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USING EXPLICIT SCHEMES FOR CONTROL PROBLEMS IN
CONTINUOUS CASTING PROCESS

Abstract. In this article, we solve an optimal control problem of the
cooling process in the steel continuous casting, which mathematical for-
mulation is a coefficient identification problem for Stefan problem with
prescribed convection. To minimize a cost function we use a gradient
method, state and adjoint state problem being approximated by explicit
mesh schemes with variable time steps. Presented numerical results
show an advantage in calculations time of this approach in comparison
with using implicit mesh schemes.

1. Introduction

A continuous casting process can be described by the Stefan problem with
prescribed convection [1, 2]. The existence of a unique solution for this problem
is proved in [3]. For numerical solving of this problem the fully implicit schemes
or the implicit schemes with characteristics approximation of heat transfer
operator are traditionally used (cf., e.g., [4, 5, 6] and bibliographies therein).
These schemes are unconditionally stable, but SOR-types methods which are
commonly used for its numerical solving have a slow convergence rate. More
sophisticated methods are based on the domain decomposition [7, 8] and/or
multigrid procedures [9]. Nevertheless, when using any of these approaches we
get a system of nonlinear equations which have to be solved again by using
SOR method.

On the other hand, a computational complexity of one step of an explicit
scheme is the same as for one SOR-iteration. It is well known, that the explicit
schemes with constant steps in time are only conditionally stable. This essen-
tially restricts the field of their application in solving the applied problems. At
the same time, in [10, 11, 12] the effective algorithms for solving both linear,
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and nonlinear non-stationary problems have been suggested, these algorithms
being based on the explicit schemes with variable steps.

In this paper, the results of using the explicit schemes with variable steps for
solving a 3D dynamic control of the secondary cooling process in continuous
casting problem are presented.

The rest of the article is organized as follows. In the second section the
boundary-value problem is posed in two formulations: a temperature formu-
lation (unknown is the temperature field) and enthalpy formulation (unknown
is enthalpy function). To solve the problem in temperature formulation we
use an implicit scheme with FEM approximation in space variables, while for
the problem in the enthalpy formulation an explicit Euler method with cycle
of variable steps with the same FEM approximation in space is used. In the
third section of the paper a cooling optimization problem for the continuous
casting process is described. We construct a method for solving this problem
which is based on the explicit approximations with variable steps of both di-
rect and adjoint state problems. In the last section some numerical results are
presented. The main conclusion of these numerical results is: the calculated
control functions and temperature fields are very close for both methods, while
the computational complexity of the explicit scheme is less than for the im-
plicit one. This fact is very important for our applied problem which must be
solved in real-time regime.

2. Boundary-value problem formulation

Let Ω ∈ R2 be the rectangular domain [0, Lx]× [0, Ly] with round left-down
corner of radius R > 0, Ω = Ω ∪ ∂Ω. Let V = Ω × (0, Lz) be the 3D domain
with boundary Γ = ∂V which consists of the following parts:

Γ0 = Ω× {0} ,
ΓN = {(x, y) ∈ ∂Ω : x = 0 ∨ y = 0} × (LM , Lz] ∪ Ω× {Lz} ,
ΓS = {(x, y) ∈ ∂Ω : x 6= 0 ∧ y 6= 0} × (0, Lz] ,
ΓM = {(x, y) ∈ ∂Ω : x = 0 ∨ y = 0} × (0, LM ] ,

where 0 6 LM < Lz.
In our applied problem domain V represents a metallic bar (or melt), Ω is

the quarter of z-cross section of a slab, Lz is the length of a slab and LM is
the length of primary cooling zone.

We find the temperature field T = T (x, y, z, t) for (x, y, z) ∈ Ω and t ∈ (0, Tf ]
(Tf is the time of casting process ending).

We define the enthalpy function H(T ) and the Kirchoff’s temperature K(T )
by

H (T ) = ρ




T∫

0

c (ξ) dξ + L (1− fs (T ))


 , K (T ) =

T∫

0

k (ξ) dξ ,
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Figure 1. Domain and boundaries

where ρ, c(T ), k(T ) and L are density, heat capacity, thermal conductivity
and latent heat, fs (T ) is the solid fraction at temperature T , such that

fs (T ) =

{
1, T > Ts,
0, T < Tl.

Here Ts is the solidification and Tl is the melting temperature. On Figures
2, 3 the graphs of enthalpy function and Kirchhoff’s temperature for steel are
presented. Note that because of the monotonicity and continuity of enthalpy
function H = H(T ), we can define the inverse function T = T (H).
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The continuous casting process can be modelled by the following boundary-
value problem:





∂H(T )

∂t
+ v

∂H(T )

∂z
−∆K (T ) = 0 in V × (0, Tf ] ,

T = T0 on Γ0 × (0, Tf ] ,

∂K (T )

∂n
+ h (T − Tw) + σε (T 4 − T 4

ext) = 0

on ΓN × (0, Tf ] ,

∂K (T )

∂n
= Q on ΓM × (0, Tf ] ,

T (x, y, z, 0) = T 0 in V.

(1)

Here n is the unit vector of outward normal to ∂V , σ > 0 is the Stefan-
Bollzmann constant, ε > 0 is the emissivity, v > 0 is the casting speed, h =
h (x, y, z, t) and Q = Q (x, y, z) are known cooling functions, Tw = Tw (x, y, z)
and Text = Text (x, y, z) are known temperatures of cooling liquid and environ-
ment, Tf is the time of casting process ending.

Besides of the temperature-enthalpy formulation (1) we use the following
enthalpy formulation:





∂H

∂t
+ v

∂H

∂z
−∆K (H) = 0 in V × (0, Tf ] ,

H = H(T0) on Γ0 × (0, Tf ] ,

∂K (H)

∂n
+ h (T (H)− Tw) + σε (T 4 (H)− T 4

ext) = 0

in ΓN × (0, Tf ] ,

∂K (H)

∂n
= Q in ΓM × (0, Tf ] ,

H (x, y, z, 0) = H0 on V.

(2)

Unknown function in (2) is the enthalpy function H(·), by K(H) we mean here
K(T (H)).

3. Mesh problem and its solving

Let for some ε > 0 we know τ = τ (ε), such that the following condition
holds:

∂H

∂t
+ v

∂H

∂z
=

H − H̃

τ
+ ω (t) , with ‖ω (t) ‖ 6 ε, ∀t : 0 6 t < t + τ 6 Tf ,

where H̃ = H (x, y, z − vτ, t− τ). In fact, this means that for this τ the local
ε-approximation of the term ∂H/∂t + v∂H/∂z in a norm ‖ · ‖ is achieved.
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The weak formulation of the semi-discrete scheme to problem (1) for a fixed
time level can be written as follows:

find H ∈ H1(V ), H |Γ0= H(T0) :
1

τ

∫

V

(
H (T )− H̃

)
τηdx +

∫

V

∇K (T ) · ∇ηdx+

+

∫

ΓN

{
h (T − Tw) + σε

(
T 4 − T 4

ext

)}
ηdx = 0,

∀η ∈ V 0 =
{
v ∈ H1 (V ) : η|Γ0

= 0
}

.

(3)

Here H1 (V ) is the usual Sobolev space.
Let Ω be partitioned into a set of quadrilateral finite elements, this trian-

gulation being topologically equivalent to rectangular one. The triangulation
of Ω and partitioning of [0, Lz] form the triangulation of 3D domain V into
a set of prismatic 3D finite elements. Now we can write the finite element
(FEM) discretization of problem (3). Let Vh be a finite element approxima-
tion of the space H1(V ), based on the polylinear elements. Further wh stands
for a Vh-approximation of function w (for a continuous function w wh is its
Vh-interpolant). Let

V T0
h = {vh ∈ Vh (V ) : vh = T0h on Γ0} ,

V 0
h = {vh ∈ Vh (V ) : vh = 0 on Γ0} .

Approximation of problem (3) by finite element method is defined as

1

τ

∫

V

(
Hh (Th)− H̃h

)
ηdx +

∫

V

∇Kh (Th) · ∇ηdx+

+

∫

ΓN

{
h (Th − Tw,h) + σε

((
T 4

)
h
− (

T 4
ext

)
h

)}
ηdΓN = 0,

∀η ∈ V 0
h .

(4)

Discrete problem (4) is equivalent to the system of nonlinear algebraic equa-
tions (hereafter we use the same notations for continuous and mesh functions):

H (T )− H̃

τ
+ AK (T ) + B (h) (T − Tw) + B

(
T 4 − T 4

ext

)
= 0. (5)

Here: A is the discrete Laplas operator, in current FEM realization A is the 11-
diagonal matrix; B, B (h) are the diagonal matrices with sparse main diagonal.

In enthalpy formulation problem (5) becomes

H − H̃

τ
+ AK (H) + B (h) (T (H)− Tw) +

+B
(
T (H)4 − T 4

ext

)
= 0.

(6)

Below we consider the problem in enthalpy statement (6). Let

f (H) = AK (H) + B (h) (T (H)− Tw) + B
(
T (H)4 − T 4

ext

)
.

Then an explicit Euler method can be written as

Hk+1 = Hk − τ k+1f
(
Hk

)
, H0 = H

(
T 0

)
, k = 0, 1, 2, . . . (7)
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Here τ k are the time steps, Hk = H

(
t =

k∑
i=1

τ i

)
is the numerical solution at

the time level t.
The Frechet derivative of the mapping f (H) is given by

J(H) = A ◦K ′(H) + B (h) ◦ T ′(H) + 4B ◦ (
T 3(H)T ′(H)

)
.

Let (λ, ξ) is the eigen pair of operator J , then
(
K ′ + A−1B (h) T ′ + 4A−1BT 3T ′) ξ = λA−1ξ.

Hereafter we omit the argument H of functions T , T ′ and K ′. Executing some
technical estimates we get the following inequalities:

(K ′ξ, ξ) +
(
A−1B (h) T ′ξ, ξ

)
+ 4

(
A−1BT 3T ′ξ

)
6

6
(
LH

KλA
max

) (
A−1ξ, ξ

)
+ 4

(
A−1BT 3T ′ξ, BT 3T ′ξ

) (
A−1ξ, ξ

)1/2
+

+
(
A−1B (H) T ′ξ, B (H) T ′ξ

)1/2 (
A−1ξ, ξ

)1/2 6

6
(
LH

KλA
max + cond (A)1/2 LH

T ‖B (h)‖+

+4 cond (A)1/2 LH
T LH

T 3

) (
A−1ξ, ξ

)
.

Now, maximum eigenvalue of operator J can be estimated by

λmax 6 LH
KλA

max + cond (A)1/2 LH
T ‖B (h)‖

+4 cond (A)1/2 LH
T LH

T 3 .

Here:

• λA
max is the maximum eigenvalue of the operator A;

• cond (A) =
λA

max

λA
min

is the condition number of operator A;

• LH
K = sup

H∈[H(0),H(Ts)]

(K ′ (H));

• LH
T = sup

H∈[H(0),H(Ts)]

(T ′ (H));

• LH
T 3 = sup

H∈[H(0),H(Ts)]

(
T 3 (H)

)
.

Let τ k = τ0, then we have the explicit Euler method with constant step.
Approximation condition in this case is defined by following inequality: τ0 6
τ . Stability condition can be written as τ0 6 cou, where Courant number
cou = 2/λmax. As it is known, for large value of λmax the last condition is too
restrictive and too many steps in time can be necessary when using an explicit
scheme.

Let
{
τ k

}N

k=1
be a cycle of time steps in (7), N be the length of the cycle.

The total step of the cycle is lN(τmax) =
∑N

k=1 τ k, where τmax is the maximum
step of the cycle. The approximation condition of this scheme can be written
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as

τmax 6 τ(ε) (8)

The relaxed stability condition of this so-called super-time-stepping scheme is

∣∣∣∣∣
N∏

k=1

(1− τkλ)

∣∣∣∣∣ < 1 ∀λ : (λmin 6 λ 6 λmax), (9)

where λmin and λmax is the minimum and maximum eigenvalues of the operator
J .

To obtain an optimal scheme, a maximum superstep size must be found as
maximum lN(τ(ε)) when (8) and (9) hold. An optimal cycle is found by using
the optimal properties of Chebyshev polinomials in [10] for the cases N = 2p

and N = 2p3q. The construction of this scheme is based on the using the
following parameters: τmax 6 τ(ε) – the maximum step of the cycle, cou –
Courant number of the operator.

This scheme is described for the operators with real spectrum. In our prob-
lem operator J is symmetrizable, thus it has only real spectrum.

In our case we have parameter τf À τ(ε) and we must calculate solution for
every time t = kτf , k = 0, 1, 2, . . . It means that we need the time steps cycle
such that lN ≈ τf . Obviously, function g(x) = |τf − lN(x)|, 0 < x 6 τ(ε) is
unimodal for every fixed N , and it means that for all fixed ξ > 0 we can easily
find τ : g(τ) 6 ξ.

Values N = 2p and τ were defined experimentally. Using explicit scheme
with cyclic set of steps we get some advantage in computing complexity in
comparison with the scheme with a constant step, but it has not a theoretical
N -order advantage, because we have condition lN ≈ τf . In the next section
we also compare explicit schemes with variable steps with standard implicit
method (see Table 1). The solution of nonlinear system arising in the implicit
scheme was made by Gauss-Seidel method with preliminary Newton lineariza-
tion. In column ”Number of iterations” of Table 1 we present: for the implicit
scheme – average number of the iterations required for the solving of corre-
sponding system of the nonlinear equations at one time level, for the explicit
scheme – number of steps in a cycle. In column ”Time of iteration” the average
time of one iteration in milliseconds is recorded.

4. Optimization problem

The secondary cooling region is divided into M cooling zones, in every one
the heat transfer coefficient hk, k = 1, M have to be controlled. In optimal
control method our aim is to minimize a goal function which is constructed
by means of metallurgical cooling criteria. By these criteria we have two
observation lines on the slab surface (along the corner and center lines of
slab surface): l1 = ((x, y, z) ∈ Γ : x = y = R(1 − 1/

√
2), z ∈ [LM , Lz]),

l2 = ((x, y, z) ∈ Γ : x = Lx, y = 0, z ∈ [LM , Lz]) and given target temperatures
{ttar

k , k = 1,M} for starting point of each cooling zone along this lines. Let
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T tar(x), x ∈ l = l1 ∪ l2 is the linear interpolation of {ttar
k }. Thus, the goal-

function can be defined as

I(T ) =
1

2

∫

l

(T tar − T )2dx.

Let J(T ) is the mesh approximation of I(T ), vector J ′(T ) is the derivative
of the goal-function. We can formulate the optimal control problem in the
following way:

Find h∗ ∈ U such that:

J(h∗) = min
h∈U

J(h), (10)

where U = {u = (u1, u2, . . . , uM) : hmin 6 ui 6 hmax∀i = 1,M} is the set of
constraints for control variables and T = T (h) is defined via solution of mesh
scheme (6) with the set of variable time steps. Thus, we have a nonlinear
function minimization problem with constraints. To solve problem (10) we use
a gradient method.

To calculate the gradient of the goal-function we construct the adjoint state
problem by using the Lagrange function

L = J(TN)+

+
N−1∑

k=1

(
Hk+1 −Hk

τk

+ AK(T k) + B(h)(T k − Tw) + B
(
(T k)4 − T 4

ext

)
, λk+1

)
.

Here we use the inner product (·, ·) in the finite dimensional space of vectors.
Variation gives

L′yv =
(
J ′(TN)

)
+

N−1∑

k=1

(
vk+1 − vk

τk

+ A
(
K ′(T k)(T k)′Hvk

)
, λk+1

)
+

+
N−1∑

k=1

(
B(h)(T k)′Hvk + 4B(T k)3(T k)′Hvk, λk+1

)
= 0.

Obviously,

N−1∑

k=1

vk+1 − vk

τk

λk+1 =
N−1∑

k=1

vk

(
λk

τk

− λk+1

τk+1

)
+

vNλN

τN

, λ1 = 0

From here we derive the following system of the linear algebraic equations,
which is the mesh adjoint state problem:





λN

τN

+ J ′(TN)(TN)′H = 0

λk

τk

− λk+1

τk+1

+ (T k)′HK ′(T k)A∗λk+1 + (T k)′HB∗(h)λk+1+

+4(T k)′H(T k)3B∗λk+1 = 0, k = N − 1, . . . , 1.

(11)
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As it is shown in [10] scheme (11) is stable and stable to round-off errors. Now
the descend direction is defined by

(J ′(h))j = (B(hj)(T − Tw), λ1),

where: hj =
(
0, . . . , 0,

ijk︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0

)T
, j = 1,M ; ijk - all mesh points in the

j-th cooling zone. Vector (−J ′(h)) is the descent direction. The projection
p = (p1, p2, . . . , pM) of the vector −J ′(h) to constrains set U can be calculated
as

pi =

{
0, (hi = hmin ∧ J ′j > 0) ∨ (hi = hmax ∧ J ′j < 0),
−J ′i , otherwize.

Then we consider the one-dimensional minimization problem:

ρopt = arg min
06ρ6ρmax

J(h + ρp), (12)

where maximum descent step ρmax can be found from: start point h, current
descent direction p and constraints set U . In this work we solve (12) by the
Brent algorithm of one-dimension minimization and by the following algorithm:
Step 1.

Let h(ρ) = h + pρ

ρ0 =
ρmax

2d
, where d > 0 is the arbitrary parameter of algorithm

If J(h(ρ0)) > J(h(0)) Then ρopt = 0 End
i = 1
GoTo Step 2

Step 2.
ρopt = ρi−1

ρi = 2ρi−1

If (ρi > ρmax) or (J(h(ρi)) > J(h(ρi−1))) End

i = i + 1
GoTo Step 2.

The solutions of (10) using both one-dimensional minimization algorithms are
the same, while the second algorithm is much simpler than Brent algorithm.

The results of numerical experiments (optimal control and temperature fields
calculated by using both explicit and implicit schemes) are presented on Fig-
ures 4 – 9.
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5. Numerical results

Direct solution.

Method
Number of
iterations

Time of one
iteration

(ms)
Mesh: 11x17x221
Tf = 1000

Explicit scheme 8 116

τf = 5
Implicit scheme 24 256

Mesh: 8x16x150
Tf = 1000

Explicit scheme 8 56

τf = 5
Implicit scheme 19 107

Mesh: 8x16x150
Tf = 900

Explicit scheme 4 28

τf = 3
Implicit scheme 14 73

Table 1. Number of iterations and time of calculation for solution of the
state problem.

Optimization.
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Figure 4. Optimal cooling control results by implicit scheme
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Figure 5. Optimal cooling control results by explicit scheme
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Figure 6. Temperature by implicit scheme along corner line
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Figure 7. Temperature by explicit scheme along corner line
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Figure 8. Temperature by implicit scheme along center line
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Figure 9. Temperature by explicit scheme along center line
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