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ON 3D DYNAMIC CONTROL OF SECONDARY COOLING IN
CONTINUOUS CASTING PROCESS

Abstract. In this paper a 3D-model for simulation and dynamic
control of the continuous casting process is presented. The diffusion
convection equation with multiphase transition is used as a simulation
model. The developed model is discretized by finite element method and
the algebraic equations are solved using pointwise relaxation method.
Two different type of methods are used to control the secondary cooling,
namely PID and optimal control method. The numerical results are
presented and analyzed.

1. Introduction

In the continuous casting process the molten steel is poured into a bottomless
mold which is cooled with internal water flow. The cooling in the mold extracts
heat from the molten steel and initiates the formation of the solid shell. The
shell formation is essential for the support of the slab after mold exit. After the
mold the slab enters into the secondary cooling area in which it is cooled by
water mist sprays. The secondary cooling region is usually divided into cooling
zones in which the amount of the cooling water can be controlled separately.

The control of cast cooling is of central importance in continuous casting
process because it has a considerable influence on formation of cracks and other
defects which can be formed in cast material. The cast should be cooled down
according to a certain temperature field which depend on e.g. steel quality,
cast shape, casting speed. Accurate knowledge of temperature field and liquid
pool length is also important especially when using soft reduction or ”near final
shape” casting. Many numerical models for simulation of the casting process
have been developed in recent years [6, 9, 10]. Some of them have been applied
to control and optimize casting process [4, 5, 11]. To our knowledge, all real-
time industrial control applications are based on two dimensional models. In
many cases two dimensional models are sufficient for control purpose. However,
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nowadays the highly automated and instrumented casting machines in steel
factories allows the use of more sophisticated simulation and control models.

Our aim is to use the developed 3D-model in dynamic process control. We
have considered PID and optimal control methods to control the secondary
cooling. The two methods are very different from each other. The PID al-
gorithm is quite simple and computationally inexpensive. However, the use
of PID method is limited to the control of the surface temperature. More-
over, the PID algorithm contains experimental tuning parameters. On the
other hand the optimal control method can be very complicated. The optimal
control method minimizes a cost function which is constructed by means of
metallurgical cooling criteria. Several different cooling criteria can be used,
e.g. the maximum length for the liquid pool, the maximum reheating and
cooling rates on the slab surface, the minimum and maximum temperature
at the unbending point and the maximum and minimum temperature on the
surface along the casting machine [6]. The development work of our optimal
control model is still ongoing. Therefore we use quite simple cost function in
our numerical example.

2. Mathematical formulation of state problem

Let Ω ⊂ R2 be a rectangular domain [0, LX ] × [0, LY ] and V = Ω × [0, LZ ]
be a 3D domain. The boundary Γ = ∂V consists of the parts:

Γ0 = Ω× {0},
ΓN = {(x, y) ∈ ∂Ω : x = 0 ∨ y = 0} × [LM , LZ ],
ΓS = {(x, y) ∈ ∂Ω : x 6= 0 ∧ y 6= 0} × [0, LZ) ∪ Ω× {LZ},
ΓM = {(x, y) ∈ ∂Ω : x = 0 ∨ y = 0} × [0, LM ],

where LM is the length of the mould, LZ is the length of the strand and LX , LY

are the width and thickness of the calculation domain.
We define the temperature T = T (x, y, z, t), dependent enthalpy function

H(T ) and the Kirchoff’s temperature K(T ) by

H(T ) = ρ

( ∫ T

0

c(ξ)dξ + L(1− fs(T ))

)
, K(T ) =

∫ T

0

k(ξ)dξ,

where ρ, c(T ), k(T ), and L are density, specific heat, thermal conductivity and
latent heat, fs(T ) is the solid fraction.

The mathematical model of the continuous casting problem can be written
as: 




∂H(T )

∂t
+ v

∂H(T )

∂z
−∆K(T ) = 0 in V × (0, tf ],

T = T0 on Γ0 × (0, tf ],
∂K(T )

∂n
+ h(T − Tw) + σε(T 4 − T 4

ext) = 0 on ΓN × (0, tf ],

∂K(T )

∂n
= 0 on ΓS × (0, tf ],

∂K(T )

∂n
= Q on ΓM × (0, tf ],

T (x, y, z, 0) = T 0 in V .

(1)



ON 3D DYNAMIC CONTROL 5

��

�

�

�
���

�	�
�	�

��
 ��


Figure 1. The calculation domain.

Here n is the unit vector of outward normal to ∂V , h is the heat transfer
coefficient, v is the casting speed, and Tw, Text are known temperatures. The σ
is the Stefan-Boltzmann constant and ε is the emissivity. The cooling capacity
Q in the mould is known constant and tf is the simulation time.

3. Mesh approximation

We partition Ω into a set of quadrilateral finite elements as shown on figure 2.
Step sizes are smaller near left and down boundaries of Ω, and all quadrilaterals

Figure 2. Partition of Ω on quadrilateral finite elements.

are rectangular except those elements near the round corner. The 1D-domain
[0, LZ ] is divided by nz mesh points in z-direction. We decompose our 3D
domain V into a set of prismatic 3D finite elements with quadrilaterals in its
cross section. Since the constructed mesh is Cartesian product of 2D mesh in
Ω and 1D mesh on [0, LX ], basis functions of finite element space will also be
a product of 2D and 1D basis functions.

We discretize our problem in time by using semi-implicit approximation,

more precisely, we approximate the term

(
∂

∂t
+ v(t)

∂

∂z

)
H by using the char-

acteristics of the first order differential operator [2, 7, 8]. Namely, if (x, y, z, t)
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is the mesh point on the time level t we choose z̃ = z −
∫ t

t−τ

v(ξ)dξ and ap-

proximate this term by:
(

∂

∂t
+ v(t)

∂

∂z

)
H ≈ 1

τ
(H(x, y, z, t)−H(x, y, z̃, t− τ)) . (2)

We denote by H̃(x, t−τ) = H(x, y, z̃, t−τ). If z̃ < 0 then we set H̃(x, t−τ) =
H(x, y, 0, t− τ).

The weak solution of the semi-discrete problem is defined by integral identity
∫

V

(H(T )− H̃)/τ ηdx

∫

V

∇K(T ) · ∇ηdx +

∫

ΓN

{h(T − Tw)

+σε(T 4 − T 4
ext)} ηdΓN +

∫

ΓM

QηdΓM = 0

(3)

for all trial functions η ∈ V 0 = {η ∈ H1(V) : η = 0 on Γ0}. Here H1(V) is the
Sobolev space of first order and T = T (x) = T (x, y, z, jτ), j ≥ 1.

Let Vh be a finite element approximation of the space H1(V), V T0
h = {vh ∈

Vh(V) : vh = T0h on Γ0} with T0h being the Vh-interpolant of T0 and obvi-
ously defined subspace V 0

h . Let further ϕ1(x), . . . , ϕn(x), be the basis functions
in Vh. Thus, the function

Th(x) =
n∑

i=1

Tiϕi(x)

is the finite element approximation of T (x), T = (T1, . . . , Tn)t is the vector
of the unknown nodal values of the function Th(x). Below the notations are:
H(T ) = (H(T1), . . . , H(Tn))t, K(T ) = (K(T1), . . . , K(Tn))t and

fh(Th) =
n∑

i=1

f(Ti)ϕi(x)

for every function f(T ), which depends on T (x).
Approximation of the semi-discrete problem (3) by a finite element scheme

is defined as
∫

V

Hh(Th)− H̃h

τ
ηdx +

∫

V

∇Kh(Th) · ∇ηdx +

∫

ΓN

{h(Th − Tw h)

+σε((T 4)h − (T 4
ext)h)} ηdΓN +

∫

ΓM

Qh ηdΓM = 0

(4)

for all trial functions η ∈ V 0
h . Discrete problem (4) is equivalent to the system

of nonlinear algebraic equations:

M
H(T )− H̃

τ
+ AK(T ) + B(h)(T − Tw) + B(T 4 − T 4

ext) + DQ = 0, (5)
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where M, A, B(h), B and D are the n× n matrices with entries

mij =
∫
V

ϕjϕidx, aij =
∫
V
∇ϕj · ∇ϕidx,

bij(h) =
∫

ΓN

hϕjϕidΓN , bij = σε
∫

ΓN

ϕjϕidΓN ,

dij =
∫

ΓM

ϕjϕidΓM .

More precisely, let L(l, k) and K(s, t) be the global indices of any two mesh
points, where k and t indicate the node number in z-direction and l, s in xy-
plane, respectively. By definition of mass matrix M we have

mLK =

∫

V

ϕLϕKdx =

(∫ LZ

0

ϕk(z)ϕt(z)dz

) ∫

Ωh

ϕl(x, y)ϕs(x, y)dxdy = mz
ktm

Ω
ls.

Therefore matrix M is equal to Kronecker product of standard 1D mass matrix
M z and 2D mass matrix MΩ. Similarly we can define for the stiffness matrix
A the entries

aLK = mz
kta

Ω
ls + az

ktm
Ω
ls

and for matrices B, B(h) and D

bLK = σεmz
ktm

b
ls,

bLK(h) = hkm
z
ktm

b
ls,

dLK = mz
ktm

b
ls.

Temperature dependent enthalpy H and Kirchoff transform K are defined
as piecewise linear and continuous functions. For the solution of system (5)
the modified SOR-method [3] for points in V is used and for nonlinear part on
ΓN Newton-Raphson method is used with one inner iteration.

We note that to implement our method it is sufficient to construct only 2D-
and 1D-matrices. Therefore the computational efficiency of our model is very
good. Also the memory allocation requirements are not so strong than in the
case of ordinary 3D-brick elements.

4. Control of secondary cooling process

The secondary cooling region is divided into cooling zones (see figure 3) in
which the values of heat transfer coefficients, hi, can be controlled separately
in each cooling zone. Two different control methods are used for optimizing
the secondary cooling process on the boundary of the steel slab, namely PID
and optimal control method.

4.1. PID control. In PID control the water cooling in each secondary cool-
ing zone is done separately and indepentendly of each other. Heat transfer
coefficient in each cooling zone i are calculated using the equation

hi(t) = P

[
∆Ti(t) + I

∫ t

0

∆Ti(s)ds + D
d∆Ti(t)

dt

]
, (6)

where ∆Ti(t) = Ti(t)−T tar
i (t) is the difference between calculated temperature

T and target temperature T tar at time t and P, I, D are experimentally known
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Figure 3. Schematic presentation of 3D-cooling zones for quar-
ter of the slab

tuning parameters. After discretization of integral and derivative we obtain
the recursive form [1]

hk
i = hk−1

i + P
[(

1 +
D

τ

)
∆T k

i −
(
1− τI +

2D

τ

)
∆T k−1

i +
D

τ
∆T k−2

i

]
, (7)

with constant time step τ .

4.2. Optimal control. In optimal control method our aim is to minimize a
cost function which is constructed by means of metallurgical cooling criteria.
We can formulate our optimal control problem in the following way:

Find h∗ ∈ Uad such that

J(T (h∗)) = min
h∈Uad

J(T (h)), (8)

where Uad = {h(t)|hmin ≤ h(t) ≤ hmax} and T (h) is the solution of the state
equation (5).
Our cost function, J , has the form

J(T ) =
1

2

∫ LZ

LM

(T − T tar)2dz.

To solve the optimal control problem (8) we use the following gradient method.
For given initial guess h0 ∈ Uad we find hi+1 ∈ Uad for i = 0, 1, . . . by the
formula

hi+1 = hi + ρi p
i, (9)

where pi is the antigradient of the cost function I(h) = J(T (h)) at the point hi

and ρi is an iterative parameter. To find I ′(h) we use the method of Lagrange
multipliers. Namely, we define Lagrange function

L(T, λ, h) = (Ψ(T, h), λ) + J̃(T ), (10)
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where

Ψ(T, h) := M
H(T )− H̃

τ
+ AK(T ) + B(h)(T − Tw) + B(T 4 − T 4

a ) + DQ

and

J̃(T ) =
1

2

nz∑
i=1

l̃i(Ti − T tar
i )2

is the approximation of the cost function J and by (·, ·) we mean inner product

in Rn. We denote the length of the i-th element by l̃i. Differentiation with
respect to variable T gives

(1

τ
M(H ′(T )·∂T )+A(K ′(T )·∂T )+B(h)·∂T +B(4T 3 ·∂T ), λ

)
+ J̃ ′(T )·∂T = 0

and we derive a system of linear algebraic equations

1

τ
H ′Mλ + K ′Aλ + B(h)λ + 4T 3Bλ = −J̃ ′. (11)

After solving the adjoint state problem (11) the descent direction

pj =

{
0, (hj = 0 ∧ I ′j > 0) ∨ (hj = hmax ∧ I ′j < 0)

−I ′j, otherwise,

I ′(h) =
(∂Ψ

∂n
(T, h), λ

)
+

∂J̃

∂h
(T ) = (B(1)(T − Tw), λ).

is found.
Choose a h0 ∈ Uad and natural number n. Given hi ∈ Uad we calculate the

descent vector pi and the upper bound for the iterative parameter ρi:

ρmax = max{ρ ≥ 0 : hi + ρpi ∈ Uad}
The optimal step size in the equation (9) is still unknown. We use the following
algorithm to determine ρopt:

Step 1: ρ0 =
ρmax

2n+1

If J(T (h(ρ0))) < J(T (h(0))) GOTO Step 2;
Else ρopt = 0 END;

Step 2: For i = 1, 2, ..., n
ρi = (2i+1 − 1)ρ0

ρopt = ρi

If J(T (h(ρi))) < J(T (h(ρi−1))) CONTINUE;
Else ρopt = ρi−1 END;

Our aim is to use the optimal control method in dynamic casting process. At
each iteration the calculation of the solution of the discretized state problem
(5) is needed, which is very time consuming. Therefore, we use n = 7 in our
numerical calculations.
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Half width of the slab Lx = 0.675m
Half thickness of the slab Ly = 0.105m

Length of the slab Lz = 32m
Length of the mould LM = 0.9m

Average cooling in mould Q̂ = 1229kWm−2

Latent heat L = 261kJkg−1

Density ρ = 7312kgm−3

Solidus Ts = 1763K
Liquidus Tl = 1793K

Incoming steel temperature T0 = 1808K
Water temperature Tw = 293K

External temperature Text = 293K
Emissivity ε = 0.8 · 10−3

Stefan-Boltzmann constant δ = 5.67× 10−8Wm−2K−4

Radius R = 0.005m
Casting speed v = 1.4m/min

Table 1. Input parameters for continuous casting problem.

5. Numerical example

Here we present some numerical results for solving continuous casting prob-
lem. The secondary cooling region is divided into eight cooling zones. The
essential input parameters are presented in the table 1.

In our first numerical test we compare our 3D-model with existing 2D contin-
uous casting model used at Rautaruukki steel factory in Finland. The cooling
is assumed to be constant along each cooling zone during the casting process.
Thus, the values of heat transfer coefficients hi are also constant. The values of
hi are presented in the table 2 and the calculated core and surface temperatures
are shown in the figure 4.

zone length [m] h[kWm−2K−1]
1 0.47 0.4950
2 1.46 0.3708
3 1.62 0.3257
4 1.90 0.2783
5 3.84 0.1918
6 5.76 0.1175
7 5.18 0.1233
8 8.20 0.0995

Table 2. Zone lengths and values of h in each cooling zones.

We are also interested in calculated lengths of liquid pool (longitudinal
length of the liquidus isotherm in the centre of the slab), ’stable’ liquid pool
(Tl−2K-isotherm) and mushy pool (Ts-isotherm). Calculated pool lengths for
2D- and 3D-methods are shown in the table 3.
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Figure 4. Calculated core and surface temperatures for 2D-
model (on the left) and 3D-model (on the right) for piecewise
constant h.

2D-method 3D-method
Liquid pool 11.20m 10.55m

Stable liquid pool 16.88m 16.76m
Mushy pool 22.42m 22.63m

Table 3. Calculated pool lengths.

Our results show that calculated temperature fields of the two models are
very similar but a difference in calculated lengths of liquid pools appear. From
the control point of view the information about temperature field and the
pool lengths is important because internal cracks of final product arise dur-
ing solidification process. Moreover, soft reduction technology requires exact
information about liquid and mushy pool lengths.
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Figure 5. Calculated temperatures using 3D-model with PID-
control. Left graph shows target and calculated surface tem-
peratures on the centreline of wide face. Right graph shows
calculated corner temperatures.

In our second numerical test the PID and optimal control algorithms were
also tested to optimize the secondary cooling i.e. heat transfer coefficients.
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The results are shown in figures 5 and 6. We can see from the figure 5 that
PID control algorithm adjusts water cooling in the way that the difference
between target and calculated temperatures at the end of each cooling zone is
minimized. The optimal control method on the other hand minimizes the cost
function J . From the figure 6 we see that the difference between target and
calculated surface temperature is minimized on the whole length of the slab.
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Figure 6. Calculated temperatures using 3D-model with op-
timal control. Left graph shows target and calculated surface
temperatures on the centreline of wide face. Right graph shows
calculated corner temperatures.
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