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Abstract. A class of matrix polynomials having some dominant prop-

erties is described, and some characteristic properties of such polyno-

mials have been found. Reduction of integral and integro-differential

equations having singular matrices at the main part to systems with non-

singular ones is proposed. For systems of nonlinear finite-dimensional

equations with singular Jacobi matrix, the definition for multiplicity

of a solution is introduced. Reduction methods of such systems to the

systems with isolated solutions, which can be numerically solved by well-

known methods, are suggested.

1. Introduction

Investigation of matrix polynomials is widely applied to the study of

differential-algebraic equations (DAE). For instance, basing on K.Weier-

strass’s article [21] on reduction of the regular matrix pencil to the canon-

ical form it was ascertained that the general solution of linear DAE with

constant coefficients can depend not only on the right-hand side but also
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on the derivatives. All further developments concerning numerical meth-

ods for solving the linear DAE with constant coefficients also take into

account the matrix pencils structure.

In the present paper we investigate matrix polynomial applications to

the higher order DAEs, to the singular systems of integral and integro-

differential equations, and to the systems of nonlinear algebraic equations

having multiple solutions.

2. Properties of semi-inverse matrices and λ-matrices

In this section we give several definitions and auxiliary statements from

the matrix polynomial theory.

Definition 1 [3], [20]. An (n × m)-matrix A− is called semi-inverse

with respect to an (m×n)-matrix A if the matrix A− satisfies the equation

AA−A = A.

For any nonsingular square matrix A the semi-inverse matrix coincides

with the inverse one. If the matrix A is arbitrary then there exists a semi-

inverse (n × m)-matrix A−, which is nonunique, in general [20].

The pseudo-inverse matrix, call it A+, is one of the semi-inverse matri-

ces of the matrix A. Unlike the semi-inverse matrix, the pseudo-inverse

matrix is uniquely determined. In [20] one can find many constructive

algorithms for computing the matrix A+ and also an extended list of

bibliography on the problem.

Definition 2 [17]. The expression A(λ) = λkA0 + λk−1A1 + · · ·+ Ak,

where A0, A1 · · ·Ak, are constant matrices of the same dimension, λ is a

scalar and A0 6= 0, is called the λ-matrix of degree k.

Definition 3. The matrix A(λ) is said to be regular if there exists a

scalar λ such that det A(λ) 6= 0.

Definition 4 [11]. The pencil of (n × n)−matrices λA + B has the

simple structure (satisfies the ”rank-degree” criterion, or has the index

1) if

deg det(λA + B) = rankA.

Hereafter the symbol deg(P (λ)) denotes the degree of a polynomial

P (λ).

Lemma 1 [6], [9]. The matrix pencil λ(E − AA−) + E satisfies the

rank-degree criterion (has index one).

Definition 5. The λ -matrix

A(λ) =

k
∑

i=0

λk−iAi, A0 6= 0,
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will be said to possess the dominant property (DP) if

deg det A(λ) ≥ k rankA0.

For instance, the matrix

(

λ 1

1 0

)

does not possess this property,

while the matrix

(

λ2 λ

λ d

)

for d 6= 1 does.

Let us construct the sequence of matrices

A(i)(λ) = (E + λ(E − A
(i−1)
0 A

(i−1)−
0 ))A(i−1)(λ), (1)

where A
(0)
0 = A0, A(0)(λ) = A(λ), the upper index of the matrices A

denotes the number of iteration, and A
(i)
0 is the coefficient at the higher

degree of λ in A(i)(λ).

For the subsequent arguments the following result is important.

Theorem 1. Let the matrix A(λ) =
∑k

i=0 λk−iAi possess the DP and

rankA0 = r ≤ n. Then, for the matrix A(k)(λ) defined by the recurrent

formula (1), det A
(k)
0 6= 0.

Proof. If deg det A(λ) = kr + S ≥ kr, from Lemma 1 we get the

following equality

deg det A(1)(λ) = kr + S + n − r ≥ k(r + s1),

where r + s1 = rankA
(1)
0 . For the iterations (1) one has

deg det A(i)(λ) = kr + S + n − r + n − (r + s1) + · · ·

+ n − (r + s1 + s2 + · · · + si−1)

≥ k(r + s1 + s2 + · · ·+ si), (2)

where r+s1+s2+· · ·+si = rankA
(i)
0 . Subtraction the (i−1)-th inequality

from the i-th one leads to the estimate

si ≤ (n − (s1 + s2 + · · · + si−1))/k ≤ (n − r)/k. (3)

Now, substituting i = k and si ≤ (n − r)/k into the right-hand-side of

(3), we get

deg det A(k)(λ) ≥ k(r + s1 + s2 + · · ·+ sk) ≥ kn. (4)

Since A(k)(λ) =
∑k

i=0 λk−iA
(k)
i , from the estimate (4) it follows that

det A
(k)
0 6= 0. �

The following properties of λ-matrices take place.

Property 1. If A(λ) is a regular matrix, which does not possess the

DP, then there exists a positive integer m such that the matrix λmA(λ)

possesses the DP.
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Property 2. If the matrix A(λ) possesses the DP, then the matrix

(E + λ(E − A0A
−

0 ))A(λ) also possesses the DP.

3. Integral equations

Consider the following system of integral equations

Ax(t) +

t
∫

0

K(t − τ)x(τ)dτ = f(t), t ∈ [0, 1], (5)

where A is an (n × n)−matrix, det A = 0, K(t) is an (n × n)−matrix

with real-analytical coefficients, f(t) is a given sufficiently smooth vector-

function and x(t) is the unknown continuous n-dimensional vector-function.

Since the elements of the matrix K(t) are real-analytical functions, in

case A = 0 there exists at least one value of i such that K (i)(0) 6= 0.

Differentiating this equation i + 1 times and setting K (i)(0) = A, we

obtain the equation of the form (5).

Henceforth we will assume that (5) has at least one solution. A rather

simple criterion of the uniqueness of the solution for the problem (5) will

be proposed below.

Let us give an example. The system

(

1 0

0 0

)

x(t) +

t
∫

0

(

0 1

1 c(t − τ)

)

x(τ)dτ =

(

f1(t)

f2(t)

)

, (6)

where c is a scalar, t ∈ [0, 1], has the following unique solution

x1(t) = f
′

2(t) − c(f1(t) − f
′

2(t))/(1 − c),

x2(t) = (f
′

1(t) − (f
′′

2 (t))/(1 − c)

for any f1 ∈ C1, f2 ∈ C2, f2(0) = 0, f1(0) = f
′

2(0).

If, otherwise, c = 1 then any pair x1 = v(t), x2 = f
′

1−v
′

, with arbitrary

continuous function v(t), v(0) = f1(0) = 0, is a solution of the system

(6) if and only if f1(0) = 0, f1(t) ≡ f
′

2(t).

If the system (5) has a unique solution there are several ways to find

it out. In particular, applying the integral Laplace transformation [16]

to (5), it is possible to reduce it to the system on finite-dimensional

equations in the space of transforms and then to answer the question of

existence and uniqueness of solution for the obtained system.

In [2], [19] other investigations can be found allowing to conclude on

existence of the unique solution for the integral equation (5).

The method of reduction of the problem (5) to the system of integral

equations of second kind has been proposed in [11]. For such reduction



APPLICATION OF MATRIX POLYNOMIALS 21

realization it is necessary to investigate an“l-extended system” of the

dimension (ln × (l + 1)n).

For the case when the criterion of solution uniqueness is satisfied, it is

suggested the transformation of the problem (5) to the system of integral

equations of the second kind

x(t) +

t
∫

0

K̄(t − τ)x(τ)dτ = f̄(t), t ∈ [0, 1], (7)

where K̄(t) is a real-analytic (n×n)−matrix, f̄(t) is a continuous vector-

function. This equation (7) has a unique solution [16].

Introduce notations

A0 = A, Ai = K(i−1)(0), i = 1, 2, . . . , k, (8)

where A and K(t) are the same matrices as in the original equation (5),

and equation sequence

A(i)x(t) +

t
∫

0

Ki(t − τ)x(τ)dτ = fi(t), t ∈ [0, 1], (9)

where

A(i) = A(i−1) + (E − A(i−1)A(i−1)−)Ki−1(0),

Ki(t) = Ki−1(t) + (E − A(i−1)A(i−1)−)K ′

i−1(t),

fi(t) = fi−1(t) + (E − A(i−1)A(i−1)−)f ′

i−1(t),

A(0) = A, K0(t) = K(t), f0(t) = f(t).

Theorem 2. Let

1) for the equation (5) there exists a number k such that the matrix

A(λ) possesses the DP and A(i) are determined by (9);

2) rankA(i) = rank{A(i)|fi(0)}, i = 0, 1, . . . , k.

3) the functions K(t − τ), f(t) belong to the class Ck

Then

1) the system (5) has a unique continuous solution;

2) the problem (5) is equivalent to any system from (9);

3) in the system (9) det A(k) 6= 0.

Proof. At the assumption that t = 0 in the equations (9), one has the

following system of linear algebraic equations

A(i)x(0) = fi(0),

solvability of which follows from the condition 2 of the theorem. Let

us prove that the solution of the (i − 1)−th system in (9) is a solution

of the i−th system, and vice versa. To this end it is sufficient to note
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that the i−th system of (9) is the result of the operator (E + (E −

A(i−1)A(i−1)−)d/dt) application to the previous (i − 1)−th system.

Then it follows [12] that problems

(E + (E − A(i−1)A(i−1)−)d/dt)x(t), x(0) = 0, t ∈ [0, 1],

have only trivial solution, and hence, the solution of the (i − 1)−th

system in (9) is also the solution of the i−th system. For the proof that

the solution of the original problem is unique replace in Theorem 1 the

scalar λ with the differential operator d/dt. Due to the first condition of

the Theorem one has

det A(k) 6= 0,

and hence the system (9) for i = k, is the system of integral equations of

second kind, having for continuous Kk(t− τ), fk(t) a unique continuous

solution [16]. The continuity of the components Kk(t − τ), fk(t) follows

from the condition 3 of the theorem. �

4. Integro-differential equations

Consider the following system of integro-differential equations

B0x
(p)(t) + B1x

(p−1)(t) + · · ·+ Bpx(t) +

t
∫

0

D(t − τ)x(τ)dτ = g(t), (10)

x(j)(0) = aj, j = 0, 1, · · · , p − 1, (11)

where Bj are (n × n)-matrices with constant coefficients, t ∈ [0, 1], D(t)

and g(t) are sufficiently smooth matrix and vector-function, respectively,

and also rank B0 = r < n.

Now take the matrix

B(λ) =

k
∑

i=0

λk−iBi, (12)

where the matrices Bi, i = 0, 1, . . . , p are the same ones as in (10), and

Bp+j = D(j−1)(t)|t=0, j = 1, 2, . . . , k − p. Apply to the system (10) the

operator

Pk =
k

∏

i=1

(E + d/dt(E − B
(k−i)
0 B

(k−i)−
0 )), (13)

where B
(j)
0 = B

(j−1)
0 +(E−B

(j−1)
0 B

(j−1)−
0 )B

(j−1)
1 , B

(0)
0 = B0, j = 1, 2, . . . , k−

1.

According to Definition 1 we obtain the system
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p
∑

i=0

B
(k)
i x(p−i)(t) +

t
∫

0

D̄(t − τ)x(τ)dτ = ḡ(t), t ∈ [0, 1]. (14)

Theorem 3. Let for some value of k the matrix B(λ) (12) has the

DP. Then, in the system (14) det B
(k)
0 6= 0.

The proof of this theorem is similar to the proof of Theorem 2.

Definition 6. The minimal possible value of k for which the matrix

B(λ) (12) possesses the DP, will be called the nonsolvability index of the

system (10).

Consider the following partial case of the system (10):

p
∑

i=0

Bix
(p−i)(t) = q(t), t ∈ [0, 1]. (15)

If for some k, 1 ≤ k ≤ p, the matrix B(λ) =
∑k

i=0 λk−iBi possesses the

DP, then applying the operator Pk =
∏k

i=1(E +d/dt(E−B
(k−i)
0 B

(k−i)−
0 ))

to the system (15) we obtain the following system

p
∑

i=0

B
(k)
i x(p−i)(t) = qk(t), t ∈ [0, 1], (16)

with nonsingular matrix at the derivative of the highest order.

In this case,

B
(i)
j = B

(i−1)
j + (E − B

(i−1)
0 B

(i−1)−
0 )B

(i−1)
(j+1),

B
(0)
j = Bj, j = 0, 1, . . . , p, i = 1, 2, . . . , k.

Find the value of k for the case when B(λ) does not possess the DP,

while det B(λ) 6= 0.

Omitting details of transformations and arguments, we derive

k =

{

(np − s)/(n − r), np − s is multiple to n − r,

[(np − s)/(n − r)] + 1, in the opposite case,
(17)

Here [α] is the integer part of the number α, s = deg det B(λ), r =

rankB0.

For the investigation of the first kind systems, note the important role

of the pencil λB0 + B1 index, i.e. the minimal nonnegative integer k for

which the following equality holds: [3]

rank((λB0 + B1)
−1B0)

k+1 = rank((λB0 + B1)
−1B0)

k.
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Formula (17) gives more simple way to the index of the pencil λB0+B1

computation, namely

k =

{

(n − s)/(n − r) n − s is multiple to n − r,

[(n − s)/(n − r)] + 1 in the opposite case,
(17a)

where s = deg det(λB0 + B1), r =rankB0.

5. Finite-dimensional nonlinear equations

Consider the following system of nonlinear equations

F (x) = 0, (18)

where F : D → Rn, D ⊂ Rn.

In this section, for the system (18) the solution multiplicity notion

is formulated and the reduction to the system with isolated solution is

suggested.

Let x∗ be a solution of (18), i.e. F (x∗) = 0. Further we assume that

the vector-function F (x) is sufficiently smooth in a neighborhood of the

point x∗ for the consequent transformations be correct.

Introduce the notation

A0(x) = ∂F (x)/∂x. (19)

If det A0(x
∗) 6= 0, then x∗ is usually called an isolated solution of (18).

In [15], [18] a sufficiently complete theory has been developed for the

original problem. Here we consider the case

det A0(x
∗) = 0. (20)

Such solutions are usually called multiple, or sometimes singular. To find

them is an essentially difficult problem (see, for example, [1], [4], [5], [13],

[14]).

Numerical methods for finding the multiple solutions for (18), with in-

formation on the rank (corank) of the matrix A0(x
∗) have been proposed

in [4], [5]. Note that this information does not allow to answer the main

question: what is the multiplicity of the solution x∗ for the system (18)?

For example, both the systems
{

x2 + y2 = 0,

x2 − y2 = 0,
(21)

{

x4 + y4 = 0,

x4 − y4 = 0,
(22)
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have the solution x∗ = (x = 0, y = 0) with rankA0(x
∗) = 0. But for the

first system this solution has multiplicity 2, while for the second one the

multiplicity is 4.

Moreover, even in the case when F (x) is a quadratic polynomial,

rankA0(x
∗) does not give the information about the solution multiplicity.

For example, the Jacobi matrices of two similar systems
{

x − y2 = 0,

y2 = 0,
(23)

{

x − y2 = 0,

x2 = 0,
(24)

have the same rank for x = y = 0, but the multiplicities of this so-

lution are different. Choosing the initial approximation x0 such that

det A0(x
0) 6= 0 and applying to these systems Newton method, we ob-

tain xi+1 = 0, yi+1 = yi/2 for (23), and xi+1 = xi/2, yi+1 = yi/2+xi/4yi

for (24). Consequently, Newton method for (23) converges at the rate of

geometric progression, but for (24), when x0 = ε, y0 = ε2, the conver-

gence is “very slow”.

Note, the definition of the multiple solution for (18) must also imply

the classical definition of the multiple solution for the scalar equation,

i.e. for n = 1 x∗ is the solution of multiplicity k if F (i)(x)|x=x∗ = 0, i =

1, 2, ..., k − 1, F (k)(x)|x=x∗ 6= 0.

Let us construct the matrices Ai(x) according to the rule

Ai(x) =

n
∑

j=0

αj∂Ai−1(x)/∂xj , (25)

where αj are scalar values and A0(x) is defined by (19).

Introduce the matrix

A(λ) =
k

∑

i=0

λk−iAi(x
∗), (26)

where the matrices Ai are defined by the rule (25).

Definition 7. The minimal possible number k + 1, for which the

λ−matrix defined by (25), (26) possesses the DP, is called the multiplicity

of the solution x∗ for the system (18).

As an illustration consider the examples given above.

For the system (21) we have

A0(x
∗) =

(

0 0

0 0

)

, A1(x
∗) =

(

2 2

2 −2

)

,
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λA0(x
∗) + A1(x

∗) = λ

(

0 0

0 0

)

+

(

2 2

2 −2

)

.

Here rankA0(x
∗) = deg det{λA0(x

∗) + A1(x
∗)} = deg(−8) = 0, and

hence the multiplicity of the solution is 2 ( α1 = α2 = 1).

For the system (22),

A0(x
∗) = A1(x

∗) = A2(x
∗) =

(

0 0

0 0

)

,

A3(x
∗) =

(

24 24

24 −24

)

.

The matrices λA0(x
∗) + A1(x

∗) and λ2A0(x
∗) + λA1(x

∗) + A2(x
∗) do

not possess the DP (by virtue of the fact that the operation deg(0) has

not been defined), and the matrix

λ3A0(x
∗) + λA1(x

∗) + λA2(x
∗) + A3(x

∗) =

(

24 24

24 −24

)

,

has rankA0(x
∗) = deg det{λ3A0(x

∗) + λA1(x
∗) + λA2(x

∗) + A3(x
∗)} =

deg(−1152) = 0. Hence the multiplicity of the solution is 4. Here α1 =

α2 = 1.

Similarly for the system (23) the multiplicity of the solution is 2.

For the system (24) one has

λA0(x
∗) + A1(x

∗) =

λ

(

1 0

0 0

)

+

(

0 −2

2 0

)

.

Here rankA0(x∗) = 1, deg det{λA0(x
∗) + A1(x

∗)} = deg(4) = 0, i.e. the

matrix λA0(x
∗)+A1(x

∗) does not possess the DP. Meanwhile, the matrix

λ2A0(x
∗) + λA1(x

∗ + A3(x
∗) =

λ2

(

1 0

0 0

)

+ λ

(

0 −2

2 0

)

,

possesses the DP because of deg det{λ2A0(x
∗) + λA1(x

∗)} = deg(4λ2) =

2, and so, the multiplicity of the solution is 3. Here α1 = α2 = 1.

Consider the case when the matrix pencil λA0(x
∗) + A1(x

∗) possesses

the DP, i.e. it satisfies the ”rank-degree” criterion. The result for such

pencil is well-known.

Theorem 4 [6], [8]. If the matrix pencil λA0 +A1 satisfies the ”rank-

degree” criterion then the matrices

A0 + (E − A0A
−

0 )A1, A0 + A1(E − A−

0 A0)

are nonsingular.
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This theorem allows one to reduce the original system (18) to the

following systems with isolated solution

F1(x) = F (x) + A0(x)(E − A−

0 A0)Θ, (27)

or

F2(x) = F (x) + (E − A0A
−

0 )A0(x)Θ, (28)

where Θ = (α1, α2, · · · , αn)
>. Here the solution of (18) is the solution of

(27) and (28) with det ∂F1/∂x|x=x∗ 6= 0, det ∂F2/∂x|x=x∗ 6= 0.

The example (24) shows that even in the case when F (x) represents a

polynomial whose degree is less than 3, the multiplicity of the solution

can be greater than 2. In this case, the multiplicity of the solution is

defined only by the structure of the matrix pencil λA0(x
∗) + A1 (the

matrix A1 is a constant matrix) and the multiplicity of the solution can

be determined (we omit discussions) by formula (17a).

Another notion of solution multiplicity is given in [10].

6. Example of numerical computation

Take the system of differential-algebraic equations

Ax
′

+ f(x) = 0, t ∈ [0, 0.9], x(0) = x0,

where A =

(

1 1

2 2

)

, f(x) =

(

x1x2

x2
1 + x2

2

)

and x1(0) = x2(0) = 1.

This problem has unique solution x1(t) = x2(t) = 2/(2 − t). Let us

apply the implicit Euler scheme for numerical solving of this problem

A(xi+1 − xi) + hf(xi+1) = 0, i = 1, 2, . . . , N, h = 1/N.

As a result, we come to the system of nonlinear equations with respect to

xi+1, with singular Jacobi matrix on the solution. The reduction (27) was

employed for the numerical solving of this system. After this reduction,

one iteration of Newton method was made, and the value on the previous

step, i.e. x0
i+1 = xi, was taken as the initial approximation.

The results of computations are given in the following table

h 0.1 0.05 0.025 0.0125

p 0.1214 0.0544 0.0259 0.0126

Here p is the modulus of the maximum error of the components at the

mesh points.

Conclusion. The connection between systems of linear differential

equations and matrix polynomials is well-known. In the present paper we

studied this connection for integral and integro-differential equations with

singular matrix at the main parts. We suggested to use reduction of such
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singular equations to regular ones. Also we have investigated systems

of nonlinear algebraic, or transcendent, equations. We have proposed

a general notion of solution multiplicity which is compatible with the

relevant notion for one equation.
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