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A classification of the extensions of degree p2 over

Qp whose normal closure is a p-extension

par Luca CAPUTO

Résumé. Soit k une extension finie de Qp et soit Ek l’ensemble
des extensions de degré p2 sur k dont la clôture normale est une
p-extension. Pour chaque discriminant fixé, nous calculons le nom-
bre d’éléments de EQp

qui ont un tel discriminant, et nous donnons
les discriminants et les groupes de Galois (avec leur filtrations des
groupes de ramification) de leurs clôtures normales. Nous mon-
trons aussi que l’on peut généraliser cette méthode pour obtenir
une classification des extensions qui appartiennent à Ek.

Abstract. Let k be a finite extension of Qp and Ek be the set
of the extensions of degree p2 over k whose normal closure is a
p-extension. For a fixed discriminant, we show how many exten-
sions there are in EQp with such discriminant, and we give the
discriminant and the Galois group (together with its filtration of
the ramification groups) of their normal closure. We show how this
method can be generalized to get a classification of the extensions
in Ek.

1. Notation, preliminaries and results.

Throughout this paper, p is an odd prime and k will be a fixed p-adic
field of degree d over Qp which does not contain any primitive p-th root of
unity. If E is a p-adic field and L|E is a finite extension, then we say that
L|E is a p-extension if it is Galois and its degree is a power of p.

The aim of the present paper is to give a classification of the extensions of
degree p2 over Qp whose normal closure is a p-extension. This classification
is based on the discriminant of the extension and on the Galois group and
the discriminant of its normal closure. Let Ek be the set of the extensions
of degree p2 over k whose normal closure is a p-extension. Then for every
L ∈ Ek, there exists a cyclic extension K|k of degree p, K ⊆ L and L|K is
cyclic (of degree p). Furthermore, the converse is true: if K|k is a cyclic
extension of degree p, then every cyclic extension L of degree p over K
is an extension of degree p2 over k whose normal closure is a p-extension
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(see Prop. 2.1). Therefore, if K|k is a cyclic extension of degree p, we can
consider the subset Ek(K) of Ek made up by the extensions in Ek which
contain K. The idea is to study the compositum Mk(K) of the extensions
in Ek(K). Clearly Mk(K) is the maximal abelian p-elementary extension of
K: it is easy to prove that Mk(K)|k is Galois (see Prop. 2.2). We describe
the structure of the Galois group Gk(K) = Gal(Mk(K)|k) (see Prop. 3.1),
using results both from classical group extensions theory (see [5]) and from
[3]. Gk(K) is a p-group of order pdp+2 which admits a presentation with
d+ 1 generators.

Then we focus on the case k = Qp. We put Gp(K) = GQp(K). Once
one has a description of the normal subgroups of Gp(K) (see Prop. 4.1),
it is not difficult to describe the quotients of Gp(K) (see Lemma 4.1). We
are able as well to decide if a quotient of Gp(K) is the Galois group of the
normal closure of an extension in EQp(K) and, if this is the case, it is easy
to give the number of extensions whose normal closure has that group as
Galois group (see Section 5).

Finally using class field theory and [2], we determine the ramification
groups of Gp(K) (we distinguish the case when K is unramified from the
case when K is totally ramified, see respectively Section 6 and Section
7). This allows us to determine, after some standard computations, the
possible values for the discriminant of the extensions in EQp(K) as well as
the possible values for the discriminant of their normal closures. We collect
the results in a table (see Section 8).

It would not be difficult to generalize the results of Sections 4-7 to an
arbitrary ground p-adic field k. Then the method used in the present paper
could be generalized to give a classification, for example, of the extensions
of degree p3 over Qp whose normal closure is a p-extension. In fact, if L
is one of these extensions, then there exists a cyclic extension K|Qp such
that K ⊆ L and L|K is an extension of degree p2 whose normal closure a
p-extension (see Prop. 2.1).

Acknowledgements. The results presented here come from my master
thesis which was made at the University of Pisa under the direction of
Prof. Roberto Dvornicich. I would like to express my thanks to him for his
supervision and his advice.

2. Some properties of the extensions of degree p2 over k whose
normal closure is a p-extension.

Proposition 2.1. Let L|k be an extension of degree ps, s ∈ N. We denote
by L the normal closure of L over k. Then L|k is a p-extension if and only
if there exists a tower of extensions of k, say

k = L(0) ⊆ L(1) ⊆ . . . ⊆ L(s−1) ⊆ L(s) = L,
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such that, for each i = 0, . . . , s− 1, L(i+1)|L(i) is cyclic of degree p.

Proof. We proceed by induction on s. Suppose s = 1, i.e. [L : k] =
p. Assume first [L : k] = pn: then Gal(L|L) is a maximal subgroup of
Gal(L|k). In particular Gal(L|L) is normal in Gal(L|k). Therefore L = L
and we get what we want (L|k is cyclic of degree p). The other implication
is obvious.

Now suppose that the proposition is true for s ∈ N. Assume first that
[L : k] = ps+1. If [L : k] = pn, there must exist H < Gal(L|k) maximal
(and therefore normal) such that Gal(L|L) ⊆ H. Put k′ = FixH: then
k′|k is cyclic of degree p. Then [L : k′] = ps and, by induction, there exists

k′ = L(1) ⊆ L(2) ⊆ . . . ⊆ L(s−1) ⊆ L(s) = L

as in the claim. But then

k = L(0) ⊆ k′ = L(1) ⊆ . . . ⊆ L(s−1) ⊆ L(s) = L

is the sequence we are looking for. Conversely, assume that there exists a
sequence with the properties of the claim, put k′ = L(1) and let L′ be the
normal closure of L over k′. By induction, L′ is a p-extension of k′. If L′|k
is normal, there is nothing to show. Otherwise the normalizer of Gal(L|L′)
in Gal(L|k) must be Gal(L|k′) and the latter is normal in Gal(L|k). L
is the compositum of the conjugates of L′ over k: each of them contains
k′ and is a p-extension of k′. The compositum of p-extensions is again a
p-extension and then L is a p-extension. �

Remark. We recover the well known result which says that an extension
of degree p, whose normal closure is a p-extension, is cyclic (the highest
power of p which divides p! is p). We shall use Prop. 2.1 for s = 2: then
for an extension L of degree p2 over k the following are equivalent:

• the normal closure L of L over k is a p-extension;
• there exists a cyclic extension K of degree p over k such that K ⊆ L

and L|K is Galois.

We define now some notation which will be used in what follows. Let Ek

be the set of the extensions of degree p2 over k whose normal closure is a
p-extension. For any cyclic extension K of degree p of k, we define Ek(K)
to be the set of the estensions in Ek which contain K. Then it is easily seen
that Ek =

⋃
Ek(K), the union being taken over the set of cyclic extensions

K of degree p over k. Moreover Ek(K) is the set of the cyclic extensions of
K of degree p.

Proposition 2.2. Let K be a cyclic extension of degree p over k. Then
there exists one and only one extension Mk(K) of k such that

(i) K ⊆Mk(K),
(ii) Mk(K) is Galois over K and Gal(Mk(K)|K) ∼= (Z/pZ)pd+1.
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Moreover, Mk(K) is Galois over k and, if K ′ is another Galois extension
of degree p over k, we have

Gal(Mk(K)|k) ∼= Gal(Mk(K ′)|k).

Proof. Since K has degree p over k (in particular it does not contain any
primitive p-th root of unity), we know that K∗/K∗p ∼= (Z/pZ)pd+1. Then
we let Mk(K) be the extension of K which corresponds by local class field
theory to K∗p: Mk(K) is the compositum of the cyclic extensions of degree
p over K and Gal(Mk(K)|K) ∼= (Z/pZ)pd+1. In particular Mk(K) verifies
(i) and (ii) and it is clearly unique.

Now, let Qp be an algebraic closure and we consider Mk(K) ⊆ Qp. Let
σ : Mk(K) → Qp be an embedding over k. Since K is normal, we have
σ(K) = K then σ(Mk(K)) is an extension of degree ppd+1 of K. In fact
it is Galois over K: for, if τ : σ(Mk(K)) → Qp is an embedding over K,
denoting again with σ any extension of σ, we have σ−1τσ|K = idK . Using
the normality of Mk(K) over K, we obtain τσ(Mk(K)) = σ(Mk(K)), i.e.
σ(Mk(K)) is Galois over K. At the same time, we obtain an isomorphism
between the Galois groups of σ(Mk(K)) and Mk(K) over K (which is τ 7→
σ−1τσ); from the uniqueness, σ(Mk(K)) = Mk(K).

Let K ′ be an other Galois extension of degree p over k. We denote
by ρ the restriction homomorphism from Gal(Mk(K ′)|k) to Gal(K ′|k) ∼=
Z/pZ. Using [3], we see that there exists a Galois extension M ′ over k
with Galois group isomorphic to Gal(Mk(K ′)|k) which contains K and
such that the restriction ρ′ from Gal(M ′|k) to Gal(K|k) coincides with ρ:
then ker ρ ∼= ker ρ′. From this it follows that M ′ is a Galois extension of K
such that Gal(M ′|K) ∼= (Z/pZ)pd+1 and then M ′ = Mk(K). In particular,
Gal(Mk(K ′)|k) ∼= Gal(M ′|k) = Gal(Mk(K)|k). �

We will denote Gal(Mk(K)|k) by Gk(K). Furthermore we put

MQp(K) = Mp(K), GQp(K) = Gp(K), EQp = Ep, EQp(K) = Ep(K).

Remark. It is clear that the compositum of the extensions belonging to
Ek(K) is equal to Mk(K).

We end this section showing that every extension in Ek has no more than
p conjugates (over k). Of course, the converse is not true, i.e. there exists
an extension of degree p2 over k which has p conjugates but does not belong
to Ek.

Proposition 2.3. Let L be an extension of degree p2 over k. If there exists
a cyclic extension K of degree p over k such that K ⊆ L and L|K is Galois,
then L has no more than p-conjugates (over k).

Proof. Suppose that there exists a cyclic extension K of degree p over k
such that K ⊆ L and L|K is Galois. Let L be the normal closure of L
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over k: then Gal(L|L) ⊆ Gal(L|K) and Gal(L|L) is normal in Gal(L|K).
Moreover Gal(L|K) has index p in Gal(L|k). We know that the number
of conjugates of L is equal to the index of the normalizer of Gal(L|L) in
Gal(L|k). Since the normalizer of Gal(L|L) must contain Gal(L|K), we
see that L has 1 or p conjugates. �

3. Stucture of Gk(K)

Proposition 3.1. A presentation for Gk(K) on the set of generators

{X1, Xpd+2} ∪ {Xl, i | l = 1, . . . , d, i = 2, . . . , p+ 1}
is given by the relations

Xp
l, p+1 = Xp

l, p = . . . = Xp
l, 2 = 1 l = 1, . . . , d,

Xp
pd+2 = X1, Xp

1 = 1,

[X1, Xl, i] = [Xl, i, Xl, j ] = 1

{
i, j = 2, . . . , p+ 1,
l = 1, . . . , d,

[Xl, 2, Xpd+2] = [X1, Xpd+2] = 1 l = 1, . . . , d,

[Xl, h, Xpd+2] = Xl, h−1

{
h = 3, 4, . . . , p+ 1,
l = 1, . . . , d.

Proof. Gk(K) is a group extension of (Z/pZ)pd+1 by Z/pZ. We look for
such an extension: let

(3.1)
{
Xl, i

∣∣∣ i = 2, . . . , p+ 1; l = 1, . . . , d
}
∪ {X1}

be a basis for (Z/pZ)pd+1 over Fp. The relations above define an automor-
phism σ of (Z/pZ)pd+1 (the conjugation by Xpd+2). We have σp(X) = X

for every X ∈ (Z/pZ)pd+1 and σ(X1) = X1. Under these hypotheses, there
exists one and only one extension G of (Z/pZ)pd+1 by Z/pZ such that,
for every S ∈ G which represents a generator for the quotient, we have
S−1XS = σ(X) for every X ∈ (Z/pZ)pd+1 and Sp = X1 (see [5]). In other
words in G the following relations hold:

Xp
l, p+1 = Xp

l, p = . . . = Xp
l, 2 = 1 l = 1, . . . , d,

Sp = X1, Xp
1 = 1

[X1, Xl, i] = [Xl, i, Xl, j ] = 1 i, j = 2, . . . , p+ 1, l = 1, . . . , d,
[Xl, 2, S] = [X1, S] = 1 l = 1, . . . , d,

[Xl, h, S] = Xl, h−1 h = 3, 4, . . . , p+ 1, l = 1, . . . , d,
where S is any of the elements which represent a generator for the quotient.
Then the relations of the proposition really define a group G which is an
extension (Z/pZ)pd+1 by Z/pZ; moreover G has d + 1 generators (look at
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the Frattini subgroup). Then (see [3]) there exists a Galois extension E
over k with group G and a Galois extension K of degree p over k such
that E|K is Galois and Gal(E|K) ∼= (Z/pZ)pd+1. Then E = Mk(K) and
G = Gk(K). �

Let Hk(K) = 〈X1, Xl, i | i = 2, . . . , p+ 1, l = 1, . . . , d〉.

Lemma 3.1.
• Every element of order p in Gk(K) belongs to Hk(K): in particular,
Gk(K) cannot be written as a semidirect product between Hk(K) and
a subgroup of order p of Gk(K);

• Gk(K)p = 〈X1, Xl, 2 | l = 1, . . . , d〉;
• [Gk(K), Gk(K)] = 〈Xl, i | i = 2, . . . , p, l = 1, . . . , d〉.

Proof. In what follows we consider Hk(K) both as a group and as a vector
space over Fp with basis as in (3.1). Let A denote the linear isomorphism
of Hk(K) which corresponds to the conjugation by Xp+2 on Hk(K). If we
define B = A− I, we have

Ah − I =
h∑

i=1

(
h

i

)
Bi

and then
p−1∑
h=0

Ah = pI +
p−1∑
h=1

h∑
i=1

(
h

i

)
Bi =

p−1∑
i=1

(
p−1∑
h=i

(
h

i

)
)Bi = Bp−1

(for the last equality argue by induction on h from p−2 to 1 using the well
known properties of the binomial coefficient). Let φ the conjugation by
Xp+2 on Hk(K) (so that A is a description of φ) and, for every l = 1, . . . , d,

Xl(n) = Xl(nl, 2, nl, 3 . . . , nl, p+1) =
p−1∑
i=2

nl, iXl, i.

Using the above computations, it is not difficult to see that, if

X = Xn1
1 +

d∑
l=1

Xl(n),

then

(Xnp+2

p+2 X)p = X
np+2p
p+2

(
p−1∑
h=0

φnp+2hX

)
= np+2X1 +

p−1∑
h=0

d∑
l=1

φnp+2hXl(n)

and, if p - np+2, the last term is equal to

= np+2X1 +
d∑

l=1

(
(φ − Id)p−1Xl(n)

)
= np+2X1 +

d∑
l=1

nl, p+1Xl, 2.
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This concludes the proof of the first two claims. The last one follows from
the structure of Gk(K): in fact, if we take Yl ∈ 〈Xl, 2, Xl, 3, . . . , Xl, p+1〉 we
have X−j

p+2YlX
j
p+2 ∈ 〈Xl, 2, Xl, 3, . . . , Xl, p〉. Since X1 belongs to the center

of Gk(K), the last claim follows. �

In the case k = Qp, since d = 1, we omit the reference to l in the
generators of Gp(K): then we have

Gp(K) = 〈X1, X2, . . . , Xp+2〉.
We put HQp(K) = Hp(K) = 〈X1, X2, . . . , Xp+1〉.

Remark. It follows from the Lemma 3.1 that Hk(K) is the only maximal
subgroup Gk(K) which is p-elementary abelian. Note that Hk(K) is iso-
morphic as an Fp[Z/pZ]-module (the action being the conjugation) to the
direct sum of a free Fp[Z/pZ]-module of rank d with the trivial Fp[Z/pZ]-
module.

4. Normal subgroups and quotients of Gp(K).

In what follows we shall focus on the case d = 1, i.e. k = Qp. We denote
by Nn the number of normal subgroups of index pn in Gp(K) which are
contained in Hp(K).

Proposition 4.1. Let A be as in the proof of Lemma 3.1. Then Nn (0 <
n ≤ p + 1) is the number of vector subspaces of dimension p + 2 − n in
Hp(K) invariant under the action of A. Moreover, if 1 < n ≤ p + 1, then
Nn = p+ 1.

Proof. In what follows we consider Hp(K) both as subgroup and as vector
space over Fp with basis {X1, X2, . . . , Xp+1}. It is clear that the normal
subgroups of Gp(K) with index pn (0 < n ≤ p + 1) which are contained
in H are exactly the subspaces of Hp(K) of dimension p+ 2− n invariant
under A. We claim that the proper subspaces of Hp(K) invariant under A
are exactly those of the form

W λ, µ
i = {(x1, x2, . . . , xp+1) ∈ (Z/pZ)p+1 |λx1 + µxi = 0, xj = 0 if j > i}

where (λ, µ) ∈ Z/pZ × Z/pZ r (0, 0), 1 < i ≤ p + 1 and we used the
identification

(x1, x2, . . . , xp+1) =
p+1∑
i=1

xiXi.

First of all, observe that dimW λ, µ
i = i − 1 and that, if 1 < i ≤ p + 1 is

fixed, there are exactly p + 1 distinct W λ, µ
i . Then the statement of the

proposition follows from the claim.
Let us prove the claim. On one hand, it is clear that W λ, µ

i is in-
variant under A. Conversely, let V be a subspace of Hp(K) invariant
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under and let k be the maximum of the integers h such that there ex-
ists v = (v1, v2, . . . , vp+1) ∈ V with vh 6= 0 and vm = 0 for m > h:
in particular this means that dimV ≤ k and, if dimV = k ≤ p, then
V =< X1, X2, . . . , Xk >= W 0, 1

k+1.
Suppose that k > 2. Let B = A−I: obviously V is invariant under B. In

particular (0, vk, 0, . . . , 0) = Bk−2(v) ∈ V where v = (v1, v2, . . . , vp+1) ∈
V is such that vk 6= 0. On the other hand

Bk−3(v)− vk−1

vk
Bk−2(v) = (0, 0, vk, 0, . . . , 0) ∈ V.

Inductively, this means that V contains {Xi}k−1
i=2 . If dimV = k − 1, then

we can complete {Xi}k−1
i=2 to form a basis for V adjoining the vector

(v1, 0, . . . , 0, vk, 0, . . . , 0).

In this case then V = W λ, µ
k with λ = 1 and µ = −v1/vk. If dimV = k ≤ p,

we saw that V = W 0, 1
k+1, while, if dimV = p+ 1, we have V = Hp(K).

Suppose now that k = 2: if dimV = 1, then V =< v >= W λ, µ
2 with

λ = 1 and µ = −v1/v2, otherwise, if the dimension is 2, V = W 0, 1
3 .

Lastly, if k = 1, v = (v1, 0, . . . , 0) and V =< v >= W 0, 1
2 . �

In the following we shall denote with W λ, µ
j the subgroups defined in the

proof of Prop. 4.1, for 2 ≤ j ≤ p + 1 and (λ, µ) ∈ Z/pZ × Z/pZ r (0, 0).
Observe that W λ1, µ1

j = W λ2, µ2
j if and only if there exists c ∈ (Z/pZ)∗ such

that (λ1, µ1) = c(λ2, µ2).

Lemma 4.1. Let p ≥ r ≥ 3 and p ≥ j ≥ 2. Then

Gp(K)/W 1, 0
j � Gp(K)/W λ, 1

j λ ∈ Z/pZ,

Gp(K)/W 0, 1
r � Gp(K)/W λ, 1

r λ ∈ (Z/pZ)∗,

Gp(K)/W λ1, 1
j

∼= Gp(K)/W λ2, 1
j λ1, λ2 ∈ (Z/pZ)∗,

Gp(K)/W 0, 1
2

∼= Gp(K)/W 1, µ
2 µ ∈ (Z/pZ)∗.

Proof. In order to prove that Gp(K)/W 1, 0
j � Gp(K)/W λ, 1

j (λ ∈ Z/pZ) it is
sufficient to look at the cardinalities of the commutator subgroups of these
two groups. We note that in particular W 1, 0

j is an invariant subgroups of
Gp(K).

For the second claim, observe that Gp(K)/W 0, 1
r is regular (it has order

pp−r+3 ≤ pp, see [1]): in particular it has exponent p (because it admits a
presentation with generators of order p) while Gp(K)/W λ, 1

r has exponent
p2. This proves that Gp(K)/W 0, 1

r � Gp(K)/W λ, 1
r (λ ∈ (Z/pZ)∗).

Now, for every λ1, λ2 ∈ (Z/pZ)∗, we construct an automorphism σ of
Gp(K) such that σ(W λ1, 1

j ) = W λ2, 1
j . Choose λ such that < λ >= (Z/pZ)∗
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and put

σ(Xp+2) = Xp+2, σ(X1) = X1, σ(Xk) = λXk for 2 ≤ k ≤ p+ 1.

It is not difficult to verify that this choice defines an automorphism of
Gp(K). Moreover for every 2 ≤ j ≤ p

σ(W 1, 0
j ) = (W 1, 0

j )

because W 1, 0
j is invariant. Then, if p+ 1 ≥ i ≥ 3,

σ(W λh, 1
i ) = σ

(
W 1, 0

i−1⊕ < X1 − λhXi >
)

= W 1, 0
i−1⊕ < X1 − λh+1Xi >

= W λh+1, 1
i

and we see that our choice of λ gives the result. This proves the third
assertion.

Finally, for every µ ∈ (Z/pZ)∗, there exists an automorphism τ of Gp(K)
such that τ(W 0, 1

2 ) = W 1, µ
2 . In fact, it is easily seen that

(4.1) Xp+2 7→ Xp+2X
µ
p+1, X1 7→ X1X

µ
2 , Xi 7→ Xi if i > 1

effectively defines an automorphism of Gp(K) that satisfies the required
properties. This proves the last assertion. �

5. Extensions of fields.

Observe that the cardinality of Ep(K) is equal to (pp+1−1)
p−1 . In fact it

suffices to compute the number of the maximal subgroups of Hp(K) whose
number is precisely (pp+1−1)

p−1 .
Using class field theory, it is easily seen that the number of cyclic exten-
sions of degree p2 over Qp which contain K is equal to p. Moreover, there
is only one Galois extension of degree p2 over Qp whose Galois group is
p-elementary abelian. So the normal extensions contained in Ep(K) are
exactly p+ 1.

Now we want to compute the number of extensions in Ep(K) whose
normal closure has a fixed group as Galois group. A group which appears
as a Galois group of the normal closure of an extension in Ep(K) is a
quotient of Gp(K). The preceding discussion answers the question for the
two groups of order p2 (of course, both of them are quotients of Gp(K)). So
we restrict ourselves to the quotients of order pn with 3 ≤ n ≤ p+2. In the
following, we denote by Eλ, µ

j the subextension of Mk(K) which correspond

to W λ, µ
j (in the notation for these extensions, we omit the reference to K).

Proposition 5.1. Let 2 ≤ j ≤ p. Then E1, 0
j is not the splitting field of

any of the extensions in Ep(K).
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Proof. The result will follow if we prove that every subgroup of order pp−j+1

contained in the image of Hp(K) in Gp(K)/W 1, 0
j contains an element of the

center of G/W 1, 0
j . In fact, a subgroup of these corresponds to an extension

in Ep(K) (E1, 0
j has degree pp−j+3 over Qp) and the condition implies that

this extension is contained in a Galois extension of degree strictly less than
pp−j+3. These subgroups correspond to the subgroups of Hp(K) which
contain W 1, 0

j and whose order is pp. Let H ′ be such a subgroup: suppose
that < X1, Xj+1 > ∩H ′ = {1}. Then H ′ cannot have order pp. Now we
conclude observing that the image of < X1, Xj+1 > is contained in the
center of G/W 1, 0

j . �

Proposition 5.2. Let 2 ≤ j ≤ p and λ ∈ Z/pZ. Then Eλ, 1
j is the splitting

field of exactly pp−j+1 extensions in Ep(K).

Proof. First of all, observe that the center of Gp(K)/W λ, 1
j is generated by

the image of Xj . In fact, look at the centralizer of the image of Xp+2:
it is easy to see that it is generated by Xj (the bar denotes the images
under the projection) and then it must be equal to < Xj > (the center of
a p-group cannot be trivial). Since in a p-group the intersection between a
normal subgroup and the center is not trivial, we deduce that the center of
Gp(K)/W λ, 1

j is contained in each of his normal subgroups. Now we look

at the subgroups of Hp(K) whose order is pp, which contain W λ, 1
j and do

not contain Xj . These subgroups are in one-to-one correspondence with
the hyperplanes of < X1, Xj , Xj+1 . . . , Xp+1 > which contain the one
dimensional subspace {y1X1 + yjXj |λy1 + yj = 0} and do not contain Xj .
These hyperplanes are exactly the hyperplanes defined by the equations

λy1 + yj + cj+1yj+1 + . . .+ cp+1yp+1 = 0.

with cj+1, . . . , cp+1 ∈ Fp. Then the subgroups of Gp(K)/W λ, 1
j of order

pp−j+1 which do not contain Xj are of the form
(5.1)
Hcj+1, ..., cp+1 = {Xj

zj · · ·Xp+1
zp+1 | zj + ci+1zj+1 + . . .+ cp+1zp+1 = 0}.

Observe that these subgroups cannot contain any normal subgroup other-
wise they would contain the center. So it suffices to count the (p− j + 1)-
tuples of elements of Z/pZ to count all the extensions of degree p2 over Qp

whose splitting field is Eλ, 1
j . �

We may reinterpret these results in the following way. We have p + 1
Galois extensions and

∑p
i=2 p(p

p−i+1) =
∑p

j=2 p
j non-normal extensions in

Ep(K). The sum of these two numbers really gives the number of elements
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of Ep(K), that is

1 + p+
p∑

j=2

pj =
p∑

j=0

pj =
(pp+1 − 1)
p− 1

.

6. Ramification groups of Mp(K) when K is unramified.

In the next two sections we are going to use results from local class field
theory and ramification theory. We prefer not to report every time the
reference: the definitions and the proof of every result concerning those
theories can be found in [4].

Let K0 be the unramified extension of degree p over Qp: for this section,
as a matter of notation, we put Mp(K0) = M0. Let F0 be the unramified
extension of degree p2 of Qp: we have F0 ⊂M0. MoreoverM0|F0 is a totally
ramified abelian p-extension (of degree pp). Let ψM0

F0
denotes the Hasse-Arf

function relative to the extension M0|F0 and let ϕM0
F0

be its inverse. We
denote by {Gi} and {Gi} respectively the lower numbering and the upper
numbering filtrations relative to the extension M0|F0.

Remark. We have

Gal(M0|F0) = 〈Xa
1Xp+1, X2, X3, . . . , Xp〉

for some a ∈ Z/pZ since the subgroup 〈X1, X2, . . . , Xp〉 has non cyclic quo-
tient. Therefore up to an automoprhism of G (more precisely the automor-
phism which fixes every generator except Xp+1 which maps to X−a

1 Xp+1)
we can suppose

Gal(M0|F0) = 〈X2, X3, . . . , Xp, Xp+1〉.

Proposition 6.1. The following holds: Gal(M0|F0) = G0 = G1 and Gi =
{1} for every i > 1.

Proof. We denote as usual for a p-adic field F by U i
F the subgroup of units

of F which are congruent to 1 modulo the i-th power of the prime ideal of
F .

First of all, we observe that U2
F0

= (U1
F0

)p since F0 is (absolutely) un-
ramified. Now, in the isomorphism

F ∗
0
∼= 〈πF0〉 × F ∗

p2 × U1
F0
,

the subgroup NM0
F0

(M∗
0 ) corresponds to

NM0
F0

(M∗
0 ) ∼= 〈πF0〉 × F ∗

p2 ×NM0
F0

(U1
M0

).

Since we have F ∗p
0 ⊆ NM0

F0
(M∗

0 ) (both are normic subgroups and the abelian
extension corresponding to F ∗p

0 contains M0) and we get U2
F0

= (U1
F0

)p ⊂
NM0

F0
(U1

M0
).
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One has G0 = G1 as M0|F0 is widly ramified. It follows ϕM0
F0

(1) = 1 =
ψM0

F0
(1). Then from class field theory, we get

U1
F0
/U2

F0
NM0

F0
(U1

M0
) ∼= G1/G2.

Now, the first term is equal to U1
F0
/NM0

F0
(U1

M0
) which is isomorphic to

(Z/pZ)p. Then G2 = {1}. �

Next we consider the extension M0|Qp. We denote by {Gi} and {Gi}
respectively the lower numbering and the upper numbering filtrations rela-
tive to the extension M0|Qp. This notation is consistent with the preceding
one if we restrict ourselves to i ≥ 0, as we will do in the following.

Let W be a normal subgroup of Gp(K0) which is contained in Hp(K0).
We put

Gi = (Gp(K0)/W )i , G
i = (Gp(K0)/W )i .

We are going to determine the ramification groups of the extension corre-
sponding to W using the well known formulas for the ramification groups
of a quotient. As we are interested in W as long as Gp(K0)/W is the Ga-
lois group the normal closure of an extension in Ep(K0), we can suppose
W 6= W 1, 0

j .
We know that W is not contained in Gal(M0|F0) because W is one of the

W λ, 1
j ’s with 2 ≤ j ≤ p+ 1 and λ ∈ Z/pZ. In particular W ·Gal(M0|F0) =

Hp(K0). Then Gi = G
i = Hp(K0)/W if 0 ≤ i ≤ 1 and Gi = G

i = {1} for
every i > 1.

Let E be the extension corresponding to W : we have pn = [E : Qp] form
some n. We denote by dE the discriminant of the extension E|Qp and put
dE = v(dE), where v is the valuation on Qp such that v(p) = 1. Observe
that W * Gal(M0|F0) implies F0 * E. Then we have

dE = 2p(pn−1 − 1)

(for this computation we use the Hilbert formula for the different which
involves the cardinalities of the ramification groups). Note that the factor
p comes from the inertia index of E|Qp.

7. Ramification groups of Mp(K) when K is totally ramified.

Let K be a totally ramified cyclic extension of degree p over Qp and let
F be the unramified extension of degree p of K: F is the maximal abelian
extension of exponent p over Qp. For this section, as a matter of notation,
we put

Mp(K) = M, Gp(K) = G, Hp(K) = H,

every statement of this section being independent of the particular choice
of K within the set of cyclic totally ramified extensions of degree p of Qp.
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Observe that F ⊂M and L|M is a totally ramified abelian p-extension (of
degree pp). Let ψM

K denotes the Hasse-Arf function relative to the extension
M |K and let ϕM

K be its inverse. We denote by {Gu} and {Gv} respectively
the lower numbering and the upper numbering filtrations relative to the
extension M |Qp. Similarly, we denote by {Hu} and {Hv} respectively
the lower numbering and the upper numbering filtrations relative to the
extension M |K. Put finally, for every u and v,

hu = |Hu|, hv = |Hv|, gu = |Gu|, gv = |Gv|.

Proposition 7.1. The following holds:

Hv ∼= (Z/pZ)p−i+1 if i− 1 < v ≤ i, 1 ≤ i ≤ p− 1,

Hv ∼= Z/pZ if p− 1 < v ≤ p+ 1

and Hv = {1} if v > p+ 1.

Proof. We apply the results of [2] to the extension M |K: M is the maximal
abelian extension of exponent p over K and K is totally ramified of degree
p over Qp. Then we know that the jumps of ψM

K are 1, 2, . . . , p− 1, p+ 1,
since

p+ 1 <
p2

p− 1
< p+ 2.

We have f(M |K) = p and e(M |K) = pp, then h0 = h1 = pp. Since there
are p jumps, the ratio between the right and the left derivatives of ψM

K at
every jump must be equal to p. This proves what we want. �

Now observe that for every i ≥ −1 one has

(7.1) Hi = Gi ∩H.
Furthermore

(7.2) ϕM |Qp
= ϕK|Qp

◦ ϕM |K .

Using (7.2) it is easy to compute ϕM |Qp
and the gi’s. Then we get

g0 = g1 = pp+1,

g2+p+...+pj−1 = . . . = g1+p+...+pj = pp−j if 1 ≤ j ≤ p− 2,

g2+p+...+pp−2 = . . . = g1+p+...+pp−2+2pp−1 = p.

Using (7.1), we can deduce that Hi = Gi, if i ≥ 2: in particular the
subgroups Hi are normal in G. Observe that the jumps in the filtration
{Gv} are not integers: more precisely one has

gv = pp+1 if 0 ≤ v ≤ 1,

gv = pp−i if 1 +
i− 1
p

< v ≤ 1 +
i

p
, i = 1, . . . , p− 2,
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gv = p if 1 +
p− 2
p

< v ≤ 2,

gv = 1 if v > 2.

In the following we shall call vm the m-th jump in the filtration {Gv}. For
example v1 = 1, v2 = 1 + 1

p and vp = 2.

Remark. Up to an automorphism of G (more precisely an automorphism
such that Xp+2X

h
p+1 7→ Xp+2, see (4.1)), we can suppose

Gal(L|K0) = 〈X2, X3, . . . , Xp, Xp+2〉

where we still denote by K0 the unramified extension of degree p of Qp, as
in the preceding section.

Lemma 7.1. M |K0 has precisely p cyclic subextensions of degree p2: they
corresponds to the subgroups

〈Xh
1Xp, X2, X3, . . . , Xp−1〉 ⊆ Gal(L|K0)

as h runs in {0, 1, . . . , p−1}. Moreover, if E one of these subextensions of
M |K0 and {Gal(E|K0)v} is the upper numbering filtration on Gal(E|K0),
one has

Gal(E|K0)v ∼= Z/p2Z if 0 ≤ v ≤ 1

Gal(E|K0)v ∼= Z/pZ if 1 < v ≤ 2

and Gal(E|K0)v = {1} if v > 2.

Proof. Clear. �

If h = 0, 1, . . . , p− 1, we denote with Eh the cyclic extension of degree
p2 over K0 corresponding to 〈Xh

1Xp, X2, X3, . . . , Xp−1〉. Observe that

(7.3) (G/Gal(M |Eh))v = GvGal(M |Eh)/Gal(M |Eh).

Proposition 7.2. There exists m ∈ Z/pZ such that the following holds

Gv = 〈X2, X3, . . . , Xp, Xp+2〉 if 0 ≤ v ≤ v1

Gv = 〈X1, X2, . . . , Xp−i〉 if

{
vi < v ≤ vi+1,

i = 1, . . . , p− 2

Gv = 〈X1X
m
2 〉 if vp−1 < v ≤ vp

and Gv = {1} if v > vp.

Proof. The first claim is clear because

G1 = G0 = Gal(M |K0).
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Now observe that Gal(M |K0)v = Gv if v ≥ 0. Using (7.3) we get, if
1 < v ≤ 2, for every 0 ≤ h ≤ p− 1,

Z/pZ ∼= (Gal(M |K0)/Gal(Eh|K0))v

= Gv〈Xh
1Xp, X2, . . . , Xp−1〉/〈Xh

1Xp, X2, . . . , Xp−1〉.(7.4)

Now, Gv is p-elementary abelian (since we showed that Gi = Hi if i ≥ 2)
and it is contained in G1. Then, since gv = pp−1 if 1 < v ≤ v2,

Gv = 〈X1, X2, . . . , Xp−1〉 if 1 < v ≤ v2

(one can also use the fact that G1/Gv1 has to be a p-elementary abelian
group). Observe that gv3 = pp−2; furthermore Gv3 6= 〈X2, . . . , Xp−1〉
because of (7.4). Then Gv3 = 〈X1X

l
p−1X2, . . . , Xp−2〉 for some l ∈ Z/pZ.

We have

(7.5) 〈X l
p−2, X2, . . . , Xp−3〉 = [G1, Gv3 ] ⊆ Gv4

If l 6= 0, 〈X l
p−2, X2, . . . , Xp−3〉 has order pp−3 = gv4 : then in (7.5), we

would have equality. But this is impossible because Gv4 * 〈X2, . . . , Xp−1〉
since (7.4) holds. Then Gv3 = 〈X1, X2, . . . , Xp−2〉.

In a similar way one proves that

Gv = 〈X1, X2, . . . , Xp−i〉
if vi < v ≤ vi+1 and i = 1, . . . , p−2. Then Gvp−1 = 〈X1, X2〉 but we cannot
use the commutator argument again because both X1 and X2 belong to the
center of G. Still, thanks to (7.4), we have Gvp 6= 〈X2〉. This concludes the
proof. �

For every W λ, µ
j we put

(Gλ, µ
j )v =

(
G/W λ, µ

j

)v
.

As in the preceding section we are going to determine the ramification
groups of the extension Eλ, µ

j over Qp corresponding to W λ, µ
j . We denote

by d
Eλ, µ

j |Qp
the discriminant of the extension Eλ, µ

j |Qp and put d
Eλ, µ

j |Qp
=

v(d
Eλ, µ

j
), where v is the valuation on Qp such that v(p) = 1. We suppose

2 ≤ j ≤ p, because {Eλ, µ
p+1|Qp} is the set of Galois extensions of degree

p2 over Qp, whose discriminants are well known. Furthermore, as we are
interested in the Eλ, µ

j as long as they are the normal closure of extensions
of degree p2 over Qp, we are going to omit the computations for the case
µ = 0 and λ = 1 (see Prop. 5.1).

Suppose first µ = 1, λ = 0 and 3 ≤ j ≤ p. Then we have

|(Gλ, µ
j )v| = pp−j+2 if 0 ≤ v ≤ v1,
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|(Gλ, µ
j )v| = pp−j−i+1 if vi < v ≤ vi+1, 1 ≤ i ≤ p− j,

and |(Gλ, µ
j )v| = 1 if v > vp−j+1. Then

d
E0, 1

j |Qp
= p

(
2(pp−j+2 − 1) +

p−j∑
i=1

pi(pp−j−i+1 − 1)

)
.

Now suppose µ = 1, λ 6= 0 and 3 ≤ j ≤ p− 1. Then we have

|(Gλ, µ
j )v| = pp−j+2 if 0 ≤ v ≤ v1,

|(Gλ, µ
j )v| = pp−j−i+1 if vi < v ≤ vi+1, 1 ≤ i ≤ p− j − 1,

|(Gλ, µ
j )v| = p if vp−j < v ≤ vp,

and |(Gλ, µ
j )v| = 1 if v > vp. Then

d
Eλ, 1

j |Qp
= p
(
2(pp−j+2 − 1) +

p−j−1∑
i=1

pi(pp−j−i+1 − 1)+

+ pp−j(vp − vp−j)(p− 1)
)
.

If µ = 1, λ 6= 0 and j = p, then we have

|(Gλ, µ
j )v| = p2 if 0 ≤ v ≤ v1,

|(Gλ, µ
j )v| = p if v1 < v ≤ vp

and |(Gλ, µ
j )v| = 1 if v > vp. Then

d
Eλ, 1

p |Qp
= p

(
2(p2 − 1) + p(p− 1)

)
.

Now suppose j = 2. Observe that we have G/W 0, 1
2

∼= G/W 1, µ
2 for every

µ ∈ (Z/pZ)∗ (see Lemma 4.1). We have two cases which must be considered
separately. Suppose first that W λ, µ

2 = Gvp = 〈X1X
m
2 〉: then, denoting with

de the valuation of the discriminant of Eλ, µ
2 |Qp in this case, we have

de = p

(
2(pp − 1) +

p−2∑
i=1

pi(pp−i−1 − 1)

)
.

Conversely suppose that W λ, µ
2 6= Gvp : then, denoting with du the valuation

of the discriminant of Eλ, µ
2 |Qp in this case, we have

du = p

(
2(pp − 1) +

p−3∑
i=1

pi(pp−i−1 − 1) + (vp − vp−2)pp−1(p− 1)

)
.
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Now we look at the extensions Eλ, µ
j |L where L ∈ Ep(K), µ 6= 0 and

2 ≤ j ≤ p: we have described the Gal(Eλ, µ
j |L)’s in Prop. 5.2 (see 5.1).

They are subgroups of Gλ, µ
j and then, for every i,(

Gal(Eλ, µ
j |L)

)
i
=
(
Gλ, µ

j

)
i
∩Gal(Eλ, µ

j |L).

We denote by d
Eλ, µ

j |L the discriminant of Eλ, µ
j |L and we put d

Eλ, µ
j |Qp

=

w(d
Eλ, µ

j |Qp
), where w is the valuation on L such that w|v and w(p) = p2.

Suppose first µ = 1, λ = 0 and 3 ≤ j ≤ p. Then we get

d
E0, 1

j |L = p

(
2(pp−j − 1) +

p−j∑
i=1

pi(pp−j−i − 1)

)
.

Now suppose µ = 1, λ 6= 0 and 3 ≤ j ≤ p. Then we get

d
Eλ, 1

j |L = p

(
2(pp−j − 1) +

p−j∑
i=1

pi(pp−j−i − 1)

)
.

Finally, we analyze the case j = 2: it easily seen that d
Eλ, µ

2 |L does not

depend on whether W λ, µ
2 = Gvp or not. Furthermore we have

d2|L = d
Eλ, µ

2 |L = p

(
2(pp−2 − 1) +

p−3∑
i=1

pi(pp−i−2 − 1)

)
.

We denote by dL|Qp
the discriminant of L|Qp and we put dL|Qp

= v(dL|Qp
).

Using the formula for the discriminants in towers of extensions, we get, if
3 ≤ j ≤ p,

d
Eλ, µ

j |Qp
= pp−j+1dL|Qp

+ d
Eλ, µ

j |L

and analogous formulas in the case j = 2.

8. Classification table

We collect our results in a table which describes the classification of the
extensions of degree p2 over Qp whose normal closure is a p-extension. We
recall some notations. Let λ be a fixed element in (Z/pZ)∗ and let j run
in {3, 4, . . . , p}. In the following table, the first four lines list the Galois
extensions of degree p2 over Qp. Lines from the fifth to the seventh list the
non-normal extension of EQp(K0). The remaining lines describe the non
normal totally ramified extensions of degree p2 over Qp. When j appears
in a line, it simply means that there is a set of lines obtained by replacing j
with 3, 4, . . . , p. For an extension L ∈ EQp , e = e(L|Qp) is the ramification
index of L, d = dL|Qp

= v(dL|Qp
) is the valuation of the discriminant of

L, G = Gal(L|Qp) where L is the normal closure of L over Qp and we
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put e = e(L|Qp) for the ramification index of L and f = f(L|Qp) for the
inertia degree of L. Finally d = dL|Qp

= v(dL|Qp
) is the valuation of the

discriminant of L.

Table 1. Extensions of degree p2 over Qp whose normal
closure is a p-extension.

Number e d G e f d

1 1 0 Z/p2Z 1 p2 0

p− 1 p 2p(p− 1) Z/p2Z p p 2p(p− 1)

p2 p2 2(p2 − 1) Z/p2Z p2 1 2(p2 − 1)

+p(p− 1) +p(p− 1)

1 p 2p(p− 1) (Z/pZ)2 p p 2p(p− 1)

pp−j+1 p 2p(p− 1) Gp/W 0, 1
j pp−j+2 p 2p(pp−j+1 − 1)

(p− 1)pp−j+1 p 2p(p− 1) Gp/W λ, 1
j pp−j+2 p 2p(pp−j+1 − 1)

pp p 2p(p− 1) Gp/W 0, 1
2 pp p 2p(pp−1 − 1)

pp−j+2 p2
(d

E
0, 1
j

|Qp
−d

E
0, 1
j

|L
)

pp−j+1 Gp/W 0, 1
j pp−j+2 p d

E
0, 1
j |Qp

(p− 1)pp−j+2 p2
(d

E
λ, 1
j

|Qp
−d

E
λ, 1
j

|L
)

pp−j+1 Gp/W λ, 1
j pp−j+2 p d

E
λ, 1
j |Qp

pp p2 (de − d2|L)/pp−1 Gp/W 0, 1
2 pp p de

(p− 1)pp p2 (du − d2|L)/pp−1 Gp/W 0, 1
2 pp p du
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