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Abstract. We consider a general class of monotone equilibrium
problems, which involve nonsmooth convex functions, in a real Banach
space. We combine the D-gap function approach and regularization
techniques and suggest a descent type algorithm to find solutions to the
initial problem.

1. Introduction

Let U be a nonempty closed and convex subset of a real reflexive Banach
space E, ψ : E × E → R an equilibrium bifunction, i.e. ψ(u, u) = 0 for every
u ∈ U. In addition, we assume that ψ(u, ·) is convex and lower semicontinuous
for each u ∈ E.

We consider equilibrium problem (EP for short) of the form: Find a point
u∗ ∈ U such that

ψ(u∗, v) ≥ 0 ∀v ∈ U. (1)

It is well known that equilibrium problems represent rather general and suit-
able format for the formulation and investigation of various complex problems
arising in Economics, Mathematical Physics, Transportation, Operations Re-
search and other fields. Moreover, they are closely related to other general
problems of Nonlinear Analysis such as fixed point, optimization, complemen-
tarity and variational inequality ones. For this reason, various aspects of EPs
were investigated by many researchers (see e.g. [1]–[4] and references therein).

One of the most popular approaches to solve various problems of Nonlinear
Analysis is to convert them into a suitable optimization problem with the help
of so-called gap functions. In particular, in [5] this approach was applied for
smooth EPs in a Banach space setting, in [6],[7] we applied this approach to
the problem (1) involving a non-smooth function, and we presented descent
methods, converging strongly to a solution. However, these methods need
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additional strong monotonicity properties to ensure convergence. In [8], it
was suggested to combine the descent methods with regularization technics
for solving monotone variational inequalities. In this paper, combining so the
descent and regularization techniques, we will construct a converging method
for EPs in a common monotone case.

2. Regularization of equilibrium problems

First, we recall several well-known properties of EPs; see e.g. [1]–[3].
The equilibrium bifunction ψ is said to be

(i) monotone, if, for all u, v ∈ E, we have

ψ(u, v) + ψ(v, u) ≤ 0;

(ii) strictly monotone, if, for all u, v ∈ E, u 6= v, we have

ψ(u, v) + ψ(v, u) < 0;

(iii) strongly monotone with constant τ , if, for all u, v ∈ E, we have

ψ(u, v) + ψ(v, u) ≤ −τ‖u− v‖2.

Proposition 2.1. (i) If ψ(·, v) is hemicontinuous for each u ∈ U and ψ is
monotone, then the solutions set of EP(1) coincides with that of the dual prob-
lem

v∗ ∈ U : ψ(u, v∗) ≤ 0 ∀u ∈ U (2)

and it is convex and closed.
(ii) If ψ is strictly monotone, then EP(1) has at most one solution.
(iii) If ψ(·, v) is hemicontinuous for each v ∈ U and ψ is strongly monotone,

then EP(1) has a unique solution.

In this section, in addition to the assumptions of Section 1, we shall suppose
that ψ is monotone, and that ψ(·, v) is hemicontinuous for each v ∈ U. We
denote by U∗ the solutions set of EP(1).

Suppose that there exists an equilibrium bifunction ϕ : E × E → R which
possesses the following properties:

(a) ϕ is strongly monotone with constant τ > 0,
(b) for all u, v ∈ E it holds that ϕ(u, v) ≤ ‖u‖‖v − u‖;
(c) ϕ(·, v) is hemicontinuous for each v ∈ E and ϕ(u, ·) is convex and lower

semicontinuous for each u ∈ E.
For instance, if there exists a hemicontinuous strongly monotone operator

B : E → E∗ such that ‖B‖ ≤ 1, we can set

ϕ(u, v) = 〈B(u), v − u〉. (3)

If E is a Hilbert space, the simplest choice for B is the identity map, i.e

ϕ(u, v) = 〈u, v − u〉.
We now consider the perturbed problem: Find a point uε ∈ U such that

ψ(uε, v) + εϕ(uε, v) ≥ 0 ∀v ∈ U, (4)

where ε is a positive parameter.
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Set Φ(u, v) = ψ(u, v) + εϕ(u, v), then Φ is an equilibrium bifunction, which
is strongly monotone with constant ετ, moreover, Φ(·, v) is hemicontinuous for
each v ∈ E and Φ(u, ·) is convex and lower semicontinuous for each u ∈ E.
Applying now Proposition 2.1 with ψ = Φ, we conclude that EP(4) has always
a unique solution.

Theorem 2.1. If U∗ 6= ∅, then {uε} −→ u∗n as ε −→ 0, where

u∗n ∈ U∗ : ϕ(u∗n, w) ≥ 0 ∀w ∈ U∗. (5)

Proof. First we note that EP(5) has the unique solution u∗n due to Propo-
sition 2.1. If u∗ ∈ U∗, then

ψ(u∗, uε) ≥ 0 and ψ(uε, u
∗) + εϕ(uε, u

∗) ≥ 0.

Adding these inequalities gives

εϕ(uε, u
∗) ≥ −[ψ(u∗, uε) + ψ(uε, u

∗)] ≥ 0.

Since ϕ is strongly monotone it follows that

−εϕ(u∗, uε) = −ε[ϕ(uε, u
∗) + ϕ(u∗, uε)] + εϕ(uε, u

∗) ≥ ετ‖uε − u∗‖2, (6)

and

‖u∗‖ ≥ τ‖uε − u∗‖.
So, the sequence {uε} is bounded, hence it has weak limit points. Note that
in view of Proposition 2.1 (i),

Φ(u, uε) = ψ(u, uε) + εϕ(u, uε) ≤ 0 ∀u ∈ U.

Since Φ(u, ·) is convex and lower semicontinuous, it is weakly lower semicon-
tinuous and, for any limit point u′ of {uε}, we have

0 ≥ lim
ε→0

[ψ(u, uε) + εϕ(u, uε)] = lim
ε→0

ψ(u, uε) = ψ(u, u′) ∀u ∈ U,

i.e. u′ solves problem (2), and, in view of Proposition 2.1 (i), it solves EP
(1) too. So, all the weak limits of {uε} are contained in U∗. Using (6) with
u∗ = u∗n, i.e.

−ϕ(u∗n, uε) ≥ τ‖uε − u∗n‖2,

we have by setting ε → 0

0 ≥ −ϕ(u∗n, u′) ≥ τ‖u′ − u∗n‖2 ≥ 0,

where u′ is any limit point of {uε}. Therefore, lim
ε→0

uε = u∗n, as desired. ¤
The result above is clearly an extension of the known convergence properties

of the Browder-Tikhonov approximations from variational inequalities; see e.g.
[9].
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3. Gap and D-gap functions

From now on, we shall consider EP(1) where

ψ(u, v) = h(u, v) + f(u)− f(v),

h : E × E → R is a differentiable equilibrium bifunction, h(u, ·) is convex
for each u ∈ E and f : E → R is a convex continuous, but not necessarily
differentiable function. In other words, the problem is to find u∗ ∈ U such that

h(u∗, v) + f(u∗)− f(v) ≥ 0 ∀v ∈ U (7)

In what follows we shall consider the simplified variant (3) for the perturba-
tion bifunction ϕ and we shall suppose that B : E → E∗ is a linear continuous
operator which is strongly monotone with constant τ > 0 and ‖B‖ ≤ 1. Then,
the perturbed EP is formulated as follows: Find uε ∈ U such that

h(uε, v) + f(uε)− f(v) + ε〈Buε, v − uε〉 ≥ 0 ∀v ∈ U, (8)

where ε > 0 is a given number.
We denote by U∗ the solutions sets of EP(7). From Proposition 2.1 it follows

that EP(8) has always a unique solution. Moreover, in view of Theorem 2.1,
if U∗ 6= ∅, then {uε} −→ u∗n as ε −→ 0, where

u∗n ∈ U∗ : 〈Bu∗n, w − u∗n〉 ≥ 0 ∀w ∈ U∗.

For brevity, we set hε(u, v) = h(u, v) + ε〈Bu, v − u〉. Thus, hε is the cost
bifunction in the regularized EP. Clearly, hε is strongly monotone. Therefore,
in order to solve EP(8) with fixed ε, we can apply the D-gap function approach
from [6].

Set

Φ(ε)
α (u, v) = −hε(u, v)− f(v) + f(u)− 0.5α‖v − u‖2

and

µ(ε)
α (u) = sup

v∈U
Φ(ε)

α (u, v) = Φ(ε)
α (u, v(ε)

α (u)), (9)

where α is a fixed number. The function µ
(ε)
α can serve as a gap function for

EP(8). Note that the inner maximization problem in (9) always has the unique

solution v
(ε)
α (u), since Φ

(ε)
α (u, ·) is strongly concave and continuous.

The optimality condition for EP(8) and for the inner problem in (9) can be
formulated in the form of the mixed variational inequalities.

Proposition 3.1. [6, Propositions 2.1 and 2.3] (i) An element uε solves EP(8)
if and only if uε ∈ U and

〈∇vhε(uε, uε), v − uε〉+ f(v)− f(uε) ≥ 0 ∀v ∈ U. (10)

(ii) For all u′ ∈ U it holds that

〈∇vhε(u
′, vα(u′)) + α(vα(u′)− u′), v − vα(u′)〉 +

f(v)− f(vα(u′)) ≥ 0 ∀v ∈ U.
(11)

The basic properties of the gap function µ
(ε)
α can be obtained by using the

similar results from [6, Proposition 2.4].
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Proposition 3.2. (i) It holds that µ
(ε)
α (u) ≥ 0 for every u ∈ U .

(ii) If µ
(ε)
α (u) = 0 and u ∈ U , then u ∈ U∗

ε .
(iii) The following properties are equivalent:

(a) u ∈ U∗
ε ; (b) u = v

(ε)
α (u); (c) µ

(ε)
α (u) = 0 and u ∈ U .

Therefore, EP(8) can be in principle replaced with the constrained optimiza-
tion problem:

min
u∈U

→ µ(ε)
α (u).

The gap function µ
(ε)
α is however non-smooth in general and this fact may

create additional difficulties in developing a suitable descent method. In order
to obtain a smooth problem we turn to so-called D-gap functions.

Let us now consider the function

ψ
(ε)
αβ(u) = µ(ε)

α (u)− µ
(ε)
β (u),

where 0 < α < β. In order to obtain the basic properties of ψ
(ε)
αβ we need the

following auxiliary assertion.

Proposition 3.3. For every u ∈ E, we have

‖u− v
(ε)
β (u)‖2 ≤ 2ψ

(ε)
αβ(u)/(β − α) ≤ ‖u− v(ε)

α (u)‖2 (12)

Proof. By definition,

ψ
(ε)
αβ(u) = Φ

(ε)
α (u, v

(ε)
α (u))− Φ

(ε)
β (u, v

(ε)
β (u))

≥ Φ
(ε)
α (u, v

(ε)
β (u))− Φ

(ε)
β (u, v

(ε)
β (u)) ≥ (β − α)‖u− v

(ε)
β (u)‖2/2,

i.e. the left inequality in (12) holds. Similarly, we obtain the right inequality
in (12). ¤

The next proposition, which follows directly from Propositions 3.2 and 3.3,

says that the D-gap function ψ
(ε)
αβ possesses the gap properties not only on the

feasible set U but over the whole space too.

Proposition 3.4. (i) It holds that ψ
(ε)
αβ(u) ≥ 0 for every u ∈ E.

(ii) It is true that ψ
(ε)
αβ(u) = 0 ⇐⇒ u ∈ U∗

ε .

Thus, the perturbed EP(8) is equivalent to the unconstrained minimization
problem

min
u∈E

→ ψ
(ε)
αβ(u). (13)

However, this problem can have in principle local minima which differ from
the global ones. For this reason, it is more suitable to replace EP(8) with the
problem of finding a stationary point of problem (13) that is

∇ψ
(ε)
αβ(u) = 0.

This result needs certain additional assumptions.

(A1) The map ∇vh(·, ·) is uniformly Lipschitz continuous with constant Lh.

(A2) The map ∇uh(·, ·) is continuous.
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(A3) The map ∇uh(u, ·) is monotone for each fixed u ∈ E.

Note that it follows from (A1) that ∇vhε(·, ·) is uniformly Lipschitz continuous
with constant L′h = Lh+1. Also, it follows from (A3) that∇uhε(u, ·) is strongly
monotone for each fixed u ∈ E.

For each u ∈ U , we set

H(u) = ∇vh(u, v)|v=u,

then

Hε(u) = ∇vhε(u, v)|v=u = H(u) + εBu.

Since h is monotone, then so is H (see [11, Proposition 2.1.17]). Moreover,
it follows that the bifunction hε is strongly monotone with constant ετ and so
is the map Hε : E → E∗.

The following results are crucial for applying D-gap functions to nonsmooth
EPs of form (7).

Proposition 3.5. (i) Let (A1) and (A2) hold. Then the function ψ
(ε)
αβ is

continuously differentiable and

∇ψ
(ε)
αβ(u) = ∇uhε(u, v

(ε)
β (u))−∇uhε(u, v

(ε)
α (u))

+ β(u− v
(ε)
β (u))− α(u− v

(ε)
α (u)).

(ii) Let (A1),(A2) and (A3) hold. Then ∇ψ
(ε)
αβ(u) = 0 implies that u ∈ U∗

ε .

The proofs of this results follow directly from Theorems 4.1 and 5.1 in [6],
respectively.

The smoothing property of D-gap functions for mixed variational inequali-
ties was noticed by Konnov [10].

Assertion (ii) shows that the initial non-smooth and constrained problem
(8) can be replaced with the problem of finding a stationary point of a contin-

uously differentiable function ψ
(ε)
αβ . This problem can be solved with the help

of the usual unconstrained optimization methods. We intend to describe such
a method in the next section.

4. Solution method

We first establish an error bound with the help of the D-gap function. Let
us introduce the additional condition.

(A4) The map ∇uh(·, ·) is uniformly Lipschitz continuous on each bounded
subset of E × E.

Lemma 4.1. Let (A1) and (A4) hold. Then

‖u′ − uε‖ ≤ γ̂‖u′ − v
(ε)
β (u′)‖ ∀u′ ∈ E, (14)

where γ̂ = (β + 2L′h)/(ετ), uε solves EP(8).
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Proof. Take an arbitrary point u′ ∈ E. For brevity, set v′ = v
(ε)
β (u′). Adding

(10) with v = v′ and (11) with α = β, v = uε gives

0 ≤ 〈∇vhε(uε, uε)−∇vhε(u
′, v′), v′ − uε〉+ β〈v′ − u′, uε − v′〉

= 〈∇vhε(uε, uε)−∇vhε(u
′, u′), v′ − uε〉

+ 〈∇vhε(u
′, u′)−∇vhε(u

′, v′), v′ − uε〉+ β〈v′ − u′, uε − v′〉.
Since H is monotone, we have

ετ‖uε − u′‖2 ≤ 〈∇vhε(uε, uε)−∇vhε(u
′, u′), u∗ − u′〉

≤ 〈∇vhε(uε, uε)−∇vhε(u
′, u′), v′ − u′〉

+ 〈∇vhε(u
′, u′)−∇vhε(u

′, v′), u′ − uε〉
+ 〈∇vhε(u

′, u′)−∇vhε(u
′, v′), v′ − u′〉

+ β〈v′ − u′, uε − u′〉+ β〈v′ − u′, u′ − v′〉.
Since ∇vhε(u

′, ·) is monotone, it follows that

〈∇vhε(u
′, u′)−∇vhε(u

′, v′), v′ − u′〉 ≤ 0.

Besides, it is clear that β〈v′ − u′, u′ − v′〉 ≤ 0. Taking into account both the
inequalities and (A1),(A4), we obtain

ετ‖u∗ − u′‖2 ≤ L′h‖u∗ − u′‖‖v′ − u′‖
+ L′h‖u∗ − u′‖‖v′ − u′‖+ β‖u∗ − u′‖‖v′ − u′‖,

i.e. (14) holds with γ̂ = (β + 2L′h)/(ετ). ¤
From this proposition, we can get the following global error result for EP(8).

Theorem 4.1. Let (A1) and (A4) hold. Then there exists a constant γ̃ > 0
which is independent of ε and such that

ε2‖u− uε‖2 ≤ γ̃ψ
(ε)
αβ(u) ∀u ∈ U,

where uε solves EP(8).

Proof. Combining Proposition 3.3 and Lemma 4.1, we have

ε2‖u− uε‖2 ≤ [2(β + L′h)
2/(τ 2(β − α)]ψαβ(u) = γ̃ψαβ(u) ∀u ∈ E,

as desired. ¤
Set

r(u) = v(ε)
α (u)− v

(ε)
β (u),

s(u) = α[u− v(ε)
α (u)]− β[u− v

(ε)
β (u)].

Now we state an algorithm for EP(8), which can be viewed as an application
of the algorithm from [6].

Algorithm.

Step 0: Select an initial point u0 ∈ E and parameters ρ > 0, θ ∈ (0, 1), γ > 0.
Set k = 0.
Step 1: If ψ

(ε)
αβ(uk) = 0, then stop, uk is a solution of EP.

Step 2: Set dk = r(uk) + ρs(uk).
Step 3: Compute m as the smallest nonnegative integer such that

ψ
(ε)
αβ(uk + θmdk)− ψ

(ε)
αβ(uk) ≤ −θmγ(‖r(uk)‖+ ρ‖s(uk)‖)2.
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Step 4: Set λk = θm, uk+1 = uk + λkd
k, k = k + 1 and go to Step 1.

A convergence result for this algorithm follows directly from Theorem 6.2
in [6].

Theorem 4.2. Let (A1), (A3) and (A4) hold. Then the sequence {uk}, gen-
erated by the algorithm with ρ ∈ (0, ρ̃) and γ ≤ ετ/2, converges strongly to a
unique solution of EP(8).

Now we can describe a solution method for monotone EP(7).
Choose a number θ > 0, a positive sequence {εl} ↘ 0 and a point z0 ∈ E.

For each l = 1, 2, . . . we have a point zl−1 ∈ E and set ε = εl and u0 = zl−1.
Afterwards we apply the algorithm above and obtain a point

uk ∈ {u ∈ E | ψ(ε)
αβ(u) ≤ ψ

(ε)
αβ(u0)}

such that

ψ
(ε)
αβ(uk) ≤ ε(2+θ). (15)

Then we set zl = uk and l = l + 1.

Theorem 4.3. Let all the assumptions of Theorem 4.2 hold. If EP(7) is
solvable, then

lim
l→∞

zl = u∗n.

Proof. Using Theorem 4.1, we have

ε2
l ‖zl − uεl

‖2 ≤ γ̃ψ
(ε)
αβ(zl).

In view of (15) we now obtain

ε2
l ‖zl − uεl

‖2 ≤ γ̃2ε2+θ
l .

It follows that

‖zl − u∗n‖ ≤ ‖zl − uεl
‖+ ‖uεl

− u∗n‖ ≤ ‖uεl
− u∗n‖+ γ̃

√
εθ

l ,

Due to Theorem 2.1 {uεl
} −→ u∗n, hence we obtain lim

l→∞
zl = u∗n, as desired. ¤

Note that many problems in Mathematical Physics and various saddle point
problems involve non strictly monotone bifunctions; see e.g. [1], [12], [13].
Hence, our approach can be applied for rather broad classes of problems.
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