ζm to ζj

m. By Lemma 4.4, we have

0 =
∑

1≤j≤m
(j,m)=1

σj(F (ζm))

= c0ϕ(m) + µ(m)(c1 + · · ·+ cr)

which implies that

(4.3) c1 + · · ·+ cr = −c0µ(m)ϕ(m).

Observe that c1 + · · ·+ cr is non-zero since m is squarefree and c0 6= 0.
Now, set

C =
∑

1≤j≤m
gcd(j,m)=1

j is a square mod m

σj(ζm).

Since the squares modulo m relatively prime to m form a subgroup of Z∗
m,

we see that

C =
∑

1≤j≤m
gcd(j,m)=1

j is a square mod m

σj(ζa2

m ) for every a ∈ Z with gcd(a,m) = 1.

By Lemma 4.5,

0 =
∑

1≤j≤m
(j,m)=1

j is a square mod m

σj(F (ζm)) = c0ϕ(m)/2` + C · (c1 + · · ·+ cr).
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From (4.3), we deduce that

C = µ(m)/2`.

However, this is a contradiction since, by definition, C is an algebraic integer
but µ(m)/2` = ±1/2` is not an integer. This contradiction finishes the
proof of Lemma 4.6. �

Proof of Theorem 4.1. Let bj = a4j for each nonnegative integer j. For the
proof, we construct a set S ⊆

{
4n : n ∈ {0, 1, 2, . . . }

}
recursively with the

property indicated in the theorem. In other words, we show that there exist
integers kj with j ∈ {1, 2, . . . } satisfying 0 ≤ k1 < k2 < · · · such that for
every finite set U ⊂ {k1, k2, . . .}, the polynomial f(x) = a0 +

∑
k∈U bkx

4k
is

irreducible. Thus, in Theorem 4.1, we can take S = {4kj : j ∈ {1, 2, . . . }}.
From the conditions in Theorem 4.1, the values of bj are bounded. We

deduce that there is an integer b for which bj = b for infinitely many choices
of j and such that b/a0 is not 4 times a fourth power in Q. We fix such a
b. This is the only place we use that the sequence of bj is bounded, so this
condition in Theorem 4.1 can be relaxed. What we really require is simply
that some value of a4j is repeated infinitely often and that this common
value we are calling b satisfies the condition b/a0 is not 4 times a fourth
power in Q. In particular, this implies b 6= 0. We will choose our kj forming
the set S in such a way that bkj

= b for each j.
We begin by taking k1 to be any nonnegative integer for which bk1 = b.

The significance of the condition that b/a0 is not 4 times a fourth power in
Q is that a classical theorem of Capelli assures us then that a0 + bx4k1 is
irreducible (cf. Theorem 21 in [7]). Indeed, Capelli’s theorem implies that
all of the various binomial expressions a0 + bkj

x4kj = a0 + bx4kj that will
appear in our construction are irreducible.

Now, suppose that we have already obtained k1, . . . , kt, with t ≥ 1, such
that U ⊆ {k1, k2, . . . , kt} implies

f(x) = a0 +
∑
k∈U

bkx
4k

= a0 +
∑
k∈U

bx4k

is irreducible. We want to find kt+1 6∈ {k1, k2, . . . , kt} so that each of the 2t

polynomials of the form a0 +
∑

k∈V bkx
4k

+ bkt+1x
4kt+1 is irreducible, where

V ⊆ {k1, . . . , kt}. We also want bkt+1 = b. We justify that we can find such
a kt+1.

For each fixed V ⊆ {k1, . . . , kt}, we apply Lemma 4.1 with f(x) = b

and g(x) = a0 +
∑

k∈V bkx
4k

. Observe that if V = ∅, then as indicated
above f(x)x4k

+ g(x) is a binomial expression which is irreducible. We will
concentrate then on the case that |V | ≥ 1.
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For each V ⊆ {k1, . . . , kt}, V 6= ∅, we obtain from Lemma 4.1 and
Lemma 4.2 that there is a K1(V ) such that if we choose kt+1 ≥ K1(V )
with bkt+1 = b, then a0 +

∑
k∈V bx4k

+ bx4kt+1 either has an irreducible
reciprocal factor or is irreducible. Momentarily, we will show that there is
also a K2(V ) such that if we choose kt+1 ≥ K2(V ) with bkt+1 = b, then
a0 +

∑
k∈V bx4k

+ bkt+1x
4kt+1 does not have an irreducible reciprocal factor.

Then we can take

kt+1 ≥ max
{
kt + 1, max

V⊆{k1,...,kt}
V 6=∅

{K1(V )}, max
V⊆{k1,...,kt}

V 6=∅

{K2(V )}
}

with bkt+1 = b. It will follow then that the 2t polynomials of the form
a0 +

∑
k∈V bkx

4k
+ bkt+1x

4kt+1 are all irreducible, where V ranges over the
subsets of {k1, . . . , kt}.

We first deal with possible non-cyclotomic irreducible reciprocal factors
of a0+

∑
k∈V bx4k

+bx4kt+1 . We put this in a more general setting. Fix g(x)
of degree ≥ 1 with g(0) 6= 0. Let b be as above. Suppose that bxn+g(x) has
an irreducible reciprocal factor r(x). Then r(x) also divides the reciprocal
of bxn + g(x), that is xn−deg g g̃(x) + b. Hence, r(x) divides

g̃(x)(bxn + g(x))− bxdeg g(xn−deg g g̃(x) + b) = g(x)g̃(x)− b2xdeg g.

Since deg g ≥ 1, we have g(x)g̃(x)− b2xdeg g is not identically 0. Since also
g(x)g̃(x)− b2xdeg g does not depend on n, we deduce that there are a finite
number of possible values for r(x) (depending only on g(x) and b and not on
n). In particular, we note that as n varies over the positive integers, there
are only a finite number of distinct non-cyclotomic irreducible reciprocal
factors occurring among the polynomials bxn + g(x).

Suppose n and n′ are positive integers with n′ > n. Observe that if
h(x) is an arbitrary irreducible polynomial dividing both bxn + g(x) and
bxn′ + g(x), then h(x) divides the difference(

bxn′ + g(x)
)
−

(
bxn + g(x)

)
= bxn

(
xn′−n − 1

)
.

Given that g(0) 6= 0, we deduce that h(x) divides xn′−n − 1 and, hence, is
cyclotomic. Thus, a non-cyclotomic irreducible polynomial h(x) can divide
bxn + g(x) for at most one positive integer n. Since we have just seen
that there are only a finite number of distinct non-cyclotomic irreducible
reciprocal factors occurring among the polynomials bxn + g(x), we deduce
that there is an N such that if n ≥ N , then bxn + g(x) is not divisible by
a non-cyclotomic irreducible reciprocal polynomial.

We are interested in the case that g(x) = a0 +
∑

k∈V bx4k
where V is a

nonempty subset of {k1, . . . , kt}. For each such V , we deduce that there is
an N(V ) such that if n ≥ N(V ), then bxn + g(x) is not divisible by a non-
cyclotomic irreducible reciprocal polynomial. We will show that we can take
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K2(V ) = N(V ), that is that if kt+1 ≥ N(V ), then bx4kt+1 +g(x) cannot have
a cyclotomic factor. Once we establish that we can take K2(V ) = N(V ),
the proof of Theorem 4.1 will be complete.

We show how Lemma 4.6 implies we can take K2(V ) = N(V ). Let V
be a nonempty subset of {k1, . . . , kt} as above. In Lemma 4.6, we take
r = |V | + 1, c0 = a0 and cj = b for 1 ≤ j ≤ r. The integers k′j are chosen
so that V = {k′1, k′2, . . . , k′r−1} and k′r = kt+1. With m dividing 22k′1+1,

we see that ζ4k′1
m = ±1 and ζ4

k′j
m = 1 for 2 ≤ j ≤ r. As r ≥ 2, we obtain

that F (ζm) ≥ a0 + (r − 2)b > 0. Thus, Lemma 4.6 implies F (x) does not
have a cyclotomic factor. We deduce that we can take K2(V ) = N(V ), as
desired. �

Comments: Although the statement of Theorem 4.1 may seem awkward,
this is somewhat hard to avoid largely due to the situation with the bino-
mials a0 + asx

s where s ∈ S. Observe that if S = {e1, e2, . . . }, then the
binomial a0 + aejx

ej will be reducible if aej = a0 and ej is not a power of
2. In particular, in the case of 0, 1-polynomials, it is necessary to take the
elements of S to be powers of 2. Now, if s ∈ S, s > 2 and s is a power of 2,
then the condition that as/a0 is not 4 times a square in Q can be seen to
be necessary as well. In this case, s = 4e for some integer e. If as/a0 = 4r4

for some rational number r, then

a0 + asx
s = a0

(
1 + 4r4x4e

)
= a0

(
1 + 2rxe + 2r2x2e

)(
1− 2rxe + 2r2x2e

)
,

so the binomial a0 + asx
s is reducible.

As a consequence of Lemma 4.6, a 0, 1-polynomial with the degree of each
term a power of 4 and with at least 3 terms is not divisible by a cyclotomic
polynomial. There are other variations of this result. For example, the
degrees being powers of 4 can be replaced by the degrees being of the form
22k+1. This can be seen by considering such a polynomial f(x) and making
the substitution y = xe where xe is the non-constant term of smallest degree
in f(x). This transforms the polynomial to one of the form (4.2) with x
there replaced by y. Hence, the result of Lemma 4.6 can be used to handle
this case.
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