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UNIVERSAL SEMIGROUPS

Abstract. In this paper we introduce the notion of a universal semi-

group and its dual, the universal cosemigroup. We show that the class

of universal semigroups include the class of monoids and is included in

the class of semigroups with a product that is an epimorphism. Both

inclusions are proper. Semigroups in the category of Banach spaces are

Banach algebras and we show that all Banach algebras with an approx-

imate unit are universal and construct a finite dimensional Banach al-

gebra that has no unit but is universal. The property of being universal

is thus a generalized unit property.
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1. Introduction

The notions of monoids and semigroups are well known and appear
naturally in many contexts. In this paper we introduce a new algebraic
structure, the universal semigroup. Its definition is inspired by the cat-
egorical generalization of monoids and semigroups [1]. In a monoidal
category a semigroup is a pair 〈A, µ〉 where A is an object in the cate-
gory and µ : A⊗ A→ A is a morphism such that the following diagram
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commute

A ⊗ (A ⊗ A)
1A ⊗ µA- A ⊗ A

µA - A

�
�

�
�

�
�

µA ⊗ 1A

�

(A ⊗ A) ⊗ A

αA,A,A

?

where α is the associativity constraint in the category. This definition
does not only include the usual algebraic notion of semigroups and as-
sociative algebras, but also many other algebraic structures. What alge-
braic structure it represents depends on the choice of monoidal category.
Let SA be the diagram we get by removing the right part of the previous
diagram. Thus SA is the diagram

A ⊗ (A ⊗ A)
1A ⊗ µA- A ⊗ A

�
�

�
�

�
�

µA ⊗ 1A

�

(A ⊗ A) ⊗ A

αA,A,A

?

Observe that from a categorical point of view 〈A, µ〉 is a semigroup if
and only if it is a cocone[1] on the diagram SA. In general 〈A, µ〉 is not
a universal cocone on SA. Recall that 〈B, g〉 is a universal cocone on DA

if it is a cocone and if for any cocone 〈C, f〉, there exists a unique map
ϕ : B −→ C such that ϕ ◦ g = f

A ⊗ (A ⊗ A)
1A ⊗ µA- A ⊗ A

g - B

�
�

�
�

�
�

µA ⊗ 1A

� @
@

@
@

@
@

∀f

R
(A ⊗ A) ⊗ A

αA,A,A

?
C

∃!φ

?

The universal cocone could be though of as the ”smallest” cocone on

the diagram, the one that gives the best ”commutative fit” to the dia-

gram. In this paper we define 〈A, µ〉 to be a universal semigroup if it is a

universal cocone on the diagram SA and show that the class of universal

semigroups includes the class of monoids, but that there are universal

semigroups that are not monoids. For any monoid the product is an epi-

morphism. We show that this also holds for any universal semigroup but

that there are semigroups that are not universal and where the product

is an epimorphism. Thus the class of universal semigroups includes all
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monoids and is included in the class of semigroups with products that

are epimorphisms.

The category of Banach spaces is a monoidal category where the monoid-

al structure is determined by the projective tensor product of Banach

spaces. In this category semigroups are Banach algebras. We show that

all Banach algebras with an approximate unit are universal and that

there are universal Banach algebras that does not have an approximate

unit. All C∗−algebras admit an approximate unit[2] and are thus univer-

sal as are L1 group algebras of locally compact topological groups since

they all admit an approximate unit[3].

These results leads to the idea that the universal cocone property for

semigroups is a generalized unit condition. Universal semigroups could

be expected to share properties with monoids that general semigroups

does not.

Note that the property of being a universal semigroup is a typical

categorical property in that it depends on which category the semigroup

is placed in. One can thus not state that a semigroup is universal without

specifying which category we refer to. This may appear a little strange if

one is not familiar with the categorical point of view. It is however a fact

that even such well known properties as associativity and commutativity

of algebraic structures actually depends on the categorical context. It

has for instance been shown that both quaternions and Cayley numbers

are commutative, associative algebras[6] if placed in the right categories.

2. Universal semigroups

In order to give a categorical definition of universal semigroups or

even of semigroups we need the notion of a category with an associative

product, or a semimonoidal category.

Definition 1. A semimonoidal category is a triple 〈 C,⊗, α〉, where ⊗ : C

× C −→ C is a bifunctor on C and α is a natural isomorphism

α : ⊗ ◦ (1C ×⊗) −→ ⊗ ◦ (⊗× 1C),

such that the following MacLane coherence conditions

αA⊗B,C,D ◦ αA,B,C⊗D = (αA,B,C ⊗ 1D) ◦ αA,B⊗C,D ◦ (1A ⊗ αB,C,D),

are satisfied for all objects A,B,C,D

Recall that naturality means that the following identities

((f ⊗ g) ⊗ h) ◦ αA,B,C = αA′,B′,C′ ◦ (f ⊗ (g ⊗ h)),

holds for all choices of arrows f : A −→ A′, g : B −→ B′ , h : C −→ C ′.



110 PER K. JAKOBSEN AND V.V. LYCHAGIN

The product ⊗ is thus not strictly associative but associative up to

isomorphism. A semimonoidal category contains the structures we need

to define semigroups[1].

Definition 2. A semigroup 〈A, µA〉 in a semimonoidal category is an

object A and a morphism µA : A ⊗ A −→ A such that the following

diagram commute

A ⊗ (A ⊗ A)
1A ⊗ µA- A ⊗ A

µA - A

�
�

�
�

�
�

µA ⊗ 1A

�

(A ⊗ A) ⊗ A

αA,A,A

?

.

Let SA be the previous diagram with the right-hand node removed

A ⊗ (A ⊗ A)
1A ⊗ µA- A ⊗ A

�
�

�
�

�
�

µA ⊗ 1A

�

(A ⊗ A) ⊗ A

αA,A,A

?

.

Definition 3. A universal semigroup in a semimonoidal category 〈 C,⊗, α〉

is a universal cocone 〈A, µA〉 on the diagram SA.

2.1. Examples from Sets and general monoidal categories. Let us

consider a few examples from the category Sets with the usual monoidal

structure. A monoid 〈A, µ, e〉 in Sets is a semigroup 〈A, µ〉 with a

neutral element e such that µ(e, x) = µ(x, e) = x for all x in A. Let

〈C, f〉 be any cocone on SA. This means that f ◦ (1×µ) = f ◦ (µ× 1) or

f(x, yz) = f(xy, z) for all x, y, z in A. Here we write xy = µ(x, y).The

condition for 〈A, µ〉 to be a universal cocone on SA is therefore that the

equation

ϕ ◦ µ = f,

has a unique solution for all f such that f(x, yz) = f(xy, z). Let ϕ and ψ

be two solutions. Then we have ϕ(x) = ϕ(xe) = f(x, e) = ψ(xe) = ψ(x)

for all x in A. So there can be at most one solution. Define a map ϕ :

A −→ C by ϕ(x) = f(x, e). Then we have

(ϕ ◦ µ)(x, y) = ϕ(xy) = f(xy, e) = f(x, ye) = f(x, y)
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The map ϕ is therefore a solution and we have proved the following

proposition

Proposition 4. Let 〈A, µ, e〉 be a monoid in Sets. Then 〈A, µ〉 is a

universal semigroup.

The class of Universal semigroups in Sets therefore includes all monoids.

This is a proper inclusion, there are universal semigroups that are not

monoids as the following two examples show.

Let A = {a, b} be a semigroup with two elements and table of multi-

plication given by
µ a b

a a b

b a b
The conditions on f are for this semigroup given by f(a, a) = f(b, a),

f(a, b) = f(b, b). Let ϕ1 and ϕ2 be two solutions of ϕ ◦ µ = f . Then

we must have ϕ1(a) = ϕ1(µ(a, a)) = f(a, a) = ϕ2(µ(a, a)) = ϕ2(a) and

ϕ1(b) = ϕ1(µ(b, b)) = f(b, b) = ϕ2(µ(b, b)) = ϕ2(b). So ϕ1 = ϕ2 and

there is at most one solution. Define a map ϕ : A −→ B by ϕ(a) =

f(a, a), ϕ(b) = f(b, b). Then we have

ϕ(µ(a, a)) = ϕ(a) = f(a, a)

ϕ(µ(a, b)) = ϕ(b) = f(b, b) = f(a, b)

ϕ(µ(b, a)) = ϕ(a) = f(a, a) = f(b, a)

ϕ(µ(b, b)) = ϕ(b) = f(b, b)

This proves that ϕ is the unique solution to the equation ϕ ◦ µ = f

and as a consequence 〈A, µ〉 is a universal semigroup. On the other hand

〈A, µ〉 does not have a neutral element and is therefore not a monoid.

As a second example of a universal semigroup in Sets that is not a

monoid let us consider a set A and the projection on the first factor

µ : A× A→ A. Thus µ(x, y) = x. Then we evidently have

[µ ◦ (µ× 1)](x, y, z) = µ(x, z) = x

[µ ◦ (1 × µ)](x, y, z) = µ(x, y) = x

so 〈A, µ〉 is a semigroup.The multiplication clearly does not have a unit,

so 〈A, µ〉 is not a monoid. Let now 〈C, f〉 be a cocone on SA. Then

f : A × A → C and we have the condition f ◦ (1 × µ) = f ◦ (µ × 1).

This means that f(x, y) = f(x, z) for all x, y, z. If ϕ is any solution

of ϕ ◦ µ = f we must have ϕ(x) = ϕ(µ(x, y)) = f(x, y), so there can
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be at most one solution. Let x0 be any element in A. Define the map

ϕ : A −→ C by ϕ(x) = f(x, x0). Then we have

ϕ(µ(x, y)) = ϕ(x) = f(x, x0) = f(x, y)

so ϕ is a solution. Therefore 〈A, µ〉 is a universal semigroup that is not a

monoid. Projection on the second factor would in a similar way produce

a universal semigroup.

We will now prove a few simple results that holds for universal semi-

groups in any semimonoidal category.

Proposition 5. Let 〈A, µA〉 be a universal semigroup. Then the arrow

µA is epi.

Proof. Let B be any object in the category and let f, g : A −→ B be

two arrows and assume that f ◦ µA = g ◦ µA. Let h = f ◦ µA. Then the

equation

ϕ ◦ µA = h

has both f and g as solutions. Since 〈A, µA〉 is a universal semigroup we

must have f = g and this proves that µA is epi. �

Any semigroup in Sets with a nonsurjective product is therefore not

a universal semigroup in Sets.The semigroup A = {a, b, c} with table of

multiplication given by
µ a b c

a b c c

b c c c

c c c c
does not have a surjective multiplication and is therefore not universal.

We will next show that monoids are universal semigroups in any semi-

monoidal category. In order to define the notion of a monoid in a semi-

monoidal category we need a neutral object for the product ⊗. This

leads to the well known notion of a monoidal category.

Definition 6. Let C be a category and let e be a object in C. Define two

functors Le, Re : C −→ C on objects and morphisms by

Le(A) = e⊗ A,

Le(f) = 1e ⊗ f,

Re(A) = A⊗ e,

Re(f) = f ⊗ 1e.

A monoidal category is a 6 tuple 〈 C,⊗, e, α, β, γ〉 where 〈 C,⊗, α〉 is a

semimonoidal category and β : Le −→ 1C and γ : Re −→ 1C are natural
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isomorphisms such that the following identities

(γA ⊗ 1B) ◦ αA,e,B = (1A ⊗ βA),

βe = γe,

holds for all objects A and B.

Naturality of β, γ means that the following identities

f ◦ βa = βB ◦ (1e ⊗ f),

f ◦ γA = γB ◦ (f ⊗ 1e),

holds for all morphism f : A −→ B.

These are the MacLane coherence conditions for a monoidal category.

They ensure that all diagrams generated using the functors ⊗, Le, Re and

the natural isomorphisms α, β, γ will commute.

Definition 7. A monoid in a monoidal category is a triple 〈A, µA, uA〉,

where 〈A, µA〉 is a semigroup in the category and where uA : e −→ A is

a morphism such that the following unit condition holds

µA ◦ (1A ⊗ uA) = γA

µA ◦ (uA ⊗ 1A) = βA

We can now prove that monoids are universal semigroups in any monoidal

category.

Proposition 8. Let 〈A, µA, uA〉 be a monoid in a monoidal category C.

Then 〈A, µA〉 is a universal semigroup.

Proof. We want to show that 〈A, µ〉 is a universal cocone on the diagram

SA.

A ⊗ (A ⊗ A)
1A ⊗ µA- A ⊗ A

�
�

�
�

�
�

µA ⊗ 1A

�

(A ⊗ A) ⊗ A

αA,A,A

?

This means that the equation

ϕ ◦ µA = f

should have a unique solution for all f : A ⊗ A −→ A such that f ◦

(1A ⊗ µA) = f ◦ (µA ⊗ 1A) ◦ αA,A,A. Define a map δA : A → A ⊗ A by
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δA = (uA ⊗ 1A) ◦ β−1
A . Then we have

µA ◦ δA = µA ◦ (uA ⊗ 1A) ◦ β−1
A = βA ◦ β−1

A = 1A

This identity show that the equation ϕ ◦ µ = f can have at most one

solution and this solution must be ϕ = f ◦ δA. The proof is complete if

we can show that this ϕ really is a solution. From the naturality of α, β

and the MacLane coherence conditions we have the following identities

(uA ⊗ (1A ⊗ 1A)) ◦ α−1
e,A,A = α−1

A,A,A ◦ ((uA ⊗ 1A) ⊗ 1A),

β−1
A ◦ µA = (1e ⊗ µA) ◦ β−1

A⊗A,

β−1
A⊗A = α−1

e,A,A ◦ (β−1
A ⊗ 1A).

But then we have

ϕ ◦ µA = f ◦ δA ◦ µA

= f ◦ (uA ⊗ 1A) ◦ β−1
A ◦ µA

= f ◦ (uA ⊗ 1A) ◦ (1e ⊗ µA) ◦ β−1
A⊗A

= f ◦ (uA ⊗ µA) ◦ β−1
A⊗A

= f ◦ (1A ⊗ µA) ◦ (uA ⊗ (1A ⊗ 1A)) ◦ β−1
A⊗A

= f ◦ (1A ⊗ µA) ◦ (uA ⊗ (1A ⊗ 1A)) ◦ α−1
e,A,A ◦ (β−1

A ⊗ 1A)

= f ◦ (1A ⊗ µA) ◦ α−1
A,A,A ◦ ((uA ⊗ 1A) ⊗ 1A) ◦ (β−1

A ⊗ 1A)

= f ◦ (µA ⊗ 1A) ◦ ((uA ⊗ 1A) ⊗ 1A) ◦ (β−1
A ⊗ 1A)

= f ◦ (µA ⊗ 1A) ◦ (δA ⊗ 1A)

= f,

so ϕ = f ◦ δA is a solution �

Proposition 5 and 8 show that in any monoidal category the class of

universal semigroups includes all monoids and is included in the class of

semigroups where the product is an epimorphism. The following propo-

sition show that one can construct simple universal semigroups in most

monoidal categories.

Proposition 9. Let A be a object and assume that there is an arrow

εA : A −→ e from A to the neutral object e in the category. Define an

arrow µA : A⊗ A −→ A by

µA = βA ◦ (εA ⊗ 1A)

Then 〈A, µA〉 is a semigroup. It is a universal semigroup if µA has a

right inverse
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Proof. It is easy to show, using the monoidal structure and naturality,

that the following set of identities holds

(βA ⊗ 1A) ◦ ((1e ⊗ εA) ⊗ 1A) = (εA ⊗ 1A) ◦ (βA ⊗ 1A),

((εA ⊗ εA) ⊗ 1A) ◦ αA,A,A = αe,e,A ◦ (εA ⊗ (εA ⊗ 1A)),

(βA ⊗ 1A) ◦ αe,e,A = (1e ⊗ βA).

Using these identities we have

µl
A ◦ (µl

A ⊗ 1A) ◦ αA,A,A

= βA ◦ (εA ⊗ 1A) ◦ (βA ◦ (εA ⊗ 1A) ⊗ 1A) ◦ αA,A,A

= βA ◦ (εA ⊗ 1A) ◦ (βA ⊗ 1A) ◦ ((εA ⊗ 1A) ⊗ 1A) ◦ αA,A,A

= αA ◦ (βe ⊗ 1A) ◦ ((1e ⊗ εA) ⊗ 1A) ◦ ((εA ⊗ 1A) ⊗ 1A) ◦ αA,A,A

= βA ◦ (βe ⊗ 1A) ◦ ((εA ⊗ εA) ⊗ 1A) ◦ αA,A,A

= βA ◦ (βe ⊗ 1A) ◦ αe,e,A ◦ (εA ⊗ (εA ⊗ 1A))

= βA ◦ (1e ⊗ βA) ◦ (εA ⊗ (εA ⊗ 1A))

= βA ◦ (εA ⊗ βA ◦ (εA ⊗ 1A))

= βA ◦ (εA ⊗ 1A) ◦ (1A ⊗ βA ◦ (εA ⊗ 1A))

= µl
A ◦ (1A ⊗ µl

A),

and this proves that 〈A, µA〉 is a semigroup. In order to prove that it is

universal when µA has a right inverse we have to prove that the equation

ϕ ◦ µA = f has a unique solution ϕ : A −→ B for all f : A ⊗ A −→ B

such that f ◦ (1A ⊗ µA) = f ◦ (µA ⊗ 1A) ◦ αA,A,A. Let the right inverse

for µA be δA. We thus have the identity µA ◦ δA = 1A. But then the only

possible solution of the equation ϕ ◦ µA = f is ϕ = f ◦ δA. We must now

show that this in fact is a solution. The following identities follow from

unit coherence and naturality

δA ◦ βA = βA⊗A ◦ (1e ⊗ δA),

αe,A,A ◦ (εA ⊗ (1A ⊗ 1A)) = ((εA ⊗ 1A) ⊗ 1A) ◦ αA,A,A,

(βA ⊗ 1A) ◦ αe,A,A = βA⊗A.
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But then we have

f ◦ δl
A ◦ µl

A

= f ◦ δl
A ◦ βA ◦ (εA ⊗ 1A)

= f ◦ βA⊗A ◦ (1e ⊗ δl
A) ◦ (εA ⊗ 1A)

= f ◦ βA⊗A ◦ (εA ⊗ δl
A)

= f ◦ βA⊗A ◦ (εA ⊗ (1A ⊗ 1A)) ◦ (1A ⊗ δl
A)

= f ◦ (βA ⊗ 1A) ◦ αe,A,A ◦ (εA ⊗ (1A ⊗ 1A)) ◦ (1A ⊗ δl
A)

= f ◦ (βA ⊗ 1A) ◦ ((εA ⊗ 1A) ⊗ 1A) ◦ αA,A,A ◦ (1A ⊗ δl
A)

= f ◦ (µl
A ⊗ 1A) ◦ αA,A,A ◦ (1A ⊗ δl

A)

= f ◦ (1A ⊗ µl
A) ◦ (1A ⊗ δl

A)

= f.

�

A special case of the previous proposition is

Corollary 10. Assume that there exists a map uA : e −→ A such that

εA ◦ uA = 1e. Then 〈A, µA〉 is a universal semigroup.

Proof. Define an arrows δA : A −→ A⊗ A by

δA = (uA ⊗ 1A) ◦ β−1
A

Then we have

µA ◦ δA = βA ◦ (εA ⊗ 1A) ◦ (uA ⊗ 1A) ◦ βA

= βA ◦ (εA ◦ uA ⊗ 1A) ◦ β−1
A

= βA ◦ β−1
A = 1A.

But this show that δA is the right inverse of µA and the result follows

from the previous proposition. �

In a similar way we find that 〈A, µA〉 is a universal semigroup if we

define

µA = βA ◦ (1A ⊗ εA)

and assume that µA has a right inverse. Note that in general the universal

semigroups described in these propositions are not monoids.

Let us consider a few examples of the previous construction. Let us

first consider the case of Sets with the cartesian product as monoidal

structure and neutral object given by the set T = {∗}. Since T is the

terminal object in Sets there exists a unique map εA : A −→ T from any

set A to the terminal T . This map is obviously defined by εA(x) = ∗ for
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all x ∈ A. In Sets the natural isomorphism βA : T ×A −→ A is given by

βA(∗, x) = x. Let x0 be any element in A and define a map uA : T −→ A

by uA(∗) = x0. Then εA ◦ uA = 1e and we can conclude that 〈A, µA〉 is a

universal semigroups. The product is explicitly given by

µA(x, y) = [βA ◦ (εA × 1A)](x, y) = βA(∗, y) = y

so µA is the projection on the second factor. We have previously shown

directly that these maps gives universal semigroups.

Let V ectRbe the category of real vector spaces with linear maps as

arrows.In this category tensor product of vector spaces ⊗ = ⊗R is a

monoidal structure. The neutral object is R and the arrows βA and its

inverse β−1
A are given by

βA(r ⊗ a) = ra

β−1
A (a) = 1 ⊗ a

where r is any real number, a a element in A and 1 is the unit in R. Note

that a semigroup in this category is a real associative algebra.

Let A be a vector space with a positive definite inner product IA :

A⊗ A −→ R and let a ∈ A. Define a map εA : A −→ R by

εA(b) = IA(a⊗ b)

This is clearly a linear map. Define now the map µA : A ⊗ A −→ A by

µA = βA ◦ (εA ⊗ 1A). Explicitly we have

µA(x⊗ y) = βA(IA(a⊗ x) ⊗ y) = IA(a⊗ x)y

Then the general theory show that 〈A, µA〉 is a semigroup in V ectR.. Now

define a map uA : R −→ A by

uA(r) =
ra

IA(a, a)

Then uA is a linear map and

(εA ◦ uA)(r) = εA(
ra

IA(a, a)
) =

r

IA(a, a)
εA(a) = r

so we have εA ◦ uA = 1 and the semigroup 〈A, µA〉 is in fact a univer-

sal semigroup. This example be generalized in the following way. We

consider a subcategory of topological vector spaces over a field F that is

closed with respect to tensor product. Such subcategories certainly ex-

ists. Let α be a continuous linear functional α : A −→ R. The morphism

εA : A −→ F is now defined by

εA(a) = α(a)
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and the product in the semigroup 〈A, µA〉 is

µA(a⊗ a′) = α(a)b

The resulting semigroup is a universal semigroup because the continuous

linear map uA : F −→ A defined by uA(r) = r(α(b))−1b,where b ∈ A and

α(b) 6= 0, satisfy εA ◦ uA = 1A.

We have seen that in general the class of universal semigroups is strictly

larger than the class of monoids. We also know that the class of universal

semigroups is included in the class of semigroups with a product rule that

is an epimorphisms. In general this last inclusion is also proper as the

following example show.

Let A be a real vector space of dimension three with basis {i, j, k}.

Define a product, µ on A by the following multiplication table

µ i j k

i i 0 k

j j 0 0

k 0 0 0

.

By direct calculation one can show that 〈A, µ〉 is a semigroup in V ectR,or

in other words, a real associative algebra. The product is clearly an

epimorphism. The chosen basis for A induce in the usual way a basis for

A⊗A. Let now V be a one dimensional vector space and let f : A⊗A →

V be a linear map that is zero on all basis vectors except on the vector

j ⊗ k where it has a nonzero value. It is a straight forward calculation

to show that 〈V, f〉 is a cocone on the diagram SA. If ϕ is a solution of

the equation ϕ ◦ µ = f we must have

ϕ(i) = ϕ(µ(i⊗ i)) = f(i⊗ i) = 0,

ϕ(j) = ϕ(µ(j ⊗ i)) = f(j ⊗ i) = 0,

ϕ(k) = ϕ(µ(i⊗ k)) = f(i⊗ k) = 0,

so ϕ = 0. But ϕ = 0 is not a solution of the equation ϕ ◦ µ = f because

f 6= 0. The equation ϕ ◦ µ = f therefore have no solution for the cocone

〈V, f〉 and then by definition 〈A, µ〉 is not a universal algebra.

2.2. Examples from the category of Banach spaces. Let B be the

category where objects are Banach spaces and where morphisms are

bounded linear maps. The Banach spaces are vector spaces over a field

F where F is R or C. We introduce a monoidal structure in this cate-

gory by defining X ⊗ Y to be the projective tensor product[4] of Banach

spaces. The unit object for this product is the Banach space F and the

natural isomorphisms α,β and γ are the standard ones. The standard
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interpretation of the projective tensor product in terms of properties of

bilinear maps[5] shows that 〈A, µ〉 is a semigroups in B iff it is a Banach

algebra. Recall that an approximate unit[3] in a Banach algebra A is

a net {uλ}λ∈Λ such that ‖uλ‖ ≤ 1 for all λ ∈ Λ and such that for all

elements a ∈ A we have

lim
λ
uλa = a,

lim
λ
auλ = a.

Recall that a morphism f : X → Y in any category is a epimorphism

iff for all morphisms g, h : Y → Z with f ◦ g = f ◦ h we have g = h. In

the category of Sets epimorphisms are exactly the surjective maps. In

the category of Banach spaces it is easy to show that any morphism with

a dense image is a epimorphism. Using this observation we first prove

the following result

Proposition 11. Let 〈A, µ〉 be a Banach algebra with an approximate

unit. Then µ : A⊗ A→ A is a epimorphism.

Proof. Let m = µ(A ⊗ A) ⊂ A be the image of µ. We must show that

the image is dense in A. Let a ∈ A and let {uλ} be an approximate unit

in A. Define a net aλ = uλa in A. Then we have by the defining property

of an approximate unit that

lim
λ
aλ = a.

But this means that the closure of m is A and thus that m is dense in

A. �

Therefore Banach algebras with an approximate unit is included in the

class of algebras where the product is an epimorphism. We now use this

result to prove our main result in this section.

Theorem 12. Let 〈A, µ〉 be a Banach algebra with an approximate unit.

Then 〈A, µ〉 is a universal semigroup in the category of Banach spaces.

Proof. Let {uλ}λ∈Λ be the approximate unit. For each λ ∈ Λ define a

linear map δλ : A→ A⊗ A by

δλ(a) = uλ ⊗ a.

Then since the projective norm is a cross norm we have

‖δλ(a)‖ = ‖uλ ⊗ a‖ = ‖uλ‖‖a‖ ≤ ‖a‖,
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and therefore each δλ is bounded with ‖δλ‖ ≤ 1. Let now B be any other

Banach space and let f : A ⊗ A → B be a bounded linear map that

satisfy

f ◦ (µ⊗ 1A) = f ◦ (1A ⊗ µ).

Note that because of linearity and continuity of f this condition holds

iff

f(ab⊗ c) = f(a⊗ bc),

holds for all elements a, b and c in A.

We must show that the equation ϕ ◦ µ = f has one and only one

solution. We know from proposition 11 that µ is a epimorphism so there

can be at most one solution. For each λ ∈ Λ define ϕλ : A→ B by

ϕλ = f ◦ δλ.

This map is continuous and

‖ϕλ‖ ≤ ‖f‖‖δλ‖ ≤ ‖f‖,

so the family of maps {ϕλ}λ∈Λ is uniformly bounded in λ by ‖f‖. Let

m = {
∑

n

anbn | an, bn ∈ A} ⊂ µ(A⊗ A).

Then for a ∈ m we have

ϕλ(a) = ϕλ(
∑

n

anbn) = f(uλ ⊗
∑

n

anbn) = f(
∑

n

uλan ⊗ bn),

and therefore by continuity

lim
λ
ϕλ(a) = lim

λ
f(

∑

n

uλan⊗bn) = f(
∑

n

lim
λ

(uλan)⊗bn) = f(
∑

n

an⊗bn).

Thus limλ ϕλ(a) exists for all a ∈ m. We know that

R = {
∑

n

an ⊗ bn | an, bn ∈ A},

is dense in A⊗A. Therefore m = µ(R) is dense in A and so m is dense in

A. Let now a ∈ A. Then there exists a sequence {an} in m with an → a

and if λ, β ∈ Λ we have

‖ϕλ(a) − ϕβ(a)‖ = ‖ϕλ(a) − ϕλ(an) + ϕλ(an) − ϕβ(a) − ϕβ(an) + ϕβ(an)‖

≤ ‖ϕλ(a− an)‖ + ‖ϕλ(an) − ϕβ(an)‖ + ‖ϕβ(a) − ϕβ(an)‖

≤ (‖ϕλ‖ + ‖ϕβ‖)‖a− an‖ + ‖ϕλ(an) − ϕβ(an)‖

≤ 2‖f‖‖a− an‖ + ‖ϕλ(an) − ϕβ(an)‖.



UNIVERSAL SEMIGROUPS 121

Let now n be fixed and so large that 2‖f‖‖a−an‖ <
1
2
ε. Since an ∈ m

we have

an =

p∑

j=1

an
j b

n
j ,

and therefore

ϕλ(an) − ϕβ(an) = f(uλ ⊗

p∑

j=1

an
j b

n
j ) − f(uβ ⊗

p∑

j=1

an
j b

n
j )

= f(

p∑

j=1

(uλa
n
j − uβa

n
j ) ⊗ bnj ),

and so

‖ϕλ(an) − ϕβ(an)‖ ≤ ‖f‖Mn

p∑

j=1

‖uλa
n
j − uβa

n
j ‖,

where we have assumed without loss of generality that ‖bnj ‖ ≤ Mn for

j = 1...p. But uλ is an approximate unit and therefore uλa
n
j converges

∀j and is thus Cauchy since A is a Banach space. But then there exists

λj ∈ Λ j = 1..p such that

‖uλa
n
j − uβa

n
j ‖ <

1

2pε‖f‖Mn

.

Since Λ is a directed set there exists a element λ0 such that all these

inequalities holds when λ, β > λ0. But then for such λ and β we have

using the previously derived inequalities that

‖ϕλ(a) − ϕβ(a)‖ < ε,

and this means that the net {ϕλ(a)}λ∈Λ is Cauchy and therefore con-

verges. We can now define a map ϕ : A→ B by

ϕ(a) = lim
λ
ϕλ(a).

This map is linear and bounded because

‖ϕ(a)‖ = lim
λ

‖ϕλ(a)‖ ≤ ‖f‖‖a‖.

But for any element ξ =
∑

j aj ⊗ bj in the dense set R ⊂ A⊗A we have

ϕ(µ(ξ)) = lim
λ
ϕλ(

∑

j

ajbj) = lim
λ
f(

∑

j

uλaj⊗bj) = f(
∑

j

aj⊗bj) = f(ξ).

Therefore the bounded maps ϕ ◦ µ and f agree on a dense set and we

can conclude that

ϕ ◦ µ = f,

and this shows that the algebra A is universal. �
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Universal Banach algebras thus include all Banach algebras with an

approximate unit. On the other hand it is not hard to construct Banach

algebras without unit that are universal, so the inclusion is proper. Let

〈A, µ〉 be a three dimensional algebra with basis {i, j, k} and table of

multiplication given by
µ i j k

i i 0 0

j j 0 0

k 0 0 k

.

By direct calculation one can easily show that this algebra is universal

but does not have a unit (or approximate unit).

3. Universal cosemigroups

To any categorical concept described in terms of diagrams there is
a dual concept that we get by reversing all arrows. For the notion of
a universal semigroup this procedure leads to the notion of a universal
cosemigroup. Let 〈C,⊗, α〉 be a semimonoidal category. A cosemigroup
in C is a pair 〈A, δA〉 where A is a object in C and δA : A −→ A⊗A is a
arrow in C and where the following diagram commute.

A ⊗ (A ⊗ A) �1A ⊗ δA
A ⊗ A �δA

A

	�
�

�
�

�
�

δA ⊗ 1A

(A ⊗ A) ⊗ A

αA,A,A

?

Let CSA be the diagram we get by removing the right-hand node.

A ⊗ (A ⊗ A) �1A ⊗ δA
A ⊗ A

	�
�

�
�

�
�

δA ⊗ 1A

(A ⊗ A) ⊗ A

αA,A,A

?

Evidently 〈A, δA〉 is a cosemigroup iff 〈A, δA〉 is a cone on the diagram

CSA. In general a cosemigroup does not give a universal cone.

By definition 〈B, f〉 is a universal cone on the diagram CSA if it is a

cone and if for all cones 〈C, g〉 there exists a unique arrow ϕ : C −→ B

in C such that

f ◦ ϕ = g
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Definition 13. A universal cosemigroup in a semimonoidal category

〈 C,⊗, α〉 is a cosemigroup 〈A, δA〉 such that 〈A, δA〉 is a universal co-

cone on the diagram CSA.

3.1. Examples from Sets and general monoidal categories. We

have the following result that show that not all cosemigroups are univer-

sal.

Proposition 14. Let 〈A, δA〉 be a universal cosemigroup. Then δA is a

monomorphism.

Proof. Let B be any object in the category and let f, g : B −→ A be

two arrows and assume that δA◦ f = δA ◦ g. Let h = δA ◦ f . Then the

equation

δA ◦ ϕ = h

has both f and g as solutions. Since 〈A, δA〉 is a universal cosemigroup

we must have f = g and this proves that δA is a monomorphism. �

We will now illustrate this definition with several examples. Let us first

work in the category Sets. This is a monoidal category with cartesian

product as product bifunctor and with trivial associativity constraint.

Let A be any set and define a map δA : A −→ A× A by δA(x) = (x, x).

This is the diagonal map in Sets. We have

[(1A × δA) ◦ δA](x) = (1A × δA)(x, x) = (x, x, x)

[(δA × 1A) ◦ δA](x) = (δA × 1A)(x, x) = (x, x, x)

so 〈A, δA〉 is a cone. Let 〈B, f〉 be any cone and consider the system

δA ◦ ϕ = f

Since 〈B, f〉 is a cone we have (1A × δA) ◦ f = (δA × 1A) ◦ f . We have

f : B −→ A × A so we can write f(x) = (f1(x), f2(x)). The cone

condition then gives

(f1(x), f2(x), f2(x)) = (f1(x), f1(x), f2(x))

so we must have f1(x) = f2(x)for all x in A. Let ϕ be any solution to

δA ◦ ϕ = f . Then we have (ϕ(x), ϕ(x)) = (f1(x), f2(x)) or ϕ = f1. So

there is at most one solution. Let ϕ = f1 then we find

[δA ◦ ϕ](x) = δA(f1(x)) = (f1(x), f1(x)) = (f1(x), f2(x)) = f(x)

so ϕ = f1 is a solution. We have therefore proved

Proposition 15. Let δA : A −→ A × A be the diagonal map of sets.

Then 〈A, δA〉 is a universal cosemigroup in Sets.
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As our next example let us consider a pointed set. This is a set A with

a chosen point x0 ∈ A. Define a map δA : A −→ A×A by δA(x) = (x0, x).

Then we have

[(1A × δA) ◦ δA](x) = (1A × δA)(x0, x) = (x0, x0, x)

[(δA × 1A) ◦ δA](x) = (δA × 1A)(x0, x) = (x0, x0, x)

so 〈A, δA〉 is a cone. Let 〈B, f〉 be any cone. This means that f :

B −→ A × A and (1A × δA) ◦ f = (δA × 1A) ◦ f . As above we write

f(x) = (f1(x), f2(x)) and the cone condition becomes

(f1(x), x0, f2(x)) = (x0, f1(x), f2(x))

so we must have f1(x) = x0. But then we have

[δA ◦ ϕ](x) = δA(ϕ(x)) = (x0, ϕ(x)) = (f1(x), f2(x)) = f(x)

if we choose ϕ(x) = f2(x). This is clearly the only solution. We therefore

have

Proposition 16. Let 〈A, x0〉 be a pointed set. Define δA : A −→ A× A

by δA(x) = (x0, x). Then 〈A, δA〉 is a universal cosemigroup.

The map δA : A −→ A×A defined by δA(x) = (x, x0) will similarly give

a universal cosemigroup. If 〈A, µA, e〉 is a monoid we get two universal

cosemigroups by choosing x0 = e.

Finite sets offer many examples of universal cosemigroups. Consider

the set A = {a, b, c}. Define δA : A −→ A× A by

δA(a) = (a, a)

δA(b) = (b, a)

δA(c) = (c, c)

Then we have

[(δA × 1A) ◦ δA](a) = (δA × 1A)(a, a) = (a, a, a)

[(1A × δA) ◦ δA](a) = (1A × δA)(a, a) = (a, a, a)

[(δA × 1A) ◦ δA](b) = (δA × 1A)(b, a) = (b, a, a)

[(1A × δA) ◦ δA](b) = (1A × δA)(b, a) = (b, a, a)

[(δA × 1A) ◦ δA](c) = (δA × 1A)(c, c) = (c, c, c)

[(1A × δA) ◦ δA](c) = (1A × δA)(c, c) = (c, c, c)

so 〈A, δA〉 is a cone. Next let 〈B, f〉 be any cone. This implies that

(δA × 1A) ◦ f = (1A × δA) ◦ f . Direct computation show that (δA ×

1A)(x, y) = (1A × δA)(x, y) iff (x, y) is a element in the range of δA. We
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therefore can conclude that 〈B, f〉 is a cone if the image of f is included

in the range of δA. Since δA is injective there is at most one solution to

the equation δA ◦ ϕ = f . Let b be any element in B. Then there exists

a unique element a in A such that δA(a) = f(b). This is true since the

range of f is equal to the range of δA and δA is injective. Define ϕ(b) = a,

then ϕ is well defined and clearly a solution to the equation δA ◦ ϕ = f .

This proves that 〈A, δA〉 is a universal cosemigroup.

We have seen that a necessary condition for a cosemigroup 〈A, δA〉 to

be a universal cosemigroup is that δA is a monomorphism. This is not

sufficient in general. Let A = {a, b, c} and define a map δA : A −→ A×A

by

δA(a) = (a, a),

δA(b) = (b, a),

δA(c) = (a, c).

The map δA is a monomorphism and a direct calculation like the one

above show that 〈A, δA〉 is a cosemigroup but that it is not a universal

cosemigroup. In general one can prove by dualizing the proof for monoids

that comonoid in a monoidal category are universal cosemigroups. Thus

universal cosemigroups is a class that contains all comonoids and is in-

cluded in all cosemigroups with a coproduct that is a monomorphism.
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[4] G. Köthe, Topological Vector Spaces II, Springer,1979.

[5] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Memoires
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