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Ideal class groups, Hilbert’s irreducibility

theorem, and integral points of bounded degree

on curves

par Aaron LEVIN

Résumé. Nous étudions la construction et le comptage, pour tout
couple d’entiers m,n > 1, des corps de nombres de degré n dont le
groupe des classes possède un “grand” m-rang. Notre technique
repose essentiellement sur le théorème d’irréductibilité de Hilbert
et sur des résultats concernant les points entiers de degré borné
sur des courbes.

Abstract. We study the problem of constructing and enumer-
ating, for any integers m,n > 1, number fields of degree n whose
ideal class groups have “large” m-rank. Our technique relies fun-
damentally on Hilbert’s irreducibility theorem and results on in-
tegral points of bounded degree on curves.

1. Introduction

In 1922, Nagell [20, 21] proved that for any integer m, there exist infin-
itely many imaginary quadratic number fields with class number divisible
by m. This result has since been reproved by a number of different au-
thors (e.g., [1], [13], [16]). Nearly fifty years later, working independently,
Yamamoto [31] and Weinberger [30] extended Nagell’s class number divis-
ibility result to real quadratic fields. Soon after, Uchida [28] proved the
analogous result for cubic cyclic fields. The class number divisibility prob-
lem for number fields of arbitrary degree was resolved in 1984 by Azuhata
and Ichimura [2]. In fact, they proved that for any integers m,n > 1 and
any nonnegative integers r1, r2, with r1 + 2r2 = n, there exist infinitely
many number fields k of degree n = [k : Q] with r1 real places and r2
complex places such that

(1.1) rkm Cl(k) ≥ r2,

where Cl(k) is the ideal class group of k and rkm Cl(k) denotes the largest
integer such that (Z/mZ)rkm Cl(k) is a subgroup of Cl(k). The right-hand

Manuscrit reçu le 2 aout 2006.



486 Aaron Levin

side of (1.1) was later improved to r2 + 1 by Nakano [22, 23]. Choosing
r2 as large as possible, we thus obtain, for any m, infinitely many number
fields k of degree n > 1 with

(1.2) rkm Cl(k) ≥
⌊n

2

⌋
+ 1,

where b·c denotes the greatest integer function. Furthermore, improving on
previous work of Ishida [15] and Ichimura [14], Nakano proved the existence
of infinitely many number fields k of degree n > 1 with

(1.3) rk2 Cl(k) ≥ n.

Recently, progress has been made on obtaining quantitative results on
counting the number fields in the above results. Let

Nm,n,s(X) = #{k ⊂ Q̄ | [k : Q] = n, rkm Cl(k) ≥ s, |Disck/Q | < X}.

Before the present paper, general results seem to have been proven only for
s = 1 (of course, for m square-free, Nm,n,1(X) just counts number fields of
degree n with class number divisible by m). The first such result, due to
Murty [19], is that Nm,2,1(X) � X

1
2
+ 1

m . He also proved a result for real
quadratic fields (in this direction see also [8], [18], and [32]). Soundararajan
[26] improved Murty’s result to Nm,2,1(X) � X

1
2
+ 2

m
−ε if m ≡ 0 mod 4

and Nm,2,1(X) � X
1
2
+ 3

m+2
−ε if m ≡ 2 mod 4, m 6= 2. For cubic fields,

Hernández and Luca [12] proved Nm,3,1(X) � X
1

6m . Bilu and Luca [4]
improved on this, as the special case n = 3, giving the first result for every
n > 1,

(1.4) Nm,n,1(X) � X
1

2m(n−1) .

In this paper we prove the following result.

Theorem 1.1. Let m,n > 1 be positive integers. Let

s1 =
⌊n

2

⌋
,

s2 =
⌈⌊
n+ 1

2

⌋
+

n

m− 1
−m

⌉
,

where b·c and d·e are the greatest and least integer functions, respectively.
Then

Nm,n,s1(X) � X
1

m(n−1)

logX
,(1.5)

Nm,n,s2(X) � X
1

(m+1)n−1

logX
, if n > (m− 1)2.(1.6)
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The implied constants in Theorem 1.1 can, in principle, be effectively
determined. Note that in (1.5), we improve on the exponent in Bilu and
Luca’s result (1.4) by essentially a factor of two, while enumerating num-
ber fields whose class groups have (provable) m-ranks as large as those
of Azuhata and Ichimura. Furthermore, fixing m, for n � 0, (1.6) gives
infinitely many number fields k of degree n with

rkm Cl(k) ≥ n

2
+

n

m− 1
+O(1).

For m = 2, we obtain infinitely many number fields k of degree n > 1 with

rk2 Cl(k) ≥ 3n
2
− 2.

So we obtain, for large enough n, an improvement on Nakano’s inequalities
(1.2) and (1.3).

Our proof of Theorem 1.1 relies on Hilbert’s irreducibility theorem. We
also give an alternative approach (yielding slightly different results) based
on Diophantine finiteness results concerning integral points of bounded de-
gree on curves. We now give a quick sketch of our technique. We start
with a certain superelliptic curve C possessing a rational function ψ of
degree n. Then we construct a curve Y and a covering π : Y → C
that has the property that if π(Q) = P , ψ(P ) ∈ Z, then [Q(Q) : Q]
is bounded by a number depending only on rkm Cl(Q(P )). On the other
hand, by Hilbert’s irreducibility theorem, for most points Q ∈ (ψ◦π)−1(Z),
[Q(Q) : Q] = degψ ◦ π. Thus, combining these two statements, we obtain
lower bounds on rkm Cl(Q(P )) for many points P ∈ ψ−1(Z). A similar ar-
gument, but using finiteness results on integral points of bounded degree on
curves, yields a (weaker) lower bound on rkm Cl(Q(P )) for all but finitely
many P ∈ ψ−1(Z).

2. Hilbert’s irreducibility theorem and integral points of
bounded degree on curves

The classical Hilbert irreducibility theorem states that for a number field
k and an absolutely irreducible polynomial f ∈ k[x, y], there exist infinitely
many specializations y0 ∈ Z such that f(x, y0) is irreducible over k. A
quantitative geometric formulation of the theorem sufficient for our needs
is as follows.

Theorem 2.1 (Hilbert irreducibility theorem). Let C be an irreducible
nonsingular projective curve defined over a number field k. Let f : C → P1

be a morphism defined over k. Then there exists ε > 0 such that for all but
O(N1−ε) values n = 1, . . . , N , if P ∈ f−1(n) then [k(P ) : k] = deg f .

In fact, it is known that one can take ε = 1
2 in Theorem 2.1 and that the

constant in the O(N1−ε) in the theorem is effective and can be given quite



488 Aaron Levin

explicitly for ε < 1
2 (for these and more general and precise statements of

Hilbert’s irreducibility theorem, see [25, Ch. 9] and [9]).
With the hypotheses of Theorem 2.1, for each integer i let Pi ∈ f−1(i).

Dvornicich and Zannier [10, 11] studied the degree of the field extension
Q(P1, . . . , PN ). Their results imply in particular a useful result on the num-
ber of isomorphism classes of number fields in the set {Q(P1), . . . ,Q(PN )}.
Theorem 2.2 (Dvornicich, Zannier). Let C be an irreducible nonsingu-
lar projective curve defined over a number field k. Let f : C → P1 be
a morphism defined over k. For each integer i, let Pi ∈ f−1(i). Let
g(N) denote the number of isomorphism classes of number fields in the
set {Q(P1), . . . ,Q(PN )}. Then g(N) � N

log N .

An analysis of the proof in [10] shows that furthermore the implied con-
stant in Theorem 2.2 is effective (for this one makes use of effective versions
of Hilbert’s irreducibility theorem, as mentioned above, and the prime num-
ber theorem).

Hilbert’s irreducibility theorem is closely related to finiteness results on
integral points on curves. We now recall two such results concerning integral
points of bounded degree. Let C be an irreducible nonsingular projective
curve defined over a number field k. Let ψ be a rational function on C
defined over k. If L ⊃ k, there is a natural action of the Galois group
Gal(L̄/L) on the set of poles of ψ. Let ΣL denote the set of orbits under
this action. So Σk̄ is just the set of poles of ψ. We denote by OL the ring
of integers of L. More generally, for a finite set of places S of L containing
the archimedean places, we denote by OL,S the ring of S-integers of L. A
classical method of Runge allows one to effectively determine the S-integral
points in C(L) with respect to ψ if |S| < |ΣL|. As noticed by Bombieri [5]
(a related result had previously been proven by Sprindžuk [27]), in Runge’s
method one can even allow the field L and set of places S to vary. This
yields the following theorem (this formulation is taken from [3]).

Theorem 2.3 (Bombieri, Runge, Sprindžuk). The set of points⋃
L,S

|S|<|ΣL|

{P ∈ C(L) | ψ(P ) ∈ OL,S}

is finite and can be effectively determined.

If S is the set of archimedean places of L, then |S| ≤ [L : Q], and so
Theorem 2.3 implies, for instance, that the set

{P ∈ C(k̄) | [Q(P ) : Q] < |ΣQ|, ψ(P ) ∈ OQ(P )}
is finite and can be effectively determined.

In [29], Vojta proved an inequality in Diophantine approximation which
has as consequences both Falting’s theorem on rational points on curves and
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the Roth-Wirsing theorem in Diophantine approximation. Among further
consequences of Vojta’s inequality (see [17]), we have a result on integral
points of bounded degree on curves.

Theorem 2.4 (Vojta). Let S be a finite set of places of k containing the
archimedean places. If L is a finite extension of k, denote by SL the set of
places of L lying above places in S. The set of points⋃

L⊃k
2[L:k]<|Σk̄|

{P ∈ C(L) | ψ(P ) ∈ OL,SL
}

is finite.

The finite set in Theorem 2.4 cannot, at present, be effectively deter-
mined. Since only the degree [L : k], and not |S|, enters into Theorem 2.4,
and since we can also take k 6= Q in the theorem, in general Theorem 2.4
will give better results than Theorem 2.3, at the loss of effectivity.

3. Proof of Theorem 1.1

We begin with a slightly more precise version of inequality (1.6) of The-
orem 1.1.

Theorem 3.1. Let m,n > 1 be integers. Let r > n be an integer such
that r −

⌊
r
m

⌋
≤ n and (r,m) = 1. Then there exist effective constants

c1, c2 > 0 such that if X > c1, there are at least c2X
1

r(m−1)+n−1 / logX
pairwise nonisomorphic number fields k with [k : Q] = n, |Disck/Q | < X,
and

(3.1) rkm Cl(k) ≥ r −
⌊
n+ 1

2

⌋
− δ(m,n),

where δ(m,n) = 1 if m and n are both even, and δ(m,n) = 0 otherwise.

It is easy to see that for any m,n > 1, there always exists r ≥ n +
n

m−1 − m + 1 such that r −
⌊

r
m

⌋
≤ n and (r,m) = 1. Note also that

n + n
m−1 − m + 1 > n if n > (m − 1)2 and that r −

⌊
r
m

⌋
≤ n implies

r(m−1)+n−1 ≤ (m+1)n−1. Using these facts, (1.6) follows easily from
Theorem 3.1.

The next lemma gives certain integers that will be needed in the proof
of Theorem 3.1.

Lemma 3.1. Let m and r be positive integers. Let T be the set of primes
less than mr + 1. There exist positive integers a1, . . . , ar such that

(3.2) ai ≡ 1 mod p, ∀p ∈ T,
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and ai,
r∏

j=2

(am
1 + am

j )
∏

2≤k<l≤r

(am
k − am

l )

 = 1,

for i = 1, . . . , r.

Proof. We prove by induction that for 1 ≤ r′ ≤ r, there exist positive
integers a1, . . . , ar′ satisfying (3.2) andai,

r′∏
j=2

(am
1 + am

j )
∏

2≤k<l≤r′

(am
k − am

l )

 = 1

for all i. This is trivial for r′ = 1. Suppose that we have constructed positive
integers a1, . . . , ar′ , r′ < r, as above. We construct ar′+1 as follows. Let
T ′ be the set of primes dividing

∏r′

i=1 ai and T ′′ the set of primes dividing∏r′

j=2(a
m
1 +am

j )
∏

2≤k<l≤r′(a
m
k −am

l ). Let p ∈ T ′. By (3.2), we have p > mr.
Since r′ < r, it follows that there exists an integer bp such that bmp 6≡ −am

1

mod p and bmp 6≡ am
i mod p for i = 2, . . . , r′ (note also that bp 6≡ 0 mod p).

Now we simply choose ar′+1 > 0 so that ar′+1 ≡ 1 mod p for all p ∈ T ,
ar′+1 ≡ bp mod p for all p ∈ T ′, and ar′+1 ≡ 1 mod p for all p ∈ T ′′ \ T ′.
Then it is easily verified that a1, . . . , ar′+1 have the desired properties. �

We now define the curves and maps that are central to the proofs of
Theorem 3.1 and later results. Let m, n, and r be as in Theorem 3.1. Let

h(x) = −(x− am
1 )

r∏
i=2

(x+ am
i ),

with a1, . . . , ar as in Lemma 3.1. Let C be the nonsingular affine plane
curve defined by

ym = h(x).

Let C̃ be a nonsingular projective closure of C. It follows from the
condition (r,m) = 1 that there is a unique point in C̃ \ C, which we will
denote by ∞. Let f(x) be the Taylor series for m

√
h(x) at x = 0 truncated

to degree
⌊

r
m

⌋
− 1 with f(0) =

∏r
i=1 ai. Then f(x) is defined over Q and

(3.3) ordx (f(x)m − h(x)) ≥
⌊ r
m

⌋
≥ r − n.

Let b be the lowest common denominator of the coefficients of f . Let ψ be
the rational function on C̃ induced by the rational function

b(y − f)
xr−n

on C.
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Let Y be the nonsingular curve in Ar (with coordinates x1, . . . , xr) de-
fined by

xm
1 + xm

i = am
1 + am

i , 2 ≤ i ≤ r,

xm
i − xm

j = am
i − am

j , 2 ≤ i < j ≤ r.

We have a covering of C by Y , π : Y → C, given by

(x1, . . . , xr) 7→

(
−xm

1 + am
1 ,

r∏
i=1

xi

)
.

For our purposes, the key property of this covering is that, under appro-
priate conditions, for a point P ∈ C(Q̄), the degree [Q(Q) : Q] for a point
Q ∈ π−1(P ) is controlled by the m-rank of the class group of Q(P ).

For notational convenience, let t1 = −am
1 and ti = am

i for i = 2, . . . , r.

Lemma 3.2. Let P = (x, y) ∈ C(k), for some number field k. Suppose
that for all i,

(3.4) (x+ ti)Ok = am
i

for some fractional ideal ai of Ok. Let r1 and r2 be the number of real and
complex places, respectively, of k. Let ζ be a generator for the group of
roots of unity in k. Let s = rkm Cl(k). Let Q ∈ π−1(P ). Then for some
prime p dividing m,

[k(Q) : k] ≤ [k( p
√
ζ) : k]mr−1pr1+r2+s−r

and k(Q) has at most 1
2 [k( p

√
ζ) : Q]mr−1pr1+r2+s−r archimedean places.

Proof. Let ordpm denote the largest power of p dividing m. Let p be a
prime dividing m such that rkpordp m Cl(k) = rkm Cl(k) = s. Let G =

{[a]
m
p | [a] ∈ Cl(k), [a]m = 1}, a subgroup of Cl(k). Clearly, G ∼= (Z/pZ)s.

Let bi, i = 1, . . . , s, be ideals whose ideal classes generate G. Then for each
i, b

p
i = (βi) for some βi ∈ k. Let u1, . . . , ur1+r2−1, ζ be generators for O∗

k.
Let L = k( p

√
β1, . . . ,

p
√
βs, p

√
u1, . . . , p

√
ur1+r2−1,

p
√
ζ). Let Q = (x1 . . . , xr)

with π(Q) = P . Note that

[L : k] ≤ [k( p
√
ζ) : k]pr1+r2+s−1

and L is totally imaginary. If x
m
p

i ∈ L for all i, then [L(Q) : L] ≤
(

m
p

)r−1

(note that
∏r

i=1 xi = y ∈ k ⊂ L). Thus, to prove the lemma it suffices to

show that x
m
p

i ∈ L for all i.
It follows from the defining equations for Y and the definition of π that

xm
1 = −(x+ t1) and xm

i = x+ ti for i ≥ 2. By hypothesis, (xm
i ) = (x+ ti) =
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am
i . Since [ai]

m
p ∈ G,

a
m
p

i = (α)
s∏

j=1

b
cj

j

for some integers cj and some element α ∈ k. Therefore,

(xm
i ) =

(
a

m
p

i

)p

= (αp)
s∏

j=1

(
β

cj

j

)
.

So xm
i = uαp

∏s
j=1 β

cj

j for some unit u ∈ O∗
k. Therefore, x

m
p

i =

α p
√
u
∏s

j=1
p

√
β

cj

j for some choice of the p-th roots. So x
m
p

i ∈ L for all i
as desired. �

The condition (3.4) of Lemma 3.2 is satisfied for a large class of points
of C. Let ∆(h) =

∏
1≤i<j≤r(ti − tj)2 and let ∆(h)0 be the product of the

primes dividing ∆(h).

Lemma 3.3. There exists an integer c0 such that if c ∈ Z, c ≡ c0
mod ∆(h)0, and (x, y) ∈ ψ−1(c), then for all i, (x+ ti)OQ(x) = am

i for
some fractional ideal ai of OQ(x).

Proof. Let f̃ = bf ∈ Z[x]. We first claim that there exists a c0 such that

(3.5) (−ti)r−nc0 6≡ −f̃(−ti) mod p

for i = 1, . . . , r and all primes p dividing ∆(h)0. For p < r+ 1, by (3.2) we
have ai ≡ 1 mod p for all i, and so for such p the condition (3.5) becomes
c0 6≡ (−1)r−n+1f̃(−1),−f̃(1) mod p. For p < r + 1, let bp be such that
bp 6≡ (−1)r−n+1f̃(−1),−f̃(1) mod p (note that for p = 2, this is possible
because (−1)r−n+1f̃(−1) ≡ −f̃(1) mod 2). If p > r and p|∆(h)0, then by
the pigeon-hole principle, there exists bp such that bp 6≡ −(−ti)n−rf̃(−ti)
mod p for i = 1, . . . , r (by construction, p - ti, so ti is invertible mod p).
Thus, we choose c0 such that c0 ≡ bp mod p for all primes p dividing
∆(h)0.

We now show that this choice of c0 works in the lemma. Suppose that
ψ(xc, yc) = c ≡ c0 mod ∆(h)0. Note that by (3.3),
(3.6)

ym
c +

r∏
i=1

(xc+ti) =

(
f̃(xc) + cxr−n

c

)m
+ bm

∏r
i=1(xc + ti)

bm
=
xr−n

c

bm
gc(xc) = 0,

where gc(x) ∈ Z[x] and deg gc = n. So either xc = 0, in which case the
conclusion of the lemma is trivially true, or xc satisfies gc(xc) = 0. If
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gc(xc) = 0, then x = xc + ti satisfies gc(x − ti) = 0. From (3.6), the
constant term of gc(x− ti) is

gc(−ti) =
1

(−ti)r−n

(
f̃(−ti) + c(−ti)r−n

)m
.

By our choice of c0 and that c ≡ c0 mod ∆(h)0, it follows that p - gc(−ti)
for all p|∆(h)0. This obviously implies that vp(xc + ti) ≤ 0 for all i and all
primes p of Ok dividing ∆(h)0, where k = Q(xc) = Q(xc, yc). Let p be a
prime of Ok such that vp(xc) < 0. Then vp(xc) = vp(xc + ti) for all i. Thus
mvp(yc) = rvp(xc) and since (r,m) = 1, we have m|vp(xc+ti) for all i. Now
let p be a prime of Ok such that vp(xc +tj) > 0 for some j. From the above,
p - ∆(h)0. If i 6= j and vp(xc + ti) > 0, then p|(ti − tj), a contradiction.
Since ym

c = −
∏r

i=1(xc + ti), clearly we must have m|vp(xc + tj). It follows
that for all i, (xc + ti)Ok = am

i for some fractional ideal ai of Ok. �

We now compute the discriminants and numbers of real and complex
places of the fields Q(P ), P ∈ ψ−1(c), appearing in Lemma 3.3.

Lemma 3.4. There exists a constant c′ such that for c > c′, c ∈ Z, if
P ∈ ψ−1(c) then Q(P ) has at most one real place if n is odd, at most
two real places if m and n are even, and no real places in all other cases.
Furthermore, for P ∈ ψ−1(c), DiscQ(P )/Q = O(cr(m−1)+n−1).

Proof. Let f̃ and gc be as in the proof of Lemma 3.3. For P = (xc, yc) ∈
ψ−1(c), since yc = f(xc) + c

bx
r−n
c , Q(P ) = Q(xc). Therefore, it suffices to

study the roots of gc(x). Let

qc(x) =
(
f̃(x) + cxr−n

)m
+ bm(x− am

1 )
r∏

i=2

(x+ am
i ) = xr−ngc(x).

Looking at the expansion of qc (note also that r−m(r− n) > 0), it is easy
to see that

lim
c→∞

qc

(
c

m
r−m(r−n)x

)
c

mr
r−m(r−n)

= bmxr + xm(r−n).

Therefore, using the continuity of the roots of a polynomial in terms of the
coefficients, we see that gc(x) has roots c

m
r−m(r−n)αi for i = 1, . . . , r−m(r−

n), where each αi tends to a different root of bmxr−m(r−n) + 1 as c → ∞.
In particular, for large enough c, at most one αi is real if r −m(r − n) is
odd, and none of the αi are real if r −m(r − n) is even.

Recall that f̃(0) = b
∏r

i=1 ai. A straightforward calculation shows that

lim
c→∞

gc

(
1

c
1

r−nx

)
xn

c
= xr−m(r−n)

[(
1 + bxr−n

r∏
i=1

ai

)m

− bmxm(r−n)
r∏

i=1

am
i

]
.
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Arguing as before, gc(x) has roots 1

c
1

r−n βi

for i = 1, . . . , (m − 1)(r − n),

where each βi tends to a different root of

(3.7)

(
1 + bxr−n

r∏
i=1

ai

)m

− bmxm(r−n)
r∏

i=1

am
i

as c → ∞. Explicitly, the roots of (3.7) are given by the (m − 1)(r − n)
values of (

1

b(ζj
m − 1)

∏r
i=1 ai

) 1
r−n

for j = 1, . . . ,m− 1, where ζm is a primitive m-th root of unity. Therefore,
for large enough c, at most one of the βi is real if r − n is odd and m is
even, and otherwise none of the βi are real. Note that r−m(r−n) + (m−
1)(r−n) = n. Therefore, for large c, we have described all n roots of gc(x).
The statement about the real places of Q(P ) follows.

As for the statement on DiscQ(P )/Q, let x1, . . . , xn be the n roots of gc(x).
Then the above calculations show that in the product

∏
1≤i<j≤n(xi − xj)2,

there are 2
(
(m−1)(r−n)

2

)
factors of order O(c

1
n−r ), and the remaining 2

(
n
2

)
−

2
(
(m−1)(r−n)

2

)
of the factors are O(c

m
r−m(r−n) ). We have

2
n− r

(
(m− 1)(r − n)

2

)
+

2m
r −m(r − n)

((
n

2

)
−
(

(m− 1)(r − n)
2

))
= r(m− 1) + n− 1.

Since m(r − n) < r, the leading coefficient of gc(x) does not depend on c.
It follows that for P ∈ ψ−1(c), DiscQ(P )/Q = O(cr(m−1)+n−1). �

Let Ỹ be a nonsingular projective closure of Y .

Lemma 3.5. Let Pi = (0, ζi
m

∏r
j=1 aj) ∈ C ⊂ C̃ for i = 0, . . . ,m−1, where

ζm is a primitive m-th root of unity. Then the divisor of poles of ψ is given
by

(r −m(r − n))∞+
m−1∑
i=1

(r − n)Pi.

In particular, degψ = n. The rational function ψ ◦π has degree nmr−1 and
mr distinct poles on Ỹ , all defined over Q (ζ2m), where ζ2m is a primitive
2m-th root of unity.

Proof. Indeed, since (y − f)(Pi) 6= 0 for i = 1, . . . ,m − 1, plainly ψ has a
pole of order r − n at Pi for i = 1, . . . ,m− 1. Using the identity

b(y − f)
xr−n

=
∑m−1

i=0 f iym−1−i∑m−1
i=0 f iym−1−i

· b(y − f)
xr−n

=
b(h− fm)

xr−n
∑m−1

i=0 f iym−1−i
,
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and Eq. (3.3), we see that ψ doesn’t have a pole at P0. A similar calculation
shows that ord∞ x = −m and ord∞ y = −r. Since deg f =

⌊
r
m

⌋
− 1 and

m(
⌊

r
m

⌋
− 1) < r,

ord∞
b(y − f)
xr−n

= ord∞
y

xr−n
= −(r −m(r − n)).

So ψ has a pole of order r −m(r − n) at ∞.
For the last assertion, it suffices to show that each of the m−1 points Pi,

i = 1, . . .m− 1, and the point at ∞ on C̃ pull back by π to mr−1 distinct
points on Ỹ , all defined over Q(ζ2m). Explicitly, P1, . . . , Pm−1 pull back to
the (m − 1)mr−1 points (µ1a1, . . . , µrar) ∈ Y ⊂ Ỹ with µm

i = 1 for all i
and

∏r
i=1 µi 6= 1. The point at infinity on C̃ pulls back to the mr−1 points

at infinity in Ỹ \ Y (which are all defined over Q(ζ2m)). �

We now have all of the ingredients to prove Theorem 3.1. Let c0 and c′

be as in Lemmas 3.3 and 3.4. Let L be the field over Q generated by all
roots of unity appearing in any number field of degree n over Q. Let

C = {c ∈ Z | c > c′, c ≡ c0 mod ∆(h)0, [L(P ) : L] = n,∀P ∈ ψ−1(c)}
and let

C(M) = {c ∈ C | c < M}.

Proof of Theorem 3.1. By Lemma 3.5, ψ ◦π gives a rational function of de-
gree nmr−1 on Ỹ . By Hilbert’s irreducibility theorem, for all but O(M1−ε)
values c ∈ C(M), if ψ(π(Q)) = c, then [Q(ζ2m)(Q) : Q(ζ2m)] = nmr−1. Fur-
thermore, if P = π(Q), note that ±1 are the only roots of unity in Q(P ) and
[Q(P ) : Q] = n. Therefore, by Lemmas 3.2, 3.3, and 3.4, if ψ(π(Q)) = c,
P = π(Q), c ∈ C, then Q(P ) has

⌊
n+1

2

⌋
+ δ(m,n) archimedean places and

[Q(ζ2m)(Q) : Q(ζ2m)] ≤ nmr−1prkm Cl(Q(P ))+bn+1
2 c+δ(m,n)−r

for some prime p dividing m. Therefore, for all but O(M1−ε) values c ∈
C(M), if ψ(P ) = c, then rkm Cl(Q(P )) ≥ r −

⌊
n+1

2

⌋
− δ(m,n).

It remains only to count the number of isomorphism classes of number
fields in the set

F (M) = {Q(P ) | P ∈ C,ψ(P ) = c, c ∈ C(M)} .
Since ψ has degree n by Lemma 3.5, by Hilbert’s irreducibility theorem,
the set C(M) has cardinality 1

∆(h)0
M + O(M1−ε). Furthermore, by

Theorem 2.2 (applied to ψ composed with an appropriate automorphism
of P1) there are � M

log M isomorphism classes of number fields in F (M).
By Lemma 3.4, the fields in F (M) have discriminant O(M r(m−1)+n−1).

Thus, letting M = X
1

r(m−1)+n−1 gives the enumerative statement in the
theorem. �
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Alternatively, we can prove a result along the lines of Theorem 3.1 using
results on integral points of bounded degree on curves. Let

Rs = {P ∈ Y | ψ(π(P )) = c, c ∈ C, rkm Cl(Q(π(P ))) < s} .
The proof of Theorem 3.1 using Hilbert’s irreducibility theorem shows that
if s = r −

⌊
n+1

2

⌋
− δ(m,n), then Rs does not contain many elements (of

bounded height, say) relative to R∞. If

(3.8) s = r −
⌊
n+ 1

2

⌋
− max

p|m
p prime

logp

nφ(2m)
2m

− δ(m,n),

then we show that in fact Rs is finite. Here φ is Euler’s totient function
and logp denotes the logarithm to base p.

Theorem 3.2. Let s be as in (3.8). Then Rs is finite and can be effectively
determined.

Proof. As in the proof of Theorem 3.1, by Lemmas 3.2, 3.3, and 3.4, for all
P ∈ Rs,

[Q(ζ2m)(P ) : Q] < φ(2m)nmr−1 max
p|m

p prime

ps+bn+1
2 c+δ(m,n)−r

and Q(ζ2m)(P ) has strictly less than

φ(2m)n
2

mr−1 max
p|m

p prime

ps+bn+1
2 c+δ(m,n)−r

archimedean places. By Lemma 3.5, ψ ◦π has mr distinct poles, all defined
over Q(ζ2m). Note also that Rs is a set of integral points with respect to
ψ ◦ π. Therefore, by Theorem 2.3 (applied to Ỹ and ψ ◦ π), we see that Rs

will be finite and effectively determinable if

mr ≥ φ(2m)n
2

mr−1 max
p|m

p prime

ps+bn+1
2 c+δ(m,n)−r,

or equivalently, if

s ≤ r −
⌊
n+ 1

2

⌋
− max

p|m
p prime

logp

nφ(2m)
2m

− δ(m,n).

�

To obtain an effective result, we applied Theorem 2.3 in Theorem 3.2.
If instead we had used Vojta’s Theorem 2.4 (with k = Q(ζ2m)), at the
loss of effectivity, the logp

nφ(2m)
2m term in (3.8) could be replaced by logp

2n
m

(giving a minor improvement in some cases). A similar statement applies
to Theorem 3.4.
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To finish the proof of Theorem 1.1, it remains to prove inequality (1.5).
The proof is similar to the proof of Theorem 3.1, so we will only note the
differences.

Theorem 3.3. Let m,n > 1 be integers. Then there exist effective con-
stants c1, c2 > 0 such that if X > c1, there are at least c2X

1
m(n−1) / logX

pairwise nonisomorphic number fields k with [k : Q] = n, |Disck/Q | < X,
and

(3.9) rkm Cl(k) ≥
⌊n

2

⌋
.

Proof. The proof follows the proof of Theorem 3.1 with r = n, ψ = y, and
f = 0, with the following differences. The main point is that the condition
(r,m) = 1 of Theorem 3.1 can be dropped in this case. The condition
(r,m) = 1 was used only at the end of the proof of Lemma 3.3 in the case
where vp(xc) < 0. If ψ = y and (xc, yc) ∈ ψ−1(c), c ∈ Z, then xc satisfies
h(x) − cm and is therefore an algebraic integer. But now the part of the
proof of Lemma 3.3 where vp(xc) < 0 is unnecessary, and so we no longer
need the condition (r,m) = 1. The other differences are that the δ term
in (3.1) is no longer necessary and the correct change in the discriminant
bound in Lemma 3.4 is DiscQ(P )/Q = O(cm(n−1)) (these two statements are
easy to directly verify). �

As a final application of our technique, we prove a theorem which implies,
in particular, that there are number fields k of degree n with rkn Cl(k)
arbitrarily large. To obtain a cofiniteness result, we use the integral points
approach of Theorem 3.2.

Theorem 3.4. Let n > 1 be a positive integer. Let f(x) = ±
∏r

i=1(x− ai)
be a polynomial with a1, . . . , ar distinct integers. Let

T = {x ∈ Z | (x− ai, x− aj) = 1,∀i, j, i 6= j}.

For x ∈ T , let r1(x) denote the number of real places of Q
(

n
√
f(x)

)
. Then

for all but finitely many (effectively determinable) x ∈ T ,

rkn Cl
(
Q
(

n
√
f(x)

))
≥ r − n+ r1(x)

2
− max

p|n
p prime

logp

nφ(2m)
2

.

Proof. Apply the proof of Theorem 3.2 (with appropriate minor changes)
to the curve yn = f(x) with the rational function ψ = x and the set
C = T . �

The set T in Theorem 3.4 can be infinite or empty depending on f . For
general monic f , one can similarly prove a result about rkn Cl

(
k
(

n
√
f(x)

))
,

where k is the splitting field of f . Theorem 3.4 fits into a series of general
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results [7, 6, 24] giving information on Cl(k) in terms of the ramification
behavior of primes in Ok.
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