Diophantine inequalities with power sums

par Amedeo SCREMIN

Résumé. On appelle somme de puissances toute suite $\alpha: \mathbb{N} \rightarrow \mathbb{C}$ de nombres complexes de la forme

$$
\alpha(n)=b_{1} c_{1}^{n}+b_{2} c_{2}^{n}+\ldots+b_{h} c_{h}^{n},
$$

où les $b_{i} \in \overline{\mathbb{Q}}$ et les $c_{i} \in \mathbb{Z}$ sont fixés. Soit $F(x, y) \in \overline{\mathbb{Q}}[x, y]$ un polynôme unitaire, absolument irréductible, de degré au moins 2 en y. On démontre que les solutions $(n, y) \in \mathbb{N} \times \mathbb{Z}$ de l'inégalité

$$
|F(\alpha(n), y)|<\left|\frac{\partial F}{\partial y}(\alpha(n), y)\right| \cdot|\alpha(n)|^{-\varepsilon}
$$

sont paramétrées par un nombre fini de sommes de puissances. Par conséquent, on déduit la finitude des solutions de l'équation diophantienne

$$
F(\alpha(n), y)=f(n),
$$

où $f \in \mathbb{Z}[x]$ est un polynôme non constant et α est une somme de puissances non constante.

Abstract. The ring of power sums is formed by complex functions on \mathbb{N} of the form

$$
\alpha(n)=b_{1} c_{1}^{n}+b_{2} c_{2}^{n}+\ldots+b_{h} c_{h}^{n},
$$

for some $b_{i} \in \overline{\mathbb{Q}}$ and $c_{i} \in \mathbb{Z}$. Let $F(x, y) \in \overline{\mathbb{Q}}[x, y]$ be absolutely irreducible, monic and of degree at least 2 in y. We consider Diophantine inequalities of the form

$$
|F(\alpha(n), y)|<\left|\frac{\partial F}{\partial y}(\alpha(n), y)\right| \cdot|\alpha(n)|^{-\varepsilon}
$$

and show that all the solutions $(n, y) \in \mathbb{N} \times \mathbb{Z}$ have y parametrized by some power sums in a finite set. As a consequence, we prove that the equation

$$
F(\alpha(n), y)=f(n),
$$

with $f \in \mathbb{Z}[x]$ not constant, F monic in y and α not constant, has only finitely many solutions.

[^0]
1. Introduction

The present paper deals with diophantine equations and inequalities involving certain power sums, i.e. functions of $n \in \mathbb{N}$ of the form

$$
\begin{equation*}
\alpha(n)=b_{1} c_{1}^{n}+b_{2} c_{2}^{n}+\ldots+b_{h} c_{h}^{n}, \tag{1}
\end{equation*}
$$

with $c_{1}>c_{2}>\ldots>c_{h}>0$, where the b_{i}, called the coefficients of $\alpha(n)$, are (nonzero) algebraic numbers and the c_{i}, called the roots of $\alpha(n)$, are distinct integers or rationals. A power sum is non-degenerate if no quotient of two distinct roots is a root of unity. It is well known that such functions, even allowing the b_{i} to be polynomials in n and the c_{i} to be algebraic numbers, satisfy linear recurrence relations. Since long ago, a number of results concerning diophantine equations and inequalities with power sums have been proved. Among the recent ones, we may mention, for instance, the results by Kiss [9] who proved, under some assumptions on the absolute values of the roots of $\alpha(n)$, that the inequality $\left|s x^{q}-\alpha(n)\right|>e^{c n}$, where $\alpha(n)$ is a non-degenerate power sum with algebraic roots and polynomial coefficients, holds for integers $s, x>1$ and q, provided that n and q are large enough. Shorey and Stewart [14] proved that for any fixed $\delta>0$ the inequality $\left|s x^{q}-\alpha(n)\right|>\left|c_{1}\right|^{n(1-\delta)}$, where $\alpha(n)$ is non-degenerate with algebraic roots and constant coefficients, holds for all the non-zero integers s, x, for $n>0$, and for every non-zero integer $q>q_{o}(\alpha, P)$, where P is the greatest prime factor of s, assuming that $s x^{q} \neq b_{1} c_{1}^{n}$ and that in $\alpha(n)$ there is a root with largest absolute value. This result was proved using estimates for linear forms in logarithms due to Baker (see [1]). Pethö [10] proved for non-degenerate power sums with $h=2$ and coprime coefficients that if $\alpha(n)=s x^{q}$ holds for integers $x \neq 0, q \geq 2$ and $n>0$, then $\max \{|x|, q, n\}$ is bounded by an effectively computable number depending on the greatest prime divisor of s. Recently Corvaja and Zannier [2] have found new results concerning the inequality $\left|\alpha(n)-y^{d}\right| \ll|\alpha(n)|^{\rho}$, where $\alpha(n)$ has positive integral roots and rational coefficients, $d \geq 2$ and $\rho<1-1 / d$. Using the Schmidt Subspace Theorem (see [12]) they proved that if this inequality has infinitely many solutions $(n, y) \in \mathbb{N} \times \mathbb{Z}$, then all the solutions, but finitely many, have y parametrized by some power sums in a finite set; also, the numbers n such that (n, y) is a solution, except finitely many, form a finite union of arithmetical progressions. As a consequence, for every $d \geq 2$ the equation $\alpha(n)=y^{d}$ has only finitely many solutions, if we suppose that $\alpha(n)$ has positive integral roots and that two roots with largest absolute value are coprime, apart from trivial cases, which are easy to classify. In [3], under some assumptions on the size of the roots of $\alpha(n)$ and allowing the coefficients and the roots of $\alpha(n)$ to be algebraic, they extended this result to the more general equation $F(\alpha(n), y)=0$. This paper will not be concerned with quantitative aspects, though the methods allow to estimate
the number of relevant solutions. In the context of the paper by Corvaja and Zannier ([3]), some extimates have been obtained by Fuchs [7], using a quantitative version of the Subspace Theorem due to Evertse (see [6]).

In this paper we first study lower bounds for the quantity $|F(\alpha(n), y)|$, and in particular the inequality $|F(\alpha(n), y)|<\left|\frac{\partial F}{\partial y}(\alpha(n), y)\right| \cdot|\alpha(n)|^{-\varepsilon}$ for power sums with integral roots and algebraic coefficients, where $F(x, y)$ is an absolutely irreducible polynomial monic in y. We shall obtain (Theorem 3.1) that all the solutions $(n, y) \in \mathbb{N} \times \mathbb{Z}$ have y parametrized by some power sums in a finite set. This conclusion is in a sense best possible, since the same result doesn't hold for $\varepsilon<0$. In fact, suppose that $F(\alpha(n), y)$ has a real zero y_{n} for all sufficiently large n. Setting $y(n)$ to be the nearest integer to y_{n}, we have (see [4])

$$
\begin{aligned}
\left\lvert\, F\left(\alpha(n), \left.y(n)\left|=\left|y(n)-y_{n}\right|\right| \frac{\partial F}{\partial y}(\alpha(n), \xi) \right\rvert\,\right.\right. & <\left|\frac{\partial F}{\partial y}(\alpha(n), \xi)\right| \\
& \ll\left|\frac{\partial F}{\partial y}(\alpha(n), y(n))\right|,
\end{aligned}
$$

where $y(n) \leq \xi \leq y_{n} \quad\left(\right.$ or $\left.y_{n} \leq \xi \leq y(n)\right)$.
Our proof shall use a result concerning the inequality $|\alpha(n)-y|<e^{-n \varepsilon}$ derived by Corvaja and Zannier [2, Lemma 2] from Schmidt Subspace Theorem. From Theorem 3.1 follows (Corollary 3.2) the generalization of the result in $\left[2\right.$, Theorem 3] to the inequality $|F(\alpha(n), y)|<|\alpha(n)|^{1-\frac{1}{d}-\varepsilon}$, under some assumptions on the Puiseux expansion at infinity of y as function of x under the relation $F(x, y)=0$. As a simple application (Corollary 3.3) we shall deduce the finiteness of the solutions of the equation $F(\alpha(n), y)=$ $f(n)$, under the assumption that $f(n)$ is a non constant polynomial and that $\alpha(n)$ is not constant. This gives a generalization of the results in [2] and [3].

2. Notation

In the present paper we will denote by $\Sigma_{\mathbb{Q}}$ and $\Sigma_{\mathbb{Z}}$ the rings of functions on \mathbb{N} of the form $\alpha(n)=b_{1} c_{1}^{n}+b_{2} c_{2}^{n}+\ldots+b_{h} c_{h}^{n}$, where the distinct roots $c_{i} \neq 0$ are in \mathbb{Q} or in \mathbb{Z} respectively, and the coefficients $b_{i} \in \mathbb{Q}^{\star}$. If $\mathbb{K} \subset \mathbb{C}$ is a number field, we will denote by $\mathbb{K} \Sigma_{\mathbb{Q}}$ and $\mathbb{K} \Sigma_{\mathbb{Z}}$ the ring of power sums with coefficients in \mathbb{K}.

The subrings of power sums with only positive roots will be denoted by $\mathbb{K} \Sigma_{\mathbb{Q}}^{+}$and $\mathbb{K} \Sigma_{\mathbb{Z}}^{+}$. Working in this domain causes no loss of generality: the assumption of positivity of the roots may usually be achieved by writing $2 n+r$ instead of n, and considering the cases of $r=0,1$ separately.

Note that every constant power sum, i.e. a power sum with only one root $c_{1}=1$, belongs to $\Sigma_{\mathbb{Z}}^{+}$. Power sums will be denoted by Greek letters.

3. Statements

Theorem 3.1. Let $F \in \overline{\mathbb{Q}}[x, y]$ be absolutely irreducible, monic and of degree $d \geq 2$ in $y ;$ let $\alpha(n) \in \overline{\mathbb{Q}} \Sigma_{\mathbb{Z}}$, and let $\varepsilon>0$ be fixed. Then there exists a finite set of power sums $\left\{\beta_{1}(n), \ldots, \beta_{s}(n)\right\} \subset \Sigma_{\mathbb{Z}}^{+}$such that every solution $(n, y) \in \mathbb{N} \times \mathbb{Z}$ of the inequality

$$
\begin{equation*}
|F(\alpha(n), y)|<\left|\frac{\partial F}{\partial y}(\alpha(n), y)\right| \cdot|\alpha(n)|^{-\varepsilon} \tag{2}
\end{equation*}
$$

satisfies $y=\beta_{i}(n)$, for a certain $i=1, \ldots, s$.
The set $\left\{\beta_{1}(n), \ldots, \beta_{s}(n)\right\}$ contains at most d^{2} non constant power sums. Moreover, the set of natural numbers n such that (n, y) is a solution of (2) is the union of a finite set and a finite number of arithmetic progressions.

For the formulation of Corollary 3.2 we need the following.
Definition. Let $F(x, y) \in \overline{\mathbb{Q}}[x, y]$ be monic in y and of degree $d \geq 2$ in y. Let $F(x, y)=\left(y-\varphi_{1}(x)\right) \cdot \ldots \cdot\left(y-\varphi_{d}(x)\right)$ be the factorization of $F(x, y)$ in the ring of Puiseux series in x at infinity. Here, for each $j=1, \ldots, d$, $\varphi_{j}(x)=\sum_{i=-k_{j}}^{+\infty} a_{i j} x^{-i / e_{j}}$, with $a_{-k_{j} j} \neq 0$ and for a real determination of $x^{1 / e_{j}}$, is an expansion at infinity of y as function of x.

In the present paper we will call the polynomial $F(x, y)$ "regular" if for every $j, l=1, \ldots, d$, with $j \neq l$, we have $k_{j} / e_{j} \neq k_{l} / e_{l}$ or $a_{-k_{j} j} \neq a_{-k_{l} l}$.

Corollary 3.2. Let $F(x, y) \in \overline{\mathbb{Q}}[x, y]$ be monic in y, absolutely irreducible, regular, of degree $d \geq 2$ in y. Let $\alpha(n) \in \overline{\mathbb{Q}} \Sigma_{\mathbb{Z}}$; let $\varepsilon>0$ and $c>0$ be fixed. Then there exists a finite set of power sums $\left\{\beta_{1}(n), \ldots, \beta_{s}(n)\right\} \subset \Sigma_{\mathbb{Z}}^{+}$ such that every solution $(n, y) \in \mathbb{N} \times \mathbb{Z}$ of the inequality

$$
\begin{equation*}
|F(\alpha(n), y)|<c \cdot|\alpha(n)|^{1-\frac{1}{d}-\varepsilon} \tag{3}
\end{equation*}
$$

satisfies $y=\beta_{i}(n)$ for a certain $i=1, \ldots, s$.
The set $\left\{\beta_{1}(n), \ldots, \beta_{s}(n)\right\}$ contains at most d^{2} non constant power sums. Moreover, the natural numbers n such that (n, y) is a solution of (3), except finitely many, make up a finite union of arithmetical progressions.

Corollary 3.3. Let $F(x, y) \in \overline{\mathbb{Q}}[x, y]$ be monic in y, absolutely irreducible and of degree $d \geq 2$ in y; let $f(n) \in \mathbb{Z}[x]$ be a non constant polynomial; let $\alpha(n)$ be a non constant power sum with integral roots and algebraic coefficients. Then the equation

$$
\begin{equation*}
F(\alpha(n), y)=f(n) \tag{4}
\end{equation*}
$$

has only finitely many solutions $(n, y) \in \mathbb{N} \times \mathbb{Z}$.

4. Auxiliary results

The following Lemma 4.1, proved in a more general version by Corvaja and Zannier (see [2, Lemma 2]) using a version of the Subspace Theorem due to H.P. Schlickewei (see [11], [12, Theorem 1, p. 178]), plays a crucial role throughout the paper, since it contains the fundamental information to prove Theorem 3.1.
Lemma 4.1. Let $\tau(n) \in \overline{\mathbb{Q}} \Sigma_{\mathbb{Q}}^{+}$, and let $\varepsilon>0$ be fixed. Then there exists a power sum $\beta(n) \in \Sigma_{\mathbb{Z}}^{+}$such that for all but finitely many solutions $(n, y) \in \mathbb{N} \times \mathbb{Z}$ of the inequality

$$
\begin{equation*}
|\tau(n)-y|<e^{-n \varepsilon} \tag{5}
\end{equation*}
$$

we have $y=\beta(n)$.
Moreover, the roots of $\beta(n)$ are in the set of the roots of $\tau(n)$.
For the proof of Theorem 3.1 we need also some standard results from the theory of algebraic functions fields, namely the theory of Puiseux expansions. We recall here a simple version of the Puiseux Theorem concerning the Puiseux expansions at the infinity for the polynomials of $\mathbb{Q}(x)[y]$. More general versions can be found in [5] and [8].

Theorem 4.2 (Puiseux Theorem). Let $F(x, y) \in \overline{\mathbb{Q}}(x)[y]$ be an absolutely irreducible polynomial, monic and of degree d in y. Then for $i=1, \ldots, d$ there exist $e_{i} \in \mathbb{N}, 1 \leq e_{i} \leq d$, and Laurent series in $x^{-1 / e_{i}}$

$$
\varphi_{i}(x)=\sum_{k=v_{i}}^{+\infty} a_{i k} x^{-k / e_{i}}, \quad i=1, \ldots, d
$$

with $v_{i} \leq 0$, such that

$$
F(x, y)=\prod_{1=1, \ldots, d}\left(y-\varphi_{i}(x)\right)
$$

The Laurent series $\varphi_{1}(x), \ldots, \varphi_{d}(x)$ are convergent for $|x|$ large enough, and the coefficients $a_{i j}$ are elements of a finite field extension \mathbb{K} of \mathbb{Q}.

The Laurent series $\varphi_{1}(x), \ldots, \varphi_{d}(x)$ coming from the Puiseux Theorem are called Puiseux series of the polynomial $F(x, y)$.

5. Proofs

Proof of Theorem 3.1. Plainly, we need to consider only the case that (2) has infinitely many solutions. We shall consider solutions with n larger than a certain constant N, since the finitely many solutions with $n \leq N$ can be considered as constant power sums. Finally, we can suppose $\alpha(n)$ not constant.

Let $F(x, y)=\left(y-\varphi_{1}(x)\right) \cdot \ldots \cdot\left(y-\varphi_{d}(x)\right)$, where
$\varphi_{j}(x)=\sum_{i=-k_{j}}^{+\infty} a_{i j} x^{-i / e_{j}}$, with $a_{-k_{j} j} \neq 0$ and $1 \leq e_{j} \leq d$ for $j=1, \ldots, d$, are the series of the Puiseux expansion at infinity of y as function of x (see Theorem 4.2), i.e. $\varphi_{j}(x)$ are the solutions of the equation $F(x, y)=0$ in the field of the Puiseux series.

Let us remark that by the Puiseux Theorem the series $\varphi_{j}(x)$ exist and the coefficients $a_{i j}$ generate a finite field extension \mathbb{K} of \mathbb{Q}.

We have $\frac{\partial F}{\partial y}(x, y)=\sum_{j=1}^{d} \frac{F(x, y)}{y-\varphi_{j}(x)}$, and so

$$
\begin{equation*}
F(x, y)=\frac{\partial F}{\partial y}(x, y)\left(\sum_{j=1}^{d} \frac{1}{y-\varphi_{j}(x)}\right)^{-1} \tag{6}
\end{equation*}
$$

holds.
From (6) we obtain that for each solution (n, y) of (2) the inequality

$$
\left|\frac{\partial F}{\partial y}(\alpha(n), y)\right| \cdot\left|\sum_{j=1}^{d}\left(y-\varphi_{j}(\alpha(n))\right)^{-1}\right|^{-1}<\left|\frac{\partial F}{\partial y}(\alpha(n), y)\right| \cdot|\alpha(n)|^{-\varepsilon}
$$

holds. By (2), we can assume $\left|\frac{\partial F}{\partial y}(\alpha(n), y)\right| \neq 0$. It follows that

$$
\left|\sum_{j=1}^{d}\left(y-\varphi_{j}(\alpha(n))\right)^{-1}\right|>|\alpha(n)|^{\varepsilon}
$$

holds, and so for all the solutions of (2) we have

$$
\sum_{j=1}^{d}\left|y-\varphi_{j}(\alpha(n))\right|^{-1}>|\alpha(n)|^{\varepsilon}
$$

Let $\varepsilon_{1}=\frac{\varepsilon}{2}$. For n large enough the inequality $\sum_{j=1}^{d}\left|y-\varphi_{j}(\alpha(n))\right|^{-1}>$ $d \cdot|\alpha(n)|^{\varepsilon_{1}}$ holds, and so for a certain $j=1, \ldots, d$ we have $\left|y-\varphi_{j}(\alpha(n))\right|^{-1}>$ $|\alpha(n)|^{\varepsilon_{1}}$. This means that for every solution (n, y) of (2) with n large enough the inequality

$$
\begin{equation*}
\left|y-\varphi_{j}(\alpha(n))\right|<|\alpha(n)|^{-\varepsilon_{1}} \tag{7}
\end{equation*}
$$

is satisfied for a certain $j=1, \ldots, d$, with j depending on n.
We shall prove that for given $j=1, \ldots, d$ there exists a finite set $\left\{\beta_{1}(n), \ldots, \beta_{t}(n)\right\} \subset \Sigma_{\mathbb{Z}}$ such that every solution (n, y) of (7) has $y=\beta_{i}(n)$ for a certain $i=1, \ldots, t$.

Once we prove this, the theorem will follow.

Define a partition $\left\{M_{1}, \ldots, M_{d}\right\}$ of the solutions (n, y) of (2) by prescribing that for every $(n, y) \in M_{i}$ we have

$$
\left|y-\varphi_{i}(\alpha(n))\right|=\min _{1 \leq j \leq d}\left\{\left|y-\varphi_{j}(\alpha(n))\right|\right\} .
$$

We can consider separately the solutions in each subset M_{i}. It will suffice to deal with $i=1$.

Let us write

$$
\begin{equation*}
\varphi_{1}(x)=\sum_{i=-k}^{+\infty} a_{i} x^{-i / e_{1}}=a_{-k} x^{k / e_{1}}+\ldots+a_{-1} x^{1 / e_{1}}+a_{0}+a_{1} x^{-1 / e_{1}}+\ldots \tag{8}
\end{equation*}
$$

for a real determination of $x^{1 / e_{1}}$, where $k=k_{1}$ and $a_{i}=a_{i, 1}$ for every $i \geq-k$.
Let $\alpha(n)=\sum_{j=1}^{h} b_{j} c_{j}^{n}$, with $c_{j} \in \mathbb{Z}, c_{j} \neq 1$ for some j and $b_{j} \in \overline{\mathbb{Q}}$ $\forall j=1, \ldots, h$. We can suppose $c_{1}>c_{2}>\ldots>c_{h}>0$.

For n large enough the series $\varphi_{1}(\alpha(n))$ converges, so we can write

$$
\begin{equation*}
\varphi_{1}(\alpha(n))=\sum_{i=-k}^{0} a_{i} \alpha(n)^{-i / e_{1}}+O\left(\alpha(n)^{-1 / e_{1}}\right) \tag{9}
\end{equation*}
$$

Choosing $\varepsilon_{2}>0$ smaller than ε_{1} and $1 / e_{1}$, for n large enough each solution of $\left|y-\sum_{i=-k}^{+\infty} a_{i} \alpha(n)^{-i / e_{1}}\right|<|\alpha(n)|^{-\varepsilon_{1}}$ satisfies

$$
\left|y-\sum_{i=-k}^{0} a_{i} \alpha(n)^{-i / e_{1}}\right|<|\alpha(n)|^{-\varepsilon_{2}} .
$$

Put

$$
\begin{equation*}
\tilde{\varphi_{1}}(x)=\sum_{i=-k}^{0} a_{i} x^{-i / e_{1}} . \tag{10}
\end{equation*}
$$

From now on we will consider the inequality

$$
\begin{equation*}
\left|y-\tilde{\varphi}_{1}(\alpha(n))\right|<|\alpha(n)|^{-\varepsilon_{2}} \tag{11}
\end{equation*}
$$

instead of $\left|y-\varphi_{1}(\alpha(n))\right|<|\alpha(n)|^{-\varepsilon_{1}}$.
We can write $\alpha(n)=b_{1} c_{1}^{n}(1+\sigma(n))$, with $\sigma(n) \in \overline{\mathbb{Q}} \Sigma_{\mathbb{Q}}$, and $\sigma(n)=$ $O\left(\left(c_{2} / c_{1}\right)^{n}\right)$.

For every $l \in \mathbb{N}$ we have

$$
\begin{equation*}
\alpha(n)^{l / e_{1}}=b_{1}^{l / e_{1}}\left(c_{1}^{n}\right)^{l / e_{1}}(1+\sigma(n))^{l / e_{1}}, \tag{12}
\end{equation*}
$$

for a real determination (resp. real positive) of $b_{1}^{l / e_{1}}$ (resp. $c_{1}^{l / e_{1}}$). We will fix this determination for the remaining part of the proof.

Expanding the function $t \mapsto(1+t)^{l / e_{1}}$ in Taylor series, we have for every $l \in \mathbb{N}$

$$
\begin{equation*}
(1+\sigma(n))^{l / e_{1}}=1+\sum_{j=1}^{m} B_{j, l} \sigma(n)^{j}+O\left(|\sigma(n)|^{m+1}\right), \tag{13}
\end{equation*}
$$

where m is an integer to be chosen later and $B_{j, l}, j=1, \ldots, m, l \in \mathbb{N}$, are the Taylor coefficients $\binom{l / e_{i}}{j}$ of the function $t \mapsto(1+t)^{l / e_{1}}$.

From (12) and (13) we obtain

$$
\begin{equation*}
\alpha(n)^{l / e_{1}}=b_{1}^{l / e_{1}} c_{1}^{n l / e_{1}}\left(1+\sum_{j=1}^{m} B_{j, l} \sigma(n)^{j}\right)+O\left(|\sigma(n)|^{m+1} \cdot c_{1}^{n l / e_{1}}\right) . \tag{14}
\end{equation*}
$$

Let us define, for every $l \in \mathbb{N}$,

$$
\gamma_{l}(n):=\sum_{j=1}^{m} B_{j, l} \sigma(n)^{j} \in \overline{\mathbb{Q}} \Sigma_{\mathbb{Q}}^{+} .
$$

Since (14) holds, we can write

$$
\begin{equation*}
\alpha(n)^{l / e_{1}}=b_{1}^{l / e_{1}} c_{1}^{n l / e_{1}}\left(1+\gamma_{l}(n)\right)+O\left(\left(c_{2}^{n} / c_{1}^{n}\right)^{m+1} \cdot c_{1}^{n l / e_{1}}\right) . \tag{15}
\end{equation*}
$$

From (10) and (15) we obtain

$$
\begin{equation*}
\tilde{\varphi}_{1}(\alpha(n))=\sum_{i=-k}^{0}\left(a_{i}\left(b_{1} c_{1}^{n}\right)^{-i / e_{1}}\left(1+\gamma_{-i}(n)\right)\right)+O\left(\left(c_{2}^{n} / c_{1}^{n}\right)^{m+1} \cdot c_{1}^{n k / e_{1}}\right) . \tag{16}
\end{equation*}
$$

Let us write $n=n_{1} e_{1}+r$, with $0 \leq r<e_{1} \leq d$. We can rewrite (16) as
$\tilde{\varphi_{1}}(\alpha(n))=\sum_{i=-k}^{0}\left(a_{i}\left(b_{1} c_{1}^{r}\right)^{-i / e_{1}} c_{1}^{-n_{1} i}\left(1+\gamma_{-i}(n)\right)\right)+O\left(\left(c_{2}^{n} / c_{1}^{n}\right)^{m+1} \cdot c_{1}^{n k / e_{1}}\right)$.
Since $\overline{\mathbb{Q}} \Sigma_{\mathbb{Q}}^{+}$is a ring, we see that

$$
\tau(n):=\sum_{i=-k}^{0}\left(a_{i}\left(b_{1} c_{1}^{r}\right)^{-i / e_{1}} c_{1}^{-n_{1} i}\left(1+\gamma_{-i}(n)\right)\right)
$$

is a power sum with rational positive roots and algebraic coefficients. Moreover, its roots lie in the multiplicative group generated by the real e_{1}-th roots (as determined above) of the roots of the power sum $\alpha(n)$.

We can write

$$
\begin{equation*}
\tilde{\varphi}_{1}(\alpha(n))=\tau(n)+O\left(\left(c_{2}^{n} / c_{1}^{n}\right)^{m+1} \cdot c_{1}^{n k / e_{1}}\right) . \tag{18}
\end{equation*}
$$

So we have

$$
\left|y-\tilde{\varphi_{1}}(\alpha(n))\right|=|y-\tau(n)|+O\left(\left(c_{2}^{n} / c_{1}^{n}\right)^{m+1} \cdot c_{1}^{n k / e_{1}}\right),
$$

and from (11) we obtain

$$
\begin{equation*}
|y-\tau(n)|<|\alpha(n)|^{-\varepsilon_{2}}+O\left(\left(c_{2}^{n} / c_{1}^{n}\right)^{m+1} \cdot c_{1}^{n k / e_{1}}\right) . \tag{19}
\end{equation*}
$$

Let us notice that for a fixed m large enough $\left(c_{2}^{n} / c_{1}^{n}\right)^{m+1} c_{1}^{n k / e_{1}}<|\alpha(n)|^{-\varepsilon_{2}}$ holds for every n large enough. Choosing a suitable m large enough, every solution of (19) with n large enough is also a solution of

$$
\begin{equation*}
|y-\tau(n)|<2|\alpha(n)|^{-\varepsilon_{2}} . \tag{20}
\end{equation*}
$$

Choosing $\varepsilon_{3}>0$ small enough, $2|\alpha(n)|^{-\varepsilon_{2}}<e^{-n \varepsilon_{3}}$ holds for n large enough, since $|\alpha(n)| \longrightarrow+\infty$ for $n \rightarrow+\infty$ (we are supposing $\alpha(n)$ not constant).

Thus the inequality (20) implies

$$
\begin{equation*}
|y-\tau(n)|<e^{-n \varepsilon_{3}} . \tag{21}
\end{equation*}
$$

Applying Lemma 4.1 we obtain that every solution of (21), with finitely many exceptions, has $y=\beta_{1}(n)$, where $\beta_{1}(n) \in \Sigma_{\mathbb{Z}}^{+}$. The roots of the power sum $\beta_{1}(n)$ are in the set of the roots of $\tau(n)$, and so in the multiplicative group generated by the real e_{1}-th roots of the roots of the power sum $\alpha(n)$.

Let us notice that the finitely many solutions (n, y) of (21) such that $y \neq \beta_{1}(n)$ can be considered as constant power sums $\beta_{2}(n), \ldots, \beta_{r}(n) \in \Sigma_{\mathbb{Z}}^{+}$ with a single root 1 .

This means that for $j=1$ every solution (n, y) of (7) has $y=\beta_{i}(n)$ for a certain $i \in\{1, \ldots, t\}$, where $\left\{\beta_{1}, \ldots, \beta_{t}\right\} \subset \overline{\mathbb{Q}} \Sigma_{\mathbb{Z}}$, with $t \geq r$.

In a similar way this result can be obtained for $j=2, \ldots, d$ in (7). So we have that every solution of (2) has $y=\beta_{i}(n)$ for a certain $i \in\{1, \ldots, s\}$, where $\left\{\beta_{1}, \ldots, \beta_{s}\right\} \subset \Sigma_{\mathbb{Z}}^{+}$, with $s \geq t$.

Since each of the Puiseux series $\varphi_{j}(x), j=1, \ldots, d$, gives rise to at most e_{j} non constant power sums (remember that we chose $0 \leq r<e_{j}$ in (17) and that $e_{j} \leq d$ for every $\left.j=1, \ldots, d\right)$, the set $\left\{\beta_{1}(n), \ldots, \beta_{s}(n)\right\}$ contains at most d^{2} non constant power sums.

Finally, we note that the roots of the power sums $\beta_{1}(n), \ldots, \beta_{s}(n)$ are positive integers lying in the multiplicative group generated by the real e-th roots, with $1 \leq e \leq d$, of the roots of the power sum $\alpha(n)$.

This proves the Theorem.
Proof of Corollary 3.2 As in the proof of Theorem 3.1, we shall consider only solutions (n, y) of (3) with n larger than a certain constant N, since the solutions with $n \leq N$ are finite in number and can be considered as constant power sums.

Let $F(x, y)=\left(y-\varphi_{1}(x)\right) \cdot \ldots \cdot\left(y-\varphi_{d}(x)\right)$, where

$$
\varphi_{j}(x)=\sum_{i=-k_{j}}^{+\infty} a_{i j} x^{-i / e_{j}}, \text { with } a_{-k_{j} j} \neq 0 \text { and } 1 \leq e_{j} \leq d \text { for } j=1, \ldots, d,
$$ are the series of the Puiseux expansion at infinity of y as function of x.

Let $\varepsilon_{1}>0$ to be chosen later. In the proof of Theorem 3.1 we have shown that there exists a finite set of power sums with positive integral roots and rational coefficients $\left\{\beta_{1}(n), \ldots, \beta_{t}(n)\right\}$ such that, for every $j=1, \ldots, d$, every solution $(n, y) \in \mathbb{N} \times \mathbb{Z}$ of the inequality

$$
\left|y-\varphi_{j}(\alpha(n))\right|<|\alpha(n)|^{-\varepsilon_{1}}
$$

has $y=\beta_{i}(n)$ for a certain $i=1, \ldots, t$. Moreover, the set $\left\{\beta_{1}(n), \ldots, \beta_{t}(n)\right\}$ contains at most d non constant power sums.

Let us consider sets M_{1}, \ldots, M_{d} of pairs $(n, y) \in \mathbb{N} \times \mathbb{Z}$ such that for every $(n, y) \in M_{i}$ we have

$$
\left|y-\varphi_{i}(\alpha(n))\right|=\min _{1 \leq j \leq d}\left\{\left|y-\varphi_{j}(\alpha(n))\right|\right\} .
$$

As before, we can consider separately each set, say M_{1}.
For every $i=2, \ldots, d$, we have

$$
\begin{equation*}
\left|y-\varphi_{i}(\alpha(n))\right| \geq \frac{1}{2}\left|\varphi_{i}(\alpha(n))-\varphi_{1}(\alpha(n))\right| . \tag{22}
\end{equation*}
$$

Since the polynomial F is regular, we can have either that $k_{i} / e_{i} \neq k_{1} / e_{1}$, $\forall i=2, \ldots, d$, or that there exist some $i \in\{2, \ldots, d\}$ such that $k_{i} / e_{i}=$ k_{1} / e_{1}, but $a_{-k_{i} i} \neq a_{-k_{1} 1}$.

If $k_{i} / e_{i} \neq k_{1} / e_{1} \quad \forall i=2, \ldots, d$, for n large enough we have

$$
\begin{aligned}
\left|y-\varphi_{i}(\alpha(n))\right| \geq \frac{1}{2}\left|\varphi_{1}(\alpha(n))-\varphi_{i}(\alpha(n))\right| & =\frac{1}{2}\left|\left(\varphi_{1}-\varphi_{i}\right)(\alpha(n))\right| \\
& >a \cdot\left|\alpha(n)^{1 / d}\right|,
\end{aligned}
$$

for a certain positive constant $a>0$.
If there exist some $i \in\{2, \ldots, d\}$ such that $k_{i} / e_{i}=k_{1} / e_{1}$, but $a_{-k_{i} i} \neq$ $a_{-k_{1} 1}$, since $k_{1} \geq 1$ for these i, for n large enough we have

$$
\begin{aligned}
\left|y-\varphi_{i}(\alpha(n))\right| & >\frac{1}{2}\left|\varphi_{1}(\alpha(n))-\varphi_{i}(\alpha(n))\right| \\
& >f \cdot\left|a_{-k_{1} 1} \alpha(n)^{k_{1} / e_{1}}-a_{-k_{i} i} \alpha(n)^{k_{1} / e_{1}}\right| \\
& =f \cdot\left|a_{-k_{1} 1}-a_{-k_{i} i}\right| \cdot\left|\alpha(n)^{k_{1} / e_{1}}\right| \\
& >g \cdot\left|\alpha(n)^{1 / e_{1}}\right| \\
& \geq g \cdot\left|\alpha(n)^{1 / d}\right|,
\end{aligned}
$$

for certain positive constants f and g.
Therefore, for every $i=2, \ldots, d$, the inequality

$$
\begin{equation*}
\left|y-\varphi_{i}(\alpha(n))\right| \geq h \cdot\left|\alpha(n)^{1 / d}\right|, \tag{23}
\end{equation*}
$$

holds for a certain constant $h=\min \{a, g\}$.
From (23) it follows, with $b=h^{d-1}$, that the inequality

$$
\begin{aligned}
|F(\alpha(n), y)| & =\left|y-\varphi_{1}(\alpha(n))\right| \cdot\left|y-\varphi_{2}(\alpha(n))\right| \cdot \ldots \cdot\left|y-\varphi_{d}(\alpha(n))\right| \\
& >b \cdot\left|\alpha(n)^{(d-1) / d-\varepsilon_{1}}\right| \\
& =b \cdot\left|\alpha(n)^{1-\frac{1}{d}-\varepsilon_{1}}\right| \\
& =b \cdot|\alpha(n)|^{1-\frac{1}{d}-\varepsilon_{1}}
\end{aligned}
$$

holds for all pairs $(n, y) \in \mathbb{N} \times \mathbb{Z}$ with n large enough and $y \neq \beta_{i}(n)$ for every $i=1, \ldots, t$.

Choosing $\varepsilon_{1}>0$ small enough we obtain, for n large enough

$$
b \cdot|\alpha(n)|^{1-\frac{1}{d}-\varepsilon_{1}}>c \cdot|\alpha(n)|^{1-\frac{1}{d}-\varepsilon} .
$$

Therefore the inequality

$$
|F(\alpha(n), y)|>c \cdot|\alpha(n)|^{1-\frac{1}{d}-\varepsilon}
$$

holds for all the pairs $(n, y) \in \mathbb{N} \times \mathbb{Z}$ with n large enough and $y \neq \beta_{i}(n)$ for every $i=1, \ldots, t$.

This means that each solution of (3) has $y=\beta_{i}(n)$, for a certain $i=$ $1, \ldots, s$, with $s \geq t$.

As in the proof of Theorem 3.1, we can obtain that the natural numbers n such that (n, y) is a solution of the inequality, except finitely many, make up a finite union of arithmetical progressions and that the roots of the power sums $\beta_{1}(n), \ldots, \beta_{s}(n)$ are positive integers lying in the multiplicative group generated by the real e-th roots, with $1 \leq e \leq d$, of the roots of the power $\operatorname{sum} \alpha(n)$.

Since the set $\left\{\beta_{1}(n), \ldots, \beta_{t}(n)\right\}$ contains at most d non constant power sums, and since we have d choices for the set M_{i}, the set $\left\{\beta_{1}(n), \ldots, \beta_{s}(n)\right\}$ contains at most d^{2} non constant power sums.

Remark 5.1. From Corollary 3.2 we can derive that if the inequality (3) has infinitely many solutions, then there exists at least one power sum $\beta(n) \in \Sigma_{\mathbb{Z}}^{+}$not constant such that $(n, \beta(n))$ is a solution. Since $F(\alpha(n), \beta(n))$ is a power sum, to have infinitely many solutions to (3) the absolute value of the largest root of $F(\alpha(n), \beta(n))$ must be smaller than $\left|c_{1}\right|^{1-\frac{1}{d}-\varepsilon}$, where c_{1} is the largest root of α. This means that to have infinitely many solutions the coefficients of the roots of the power sum $F(\alpha(n), \beta(n))$ with absolute value larger than $\left|c_{1}\right|^{1-\frac{1}{d}-\varepsilon}$ must vanish. This condition is easily verifiable in concrete cases with algebrical methods, so it is easy to decide wheather the inequality (3), with a particular power sum $\alpha(n)$, a particular polynomial F and a particular value of ε, has infinitely many solutions or not.

Remark 5.2. If the polynomial F is not regular, we can get a weaker result than that of Corollary 3.2. Using the same notations of Corollary 3.2 , let

$$
\begin{equation*}
\bar{d}=\max _{i=1, \ldots, d}\left\{\mid\left\{\varphi_{j}: k_{j} / e_{j}=k_{i} / e_{i} \quad \text { and } \quad a_{k_{j} j}=a_{k_{i} i}\right\} \mid\right\} . \tag{24}
\end{equation*}
$$

If F is not regular we have $2 \leq \bar{d} \leq d$. Without losing generality, let $\varphi_{1}, \ldots, \varphi_{\bar{d}}$ be the \bar{d} Puiseux series such that $k_{1} / e_{1}=\ldots=k_{\bar{d}} / e_{\bar{d}} \mathrm{O}$ and $a_{k_{1} 1}=\ldots=a_{k_{\bar{d}} \bar{d}}$.

As in the proof of Corollary 3.2, we obtain that

$$
\begin{aligned}
|F(\alpha(n), y)|= & \left|y-\varphi_{1}(\alpha(n))\right| \cdot \ldots \cdot\left|y-\varphi_{\bar{d}}(\alpha(n))\right| \\
& \cdot\left|y-\varphi_{\bar{d}+1}(\alpha(n))\right| \cdot \ldots \cdot\left|y-\varphi_{d}(\alpha(n))\right| \\
> & c \cdot|\alpha(n)|^{-\varepsilon_{1} \bar{d}} \cdot\left(|\alpha(n)|^{1 / d}\right)^{d-\bar{d}} \\
= & c \cdot|\alpha(n)|^{1-\frac{\bar{d}}{d}-\varepsilon}
\end{aligned}
$$

holds for all the pairs (n, y) such that $y \neq \beta_{i}(n)$ for every $i=1, \ldots, s$, where $\left\{\beta_{1}(n), \ldots, \beta_{s}(n)\right\}$ is a finite set of power sums with positive integral roots and rational coefficients.

So for every $c>0$ and for every $\varepsilon>0$ fixed, every solution $(n, y) \in \mathbb{N} \times \mathbb{Z}$ of the inequality

$$
\begin{equation*}
|F(\alpha(n), y)|<c \cdot|\alpha(n)|^{1-\frac{\bar{d}}{d}-\varepsilon} \tag{25}
\end{equation*}
$$

has $y=\beta_{i}(n)$, for a certain $i \in\{1, \ldots, s\}$.
Let us notice that if $\bar{d} \neq d$, there exist $\varepsilon>0$ such that $1-\frac{\bar{d}}{d}-\varepsilon>0$.
Remark 5.3 If, under the notations of Corollary 3.2 and Remark 5.2, we have $\bar{d}=d$, with a proper substitution we can reduce the polynomial $F(x, y)$ to the cases considered above. Indeed, writing the series of the Puiseux expansion of $F(x, y)$ as

$$
\varphi_{j}(x)=a_{-k} x^{k / e_{j}}+\ldots+a_{-g} x^{g / e_{j}}+\sum_{i=-g+1}^{+\infty} a_{i j} x^{-i / e_{j}}
$$

with $j=1, \ldots, d$, where a_{-g} is the last common term in every $\varphi_{j}(x)$, we have

$$
F(x, y)=\prod_{j=1}^{d}\left(y-\sum_{i=-k}^{-g} a_{i} x^{-i / e_{j}}-\sum_{i=-g+1}^{+\infty} a_{i j} x^{-i / e_{j}}\right) .
$$

Applying the substitution

$$
y-\sum_{i=-k}^{-g} a_{i} x^{-i / e_{j}} \longmapsto z,
$$

we obtain a new polynomial $G(x, z)$ that, for the choice of the substitution, can either be regular, and so we can apply Corollary 3.2 , or satisfy the hypothesis of Remark 5.2.
Proof of Corollary 3.3. Let \bar{d} be defined as in (24). We can have that either the inequality

$$
\begin{equation*}
|F(\alpha(n), y)|<|\alpha(n)|^{1-\frac{\bar{d}}{d}-\varepsilon}, \tag{26}
\end{equation*}
$$

with $\varepsilon=\frac{1}{2 d}$, has finitely many solutions $(n, y) \in \mathbb{N} \times \mathbb{Z}$ or infinitely many.
If (26) has only finitely many solutions, let us observe that, since $\alpha(n)$ is not constant, for n large enough we have

$$
2|f(n)|<|\alpha(n)|^{1-\frac{\bar{d}}{d}-\varepsilon}
$$

and so also the inequality $|F(\alpha(n), y)|<2|f(n)|$ has finitely many solutions.

The solutions of $F(\alpha(n), y)=f(n)$ are contained in the set of solutions of $|F(\alpha(n), y)|<2|f(n)|$, and so they are only finitely many.

If (26) has infinitely many solutions, from Theorem 3.1 (if $F(x, y)$ is regular), Remark 5.2 (if $\bar{d}<d$) and Remark 5.3 (if $\bar{d}=d$) we know that they all have $y=\beta_{i}(n)$, for $i=1, \ldots, s$, where $\left\{\beta_{1}, \ldots, \beta_{s}\right\}$ is a set of power sums with rational coefficients and positive integral roots.

For every $i=1, \ldots, s, \quad F\left(\alpha(n), \beta_{i}(n)\right)$ is a power sum that may be constant.

If for a certain $i \quad F\left(\alpha(n), \beta_{i}(n)\right)$ is constant, we have

$$
\frac{F\left(\alpha(n), \beta_{i}(n)\right)}{f(n)} \xrightarrow{n \rightarrow \infty} 0 .
$$

If for a certain $i \quad F\left(\alpha(n), \beta_{i}(n)\right)$ is not constant, we have

$$
\left|\frac{F\left(\alpha(n), \beta_{i}(n)\right)}{f(n)}\right| \xrightarrow{n \rightarrow \infty}+\infty
$$

In both cases $F\left(\alpha(n), \beta_{i}(n)\right)$ can not assume the values of $f(n)$ for infinitely many n, and so the equation $F(\alpha(n), y)=f(n)$ has only finitely many solutions.

Remark 5.4. In Corollary 3.3 the assumption that $|\alpha(n)|$ is not constant is necessary. Consider e.g. the case $\alpha(n)=1, F(x, y)=y^{2}+x, f(n)=n^{2}+1$, that has as solutions the couples $(n, \pm n), n \in \mathbb{N}$. In all the other statements of the present paper this assumption is not required.

Acknowledgements. The results contained in this paper are part of a Master thesis [13] prepared at Università degli Studi di Udine; the author thanks his supervisors Pietro Corvaja and Umberto Zannier for the important help given.

References

[1] A. Baker, A sharpening of the bounds for linear forms in logarithms II. Acta Arithmetica 24 (1973), 33-36.
[2] P. Corvaja and U. Zannier, Diophantine Equations with Power Sums and Universal Hilbert Sets. Indag. Math., N.S. (3) 9 (1998), 317-332.
[3] P. Corvaja and U. Zannier, Some new applications of the Subspace Theorem. Compositio Math. 131 (2002), 319-340.
[4] R. Dvornicich and U. Zannier, On polynomials taking small values at integral arguments. Acta Arithmetica (2) 42 (1983), 189-196.
[5] M. Eichler, Introduction to the theory of algebraic numbers and functions. Academic press, New York and London. (1966).
[6] J.-H Evertse, An improvement of the quantitative subspace theorem. Compositio Math. (3) 101 (1996), 225-311.
[7] C. Fuchs, Exponential-Polynomial Equations and Linear Recurrences. PhD. thesis. Technische Universität Graz (2002).
[8] K. Iwasawa, Algebraic functions. Translations of Mathematical Monographs Vol. 118. American Mathematical Society, Providence, Rhode Island (1993).
[9] P. Kiss, Differences of the terms of linear recurrences. Studia Sci. Math. Hungar. (1-4) 20 (1985), 285-293.
[10] A. РетнÖ, Perfect powers in second order linear recurrences. J. Number Theory 15 (1982), 5-13.
[11] W. M. Schmidt, Diophantine Approximations and Diophantine Equations. Lecture Notes in Math. vol. 1467. Springer-Verlag (1991).
[12] W. M. Schmidt, Diophantine Approximation. Lecture Notes in Math. vol. 785. SpringerVerlag. (1980).
[13] A. Scremin, Tesi di Laurea "Equazioni e Disequazioni Diofantee Esponenziali". Università degli Studi di Udine (2001).
[14] T. N. Shorey and C. L. Stewart, Pure powers in Recurrence Sequences and Some Related Diophantine Equations. J. Number Theory 27 (1987), 324-352.

Amedeo Scremin
Institut für Mathematik A
Technische Universität Graz
Steyrergasse 30 A-8010 Graz, Austria
E-mail: scremin@finanz.math.tu-graz.ac.at

[^0]: Manuscrit reçu le 18 mars 2003.
 The author was supported by Istituto Nazionale di Alta Matematica "Francesco Severi", grant for abroad Ph.D.

