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HARDY TYPE INEQUALITIES IN HIGHER DIMENSIONS

WITH EXPLICIT ESTIMATE OF CONSTANTS

Abstract. Let Ω be an open set in R
n such that Ω 6= R

n. For

1 ≤ p < ∞, 1 < s < ∞ and δ = dist(x, ∂Ω) we estimate the Hardy

constant

cp(s,Ω) = sup{‖f/δs/p‖Lp(Ω) : f ∈ C∞

0 (Ω), ‖(∇f)/δs/p−1‖Lp(Ω) = 1}

and some related quantities.

For open sets Ω ⊂ R
2 we prove the following bilateral estimates

min{2, p} M0(Ω) ≤ cp(2,Ω) ≤ 2p (πM0(Ω) + a0)
2, a0 = 4.38,

where M0(Ω) is the geometrical parameter defined as the maximum

modulus of ring domains in Ω with center on ∂Ω. Since the condition

M0(Ω) < ∞ means the uniformly perfectness of ∂Ω, these estimates give

a direct proof of the following Ancona-Pommerenke theorem: c2(2,Ω)

is finite if and only if the boundary set ∂Ω is uniformly perfect (see [2],

[22] and [40]).

Moreover, we obtain the following direct extension of the one dimen-

sional Hardy inequality to the case n ≥ 2: if s > n, then for arbitrary

open sets Ω ⊂ R
n (Ω 6= R

n) and any p ∈ [1,∞) the sharp inequality

cp(s,Ω) ≤ p/(s − n) is valid. This gives a solution of a known problem

due to J.L.Lewis [31] and A.Wannebo [44].

Estimates of constants in certain other Hardy and Rellich type in-

equalities are also considered. In particular, we obtain an improved

version of a Hardy type inequality by H.Brezis and M.Marcus [13] for

convex domains and give its generalizations.
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1. Introduction.

Hardy type inequalities in Sobolev spaces have many applications in

Mathematical Physics.

The original Hardy theorem (see [25], Theorem 330) gives that
∫ +∞

0

|u(t)|p

ts
dt ≤

(

p

|s − 1|

)p ∫ +∞

0

|u′(t)|p

ts−p
dt

for p ≥ 1, s ∈ R, s 6= 1 and any absolutely continuous function u :

[0,∞) → R, u′/ts/p−1 ∈ Lp[0,∞) such that u(0) = 0 in the case s > 1

and u(+∞) = 0 in the case s < 1.

If p = 1 then equality in the Hardy inequality is valid for any monotone

function u; if p > 1 and u 6≡ 0 then equality is not attained, but the

constant (p/|s − 1|)p is still sharp.

The Hardy inequality has been generalized in many ways. Our aim is

to consider its direct generalizations when the domain of integration Ω

is an open and proper subset of Rn, u and u′ are replaced by functions

f ∈ C∞

0 (Ω) and ∇f , the gradient of f , and powers of t are replaced by

powers of

δ = δ(x) = dist(x, ∂Ω).

Let Ω be an open and proper subset of Rn. We first consider the following

Hardy constant

cp(s, Ω) := sup

{

∥

∥

∥

∥

f

δs/p

∥

∥

∥

∥

Lp(Ω)

: f ∈ C∞

0 (Ω),

∥

∥

∥

∥

∇f

δs/p−1

∥

∥

∥

∥

Lp(Ω)

= 1

}

.

The classical examples which are simple consequences of the one di-

mensional Hardy inequalities are given by the equations : for p ∈ [1,∞)
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and s ∈ R

cp(s, R
n \ {0}) =

p

|s − n|
, cp(s, H) =

p

|s − 1|
,

where H is a half space in Rn (see [10], [34], [38]). For p > 1 and any

open convex set Ω ⊂ Rn, Ω 6= Rn it is known that

cp(s, Ω) =
p

p − 1

(see [17], [32], [33]). Explicit estimates of cp(s, Ω) are also known in some

particular cases when Ω is not a convex domain. Namely,

1) if Ω is a simply connected plane domain, then c2(2, Ω) ≤ 4 (see [2],

[3], [11], [16]);

2) if Ω is a domain in Rn with smooth boundary, then cp(p, Ω) ≥

p/(p − 1) (see [16] and [32]).

For p ≥ 1 and s > 1, it is a classical fact that there exists a finite

constant cp(s, Ω) for any domain Ω with Lipschitz boundary (see, for

instance, [10], [16], [38]). It is known that the Lipschitz condition is

not a necessary one and can be replaced by more general conditions

on the boundary of Ω. In this direction there are several deep results

due to A.Ancona [2], H. Brezis and M. Marcus [13], E.B.Davies [16],

[17], P. Koskela and X. Zhong [30], J.L.Lewis [31], V.G. Maz’ya [34],

V.M.Miklyukov and M.K.Vuorinen [35], and A.Wannebo [44].

The main aim of the present paper is to obtain explicit estimates of

cp(s, Ω) in the case when p ∈ [1,∞), s ≥ n and to estimate some related

quantities.

In Sections 2 and 3 we examine the quantity cp(s, Ω) in the case, when

p ∈ [1,∞) and s = n. In Section 2 the case p ∈ [1,∞) and n = s = 2 is

considered. For plane domains Ω ⊂ R2 we prove the following bilateral

estimates

min{2, p} M0(Ω) ≤ cp(2, Ω) ≤ 2p (πM0(Ω) + a0)
2, a0 = 4.38,

where M0(Ω) is the geometrical parameter defined as the maximum mod-

ulus of genuine annuli in Ω with center on ∂Ω. Note that, by results of

Ch. Pommerenke [40] and A. Ancona [2], c2(2, Ω) for a plane domain

Ω ⊂ R2 is finite if and only if the boundary set ∂Ω is uniformly perfect.

Clearly, our estimates give Lp - version and a direct proof of the An-

cona - Pommerenke theorem, since the condition M0(Ω) < ∞ means the

uniformly perfectness of ∂Ω.

In Section 3 we extend our estimates to the quantities

κ1(Ω)2 := sup
{

‖f/δ‖L2(Ω) : f ∈ C∞

0 (Ω), ‖δ∆f‖L2(Ω) = 1
}
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and

κ2(Ω) := sup
{

‖∇f‖L2(Ω) : f ∈ C∞

0 (Ω), ‖δ∆f‖L2(Ω) = 1
}

related to Rellich’s constant of Ω ⊂ R2 and discuss a generalization of

results to the quantity cp(n, Ω) for space domains. In particular, we prove

that

cp(n, Ω) ≥ 2 min{1, p/n}M0(Ω),

where Ω ⊂ Rn, n ≥ 3.

One of the main results of the present paper is a direct extension of the

original Hardy inequality to the case n ≥ 2. More precisely, in Section 4

the following assertion is proved: if s > n, then for arbitrary open sets

Ω ⊂ Rn, Ω 6= Rn and p ≥ 1 the sharp inequality

cp(s, Ω) ≤
p

s − n

is valid. This completes the following known facts: J.L. Lewis [31] dis-

covered that there is cp(p, Ω) < +∞ for any open set Ω ⊂ R
n, whenever

p > n. A.Wannebo [44] proved a generalization of this assertion: if p > n

and s > p − ε(p, n) for a convenient ε(p, n) > 0, then cp(s, Ω) < +∞ for

any open set Ω ⊂ Rn.

We find that some Hardy type inequalities are connected with isoperi-

metric properties of open sets Ω ⊂ Rn. Some theorems in this direction

are given in Sections 5 and 6. For instance, in Section 5 the constant

c(p, Ω) = sup
{

‖f/δ‖Ln(Ω) : f ∈ C∞

0 (Ω), ‖∇f‖Lp(Ω) = 1
}

, p ∈ (n,∞),

is considered. For open sets with finite volume |Ω| = mes Ω we prove the

inequalities

|Ω|1/n−1/p ≤ c(p, Ω) ≤
p

p − n
|Ω|1/n−1/p.

We extend the above results on cp(s, Ω) and c(p, Ω) to some other

Hardy type inequalities with explicit estimates of all constants in func-

tion of parameters and simple geometric quantities of Ω. In particular,

we obtain an improved version of a Hardy type inequality by H.Brezis

and M.Marcus [13] in convex domains and give its generalizations (see

Sections 4, 5 and 6).

For instance, in Section 6 we prove that

cp(s, Ω) ≥
p

s − 1
, (p ≥ 1, s > 1)

for any bounded open set Ω ⊂ Rn with finite boundary surface area in

the sense of Minkowski. On the other hand, for parameters p ≥ 1, s > 1
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and convex open sets Ω ⊂ Rn we prove that any function f ∈ C∞

0 (Ω)

satisfies the inequality
∫

Ω

|f |p

δs
dx +

1

(s − 1)δs0

∫

Ω

|f |pdx ≤

(

p

s − 1

)p ∫

Ω

|∇f |p

δs−p
dx,

where δ = dist(x, ∂Ω), δ0 = sup{δ(x) : x ∈ Ω}.

The main results of the present paper were announced in our talks in

the International Conference ”Geometric Analysis and its Applications”,

Volgograd State University, (2004) (see [5]), in the International Con-

ference and workshop dedicated to the centennial of Sergei Mikhailovich

Nikolskii, Russian Academy of Sciences, Moscow (2005) (see [6]) and in

the 13-th Saratov winter school on the function theory and its applica-

tions, Saratov State University, (2006) (see [7]).

2. Bilateral estimates of Hardy’s constant for plane open

sets with uniformly perfect boundary

In [19] Fernández observed that Pommerenke’s capacity density condi-

tion [40] is equivalent to Ancona’s condition [2] on domains with strong

barrier. This leads to the following excellent fact.

Theorem 1. If Ω is a plane domain then the Hardy constant

c2(2, Ω) = sup

{

∥

∥

∥

∥

f

dist(., ∂Ω)

∥

∥

∥

∥

L2(Ω)

: f ∈ C∞

0 (Ω), ‖∇f‖L2(Ω) = 1

}

is finite if and only if the boundary set ∂Ω is uniformly perfect.

One can find this result and many important characterizations of uni-

formly perfect sets in the recent book by Garnett and Marshall [22], see

Page 119 and Pages 343-345. Also, it is known that c2(2, Ω) ≥ 2 for

any domain with smooth boundary and c2(2, Ω) = 2 for convex domains

Ω (see [16]). Moreover, if Ω is a simply connected domain in C then

c2(2, Ω) ≤ 4 (see [2], [3], [11] and [16]). In the general case, for instance,

in the case when Ω is not a finitely connected domain, explicit estimates

of c2(2, Ω) are unknown.

In this section, we shall prove Lp-version (1 ≤ p < ∞) of Theorem

1 with bilateral explicit estimates of the Hardy constant using a simple

geometrical parameter of Ω. In particular, we give a direct proof of

Theorem 1.
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Let Ω be an open set in the complex plane C such that Ω 6= C. For

any fixed p ∈ [1,∞) we consider Hardy’s inequality
∫∫

Ω

|f |p

dist(z, ∂Ω)2
dxdy ≤ cp(2, Ω)p

∫∫

Ω

|∇f |p

dist(z, ∂Ω)2−p
dxdy, ∀f ∈ C∞

0 (Ω),

where z = x + iy and cp(2, Ω) is the minimum possible constant that

generalizes c2(2, Ω).

Following to [12] and [40], we characterize the open set Ω by moduli of

ring domains that separate ∂Ω. More precisely, we define the maximum

modulus

M0(Ω) := sup
1

2π
log

R(A)

r(A)
,

where the supremum is taken over all annuli A such that

A = {z ∈ C : r(A) < |z − z0| < R(A)} ⊂ Ω and z0 ∈ ∂Ω.

We take M0(Ω) = 0 by definition, when there is no circle in Ω with center

on ∂Ω. We say that ∂Ω is uniformly perfect if M0(Ω) < ∞.

In the sequel, we need the constant

a0 =
Γ(1/4)1/4

4π2
≈ 4.38 (1)

from the sharp form of Landau’s theorem (see [26] and [29]).

The main result of this section is the following assertion.

Theorem 2. If 1 ≤ p < ∞ and Ω is an open and proper subset of C,

then

min{2, p} M0(Ω) ≤ cp(2, Ω) ≤ 2p (πM0(Ω) + a0)
2. (2)

In particular, the Hardy constant cp(2, Ω) is finite if and only if ∂Ω is

uniformly perfect.

Proof of Theorem 2. First we prove the lower estimate for cp(2, Ω).

Clearly, it is sufficient to consider the case, when 0 < M0(Ω) ≤ ∞ and

0 < cp(2, Ω) < ∞.

We shall examine the cases p ≥ 2 and p < 2 separately. Suppose first

that 2 ≤ p < ∞ and cp(2, Ω) < 2M0(Ω) for an open and proper subset

of C. From the definition of M0(Ω) it follows that there is an annulus

A = {z ∈ C : r(A) < |z − z0| < R(A)} ⊂ Ω such that z0 ∈ ∂Ω and

∞ > log
R(A)

r(A)
> πcp(2, Ω).

Without loss of generality we can suppose that z0 = 0, R(A) = 1 and

r(A) = ε ∈ (0, 1), since cp(2, Ω) is invariant under linear transformations
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of Ω. We have

M0 :=
1

2π
log

1

ε
> cp(2, Ω)/2

and
∫∫

A

|f |p

dist(z, ∂Ω)2
dxdy ≤ cp(2, Ω)p

∫∫

A

|∇f |p

dist(z, ∂Ω)2−p
dxdy, ∀ f ∈ C∞

0 (A).

Using the polar coordinates, functions f(r, θ) = v(r) with v ∈ C∞

0 (ε, 1)

and the estimate (z, ∂Ω) ≤ |z|, we obtain
∫ 1

ε

|v(r)|prdr

r2
≤ cp(2, Ω)p

∫ 1

ε

|v′(r)|prdr

r2−p
, ∀ v ∈ C∞

0 (ε, 1).

By the change r = εexp(2M0t) and v(r) = g(t) of variables this is equiv-

alent to the Wirtinger type inequality (see [25])
∫ π

0

|g(t)|p dt ≤
cp(2, Ω)p

2pMp
0

∫ π

0

|g′(t)|pdt, ∀ g ∈ C∞

0 (0, π).

Approximating g0(t) = sin t by functions g ∈ C∞

0 (0, π) , we get

cp(2, Ω)p ≥ 2pMp
0

∫ π

0

| sin t|pdt/

∫ π

0

| cos t|pdt = 2pMp
0 ,

which contradicts to the assumption cp(2, Ω) < 2M0. Hence, 2M0(Ω) ≤

2M0 ≤ cp(2, Ω) in the case 2 ≤ p < ∞.

In the case 1 ≤ p < 2 and cp(2, Ω) < ∞, we combine the Hardy and

Hölder inequalities in the following way
∫∫

Ω

|f |2

dist(z, ∂Ω)2
dxdy =

∫∫

Ω

(|f |2/p)p

dist(z, ∂Ω)2
dxdy

≤

(

2

p

)p

cp(2, Ω)p
∫∫

Ω

|f |2−p|∇f |p

dist(z, ∂Ω)2−p
dxdy

≤

(

2

p

)p

cp(2, Ω)p
(
∫∫

Ω

|f |2

dist(z, ∂Ω)2
dxdy

)1−p/2(∫∫

Ω

|∇f |2 dxdy

)p/2

.

It follows that c2(2, Ω) ≤ 2
p
cp(2, Ω). As is proved that c2(2, Ω) ≥ 2M0(Ω),

we get

cp(2, Ω) ≥ pM0(Ω),

when p ∈ [1, 2).

Now we suppose that M0(Ω) < ∞ and we prove the upper estimate.

Clearly, the condition M0(Ω) < ∞ assure that ∂Ω has no isolated point.

Also, it is sufficient to obtain the upper inequality in (2) for connected

components of Ω.

Since C\Ω 6= ∅ and ∂Ω has no isolated point, any connected component

of Ω is a hyperbolic domain in C, i.e. its boundary has more than one
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point in C. Without loss of generality we can suppose that Ω itself is a

hyperbolic domain in C. Let λΩ be the density of the Poincaré metric

on Ω with curvature −4 (see [1], [9]).

Let p > 1 and let f ∈ C∞

0 (Ω). Since p > 1, we have that |f |p ∈ C1
0(Ω)

and |∇|f |p| = p|f |p−1|∇f |. Using the Liouville equation in the form

∆ log λΩ(z)−1

λΩ(z)2
= −4, z = x + iy ∈ Ω,

and the Green formula
∫∫

Ω

[u∆v + (∇u,∇v)]dxdy = 0

for v = log λ−1
Ω and u = |f |p, f ∈ C∞

0 (Ω), we obtain

4

∫∫

Ω

|f |pλΩ(z)2 dxdy = p

∫∫

Ω

|f |p−1λΩ(z)(∇|f |,∇λΩ(z)−1) dxdy.

Combining this with the Hölder inequality
∫∫

Ω

|f |p−1λΩ|(∇|f |,∇λ−1
Ω )| dxdy

≤

(
∫∫

Ω

|f |pλ2
Ω dxdy

)1−1/p (∫∫

Ω

λ2−p
Ω |(∇f,∇λ−1

Ω )|p dxdy

)1/p

,

we immediately get
∫∫

Ω

|f |pλ2
Ω dxdy ≤

(p

4

)p
∫∫

Ω

λ2−p
Ω |(∇f,∇λ−1

Ω )|p dxdy (3)

for any f ∈ C∞

0 (Ω). Since this inequality is proved for any p ∈ (1,∞),

letting p → 1 for a fixed f ∈ C∞

0 (Ω) we obtain that (3) is true in the

case p = 1, too.

Using (3) and Osgood’s inequality [39]

λΩ(z)|∇λΩ(z)−1| ≤
2

dist(z, ∂Ω)
, z = x + iy ∈ Ω,

one gets
∫∫

Ω

|f |pλΩ(z)2 dxdy ≤
(p

2

)p
∫∫

Ω

λΩ(z)2−2p|∇f |p

dist(z, ∂Ω)p
dxdy

Hence, for any p ∈ [1,∞) and any f ∈ C∞

0 (Ω),

α(Ω)2

∫∫

Ω

|f |p

dist(z, ∂Ω)2
dxdy ≤

(p/2)p

α(Ω)2p−2

∫∫

Ω

|∇f |p

dist(z, ∂Ω)2−p
dxdy, (4)

where

α(Ω) := inf{λΩ(z)dist(z, ∂Ω) : z ∈ Ω}.
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Beardon and Pommerenke [12] proved that the condition M0(Ω) < ∞

holds if and only if α(Ω) > 0 and, in particular,

α(Ω)−1 ≤ 2πM0(Ω) + 2a0, (5)

where a0 is the constant from Landau’s theorem. By [26] and [29] it is

known that the sharp value of a0 is given by formula (1).

From (4) it follows that

cp(2, Ω) ≤
p

2 α(Ω)2
. (6)

Evidently, inequalities (5) and (6) imply the upper bound in (2).

The proof of Theorem 2 is complete.

Consider the upper bound corresponding to the case M0(Ω) = 0 in (2).

Corollary 2.1. Let Ω be an open and proper subset of C. If there is no

circle in Ω with center on ∂Ω, then cp(2, Ω) < 38.4 p.

Let us mention that M0(Ω) = 0 for any simply connected domain, but

the converse is not true. The family {Ω : M0(Ω) = 0} is a large collection

of open sets Ω ⊂ C and it contains domains of arbitrary connectivity.

For example, the equality M0(Ω0 \ K) = 0 holds for domains satisfying

the following conditions:

(1) Ω0 is an open set in C such that sup{dist(z, ∂Ω0) : z ∈ Ω0} = 1,

in particular, Ω0 is a stripe with width 2;

(2) K =
⋃

∞

m=1 Cm, where Cm are continuums (connected compact sets)

such that diam Cm ≥ 2 for all m ≥ 1;

(3) K ⊂ Ω0 and Ω0 \ K is nonempty.

The Pommerenke condition on the capacity density for C \ Ω has the

form

C(Ω) := inf

{

cap ({|z − zo| ≤ r}
⋂

(C \ Ω))

r
: z0 ∈ ∂Ω, 0 < r < ∞

}

> 0 ,

where cap E is the logarithmic capacity of E. In our notations, Pom-

merenke’s estimates of the capacity density (see the proof of Theorem 1

in [40]) can be written as

M0(Ω) ≤
1

2π
log

1

C(Ω)
≤ 2M0(Ω) +

4 log 2

π
. (7)

From (7) and Theorem 2, one immediately obtains the following asser-

tion.
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Corollary 2.2. If 1 ≤ p < ∞ and Ω is an open and proper subset of C,

then

1

4π
log

1

C(Ω)
−

log 4

π
≤ cp(2, Ω) ≤

p

2

(

log
1

C(Ω)
+ 2a0

)2

.

We complete this section by three examples considering domains of

the form B(0, 3)\Ej = {z ∈ C : |z| < 3}\Ej with perfect boundaries.

Example 1. Suppose that E1 =
⋃

∞

m=1 Km

⋃

{0}, where

Km = {z = x + iy ∈ C : y = 0, m−m ≤ x ≤ 2m−m}.

The domain Ω1 = B(0, 3)\E1 contains the annuli

Am = {z ∈ C : 2(m + 1)−m−1 < |z| < m−m}

and
R(Am)

r(Am)
=

m + 1

2

(

1 +
1

m

)m

→ ∞ as m → ∞.

Consequently, M0(Ω1) = cp(2, Ω1) = ∞.

Example 2. Now, we consider E2 =
⋃

∞

m=1 L2m−1

⋃

{0}, where

L2m−1 = {z = x + iy ∈ C : y = 0, 3−2m+1 ≤ x ≤ 3−2m+2}.

For any annulus A in Ω2 = B(0, 3)\E2 with center on ∂Ω2 we have

R(A)/r(A) ≤ 3. It is an easy task to show that 2πM0(Ω2) = log 3.

Accordingly, cp(2, Ω2) ≤ (8.76 + log 3)2p/2 < 48 p.

Example 3. Let E3 be the classical Cantor set. In [12] estimates for

α(C\E3) are proved. We consider

Ω3 = B(0, 3)\E3.

It is easy to show that M0(Ω3) = M0(Ω2) = (2π)−1 log 3. Thus, cp(2, Ω3) <

48 p.

3. Other results connected with uniformly perfect sets, a

conjecture in the spatial case

We shall extend Theorem 1 to certain functionals connected with Rel-

lich’s constants and discuss a generalization of Theorem 1 to the space

domains.

First, we consider two following quantities used in [3] for simply con-

nected domains and related to Rellich’s constants (compare [18], [36] and

[42]).
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Let Ω be an open and proper subset of C. We define

κ1(Ω)2 := sup

{

∥

∥

∥

∥

f

dist(., ∂Ω)

∥

∥

∥

∥

L2(Ω)

: f ∈ C∞

0 (Ω),

‖dist(., ∂Ω)∆f‖L2(Ω) = 1
}

and

κ2(Ω) := sup
{

‖∇f‖L2(Ω) : f ∈ C∞

0 (Ω), ‖dist(., ∂Ω)∆f‖L2(Ω) = 1
}

,

where z = x + iy and ∆ is the Laplace operator.

In [3] it is proved that κ1(Ω) ≤ 4 and κ2(Ω) ≤ 4 for any simply

connected domain Ω. In the next theorem we give bilateral estimates of

κ1(Ω) and κ2(Ω) for open sets with uniformly perfect boundary. Also, we

obtain an improvement of the upper bound of c2(2, Ω), κ1(Ω) and κ2(Ω)

for doubly connected domains.

Theorem 3. If Ω is an open and proper subset of C, then the quantity

κj(Ω) (j = 1, 2) is finite if and only if ∂Ω is a uniformly perfect set.

Moreover,

2M0(Ω) ≤ κ1(Ω) ≤ 4(πM0(Ω) + a0)
2,

2M0(Ω) ≤ κ2(Ω) ≤ 4(πM0(Ω) + a0)
2.

If Ω is a doubly connected domain in C, then

M0(Ω) ≤ c2(2, Ω)/2 ≤ πM0(Ω) + a0,

M0(Ω) ≤ κ1(Ω)/2 ≤ πM0(Ω) + a0,

M0(Ω) ≤ κ2(Ω)/2 ≤ πM0(Ω) + a0.

Proof of Theorem 3. Suppose that ∂Ω is uniformly perfect and f ∈

C∞

0 (Ω). Using the Green formula and the Cauchy - Schwartz inequality

one gets
∫∫

Ω

|∇f |2dxdy = −

∫∫

Ω

f∆f dxdy

≤

(
∫∫

Ω

|f |2dist(z, ∂Ω)−2 dxdy

)1/2 (∫∫

Ω

dist(z, ∂Ω)2|∆f |2 dxdy

)1/2

.

This inequality and the definitions of c2(2, Ω) and κ1(Ω) imply
∫∫

Ω

|∇f |2dxdy ≤ κ1(Ω)2,

∫∫

Ω

|f |2dist(z, ∂Ω)−2 dxdy ≤ c2(2, Ω)4

for any f ∈ C∞

0 (Ω) satisfying
∫∫

Ω

dist(z, ∂Ω)2|∆f |2 dxdy = 1.
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Consequently,

κ2(Ω) ≤ κ1(Ω) ≤ c2(2, Ω). (8)

Inequalities (2) and (8) immediately give the upper bounds of κ1(Ω)

and κ2(Ω) in the general case. Moreover, it is known (see, for instance,

[20], Lemma 1.1) that the inequality

∫∫

Ω

|f |2λ2
Ω dxdy ≤

∫∫

Ω

|∇f |2 dxdy, ∀f ∈ C∞

0 (Ω), (9)

is valid for any simply or doubly connected hyperbolic domain Ω. It

is obvious that inequalities (5), (8) and (9) imply the upper bounds in

Theorem 3 for doubly connected domains.

Thank to (8), we have to prove the lower estimates of Theorem 3 for

κ2(Ω), only. To this end we assume that κ2(Ω) < 2M0(Ω). Without loss

of generality we can suppose that 0 ∈ Ω and there exists an annulus A =

{z ∈ C : ε < |z| < 1} such that A ⊂ Ω and M0 := 1
2π

log 1
ε

> κ2(Ω)/2.

One has
∫∫

A

|∇f |2 dxdy ≤ κ2(Ω)2

∫∫

A

dist(z, ∂Ω)2|∆f |2 dxdy, ∀ f ∈ C∞

0 (A)

and dist(z, ∂Ω) < |z| for z ∈ A. Consequently,
∫ 1

ε

v′(r)2r dr ≤ κ2(Ω)2

∫ 1

ε

(rv′′(r) + v′(r))2r dr

for radial functions v(r) = f(r, θ), v ∈ C∞

0 (ε, 1).

After the changes r = εexp(2M0t) and v(r) = g(t), the last inequality

can be written as the following Wirtinger type inequality
∫ π

0

|g′(t)|2 dt ≤
κ2(Ω)2

(2M0)2

∫ π

0

|g′′(t)|2dt, ∀ g ∈ C∞

0 (0, π).

Consequently, κ2(Ω) ≥ 2M0.

This completes the proof of Theorem 3.

Finally, we consider the spatial case. Let Ω be an open set in Rn such

that Ω 6= R
n. Suppose that 1 ≤ p < ∞, 1 < s < ∞ and consider the

Hardy constant

cp(s, Ω) = sup

{

∥

∥

∥

∥

f

δs/p

∥

∥

∥

∥

Lp(Ω)

: f ∈ C∞

0 (Ω),

∥

∥

∥

∥

∇f

δs/p−1

∥

∥

∥

∥

Lp(Ω)

= 1

}

,

where δ = dist(x, ∂Ω).

It is known that cp(s, Ω) < ∞ for any domain Ω with Lipschitz bound-

ary (see [38]). More general families of domains with finite cp(s, Ω) are
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given in the papers by Ancona [2] (case p = s = 2), Lewis [31] ( case

p = s > 1) and Wannebo [44] (case p ≥ 1, s > 1).

In the case n ≥ 3, as is indicated in the paper [28] of Järvi and Vuori-

nen, the concept of uniformly perfect sets is not equivalent to the known

density concepts used in the theory of Hardy’s inequalities in higher di-

mensions.

For an open set Ω ⊂ Rn (Ω 6= Rn, n ≥ 3) we consider the quantity

M0(Ω) defined as in the planar case. More precisely, let

M0(Ω) := sup
1

2π
log

R(A)

r(A)
,

where the supremum is taken over all ring domains A such that A =

{x ∈ Rn : r(A) < |x − x0| < R(A)} ⊂ Ω and x0 ∈ ∂Ω . If such a ring

domain A doesn’t exist, then M0(Ω) = 0. If M0(Ω) < ∞ then the set

∂Ω is said to be uniformly perfect (compare [28]).

It is clear that the conditions M0(Ω) < ∞ and cp(s, Ω) < ∞ are not

equivalent in the case s 6= n. For instance, if s > n, then cp(s, Ω) ≤

p/(n − s) for any open set Ω ⊂ Rn (Ω 6= Rn) (see Theorem 5, below).

If 1 < s < n and B0 is a punctured ball, then it is easy to show that

M0(B0) = ∞ but cp(s, B0) is finite for any p ∈ [1,∞).

We conjecture that a direct comparison of M0(Ω) and the Hardy con-

stant is possible in the case s = n. At least, if cp(n, Ω) is finite, then ∂Ω

is uniformly perfect. Evidently, the last assertion is a consequence of the

following theorem.

Theorem 4. If p ∈ [1,∞) , n ≥ 3 and Ω is an open and proper subset

of Rn, then

cp(n, Ω) ≥ 2 min{1, p/n}M0(Ω). (10)

Proof of Theorem 4. We will follow the proof of lower estimates in

Theorem 2 with some necessary changes. In particular, we consider the

cases p ≥ n and p < n separately.

Assume that n ≤ p < ∞ , 0 < M0(Ω) ≤ ∞ and cp(n, Ω) < 2M0(Ω).

Without loss of generality we can conclude that there is a positive con-

stant ε such that

cp(n, Ω) < 2M0 :=
1

π
log

1

ε
< ∞

and

A = {x ∈ R
n : ε < |x| < 1} ⊂ Ω, (0, ..., 0) ∈ ∂Ω.

Using radial functions, the spherical coordinates and the obvious inequal-

ity dist(x, ∂Ω) ≤ |x| for x ∈ A, we can write (compare the proof of
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Theorem 2 for details)
∫ 1

ε

|v(r)|prn−1dr

rn
≤ cp(n, Ω)p

∫ 1

ε

|v′(r)|prn−1dr

rn−p
, ∀ v ∈ C∞

0 (ε, 1).

Using the changes r = ε exp(2M0t), u(r) = g(t) and straightforward com-

putations, we obtain
∫ π

0

|g(t)|p dt ≤
cp(n, Ω)p

2pMp
0

∫ π

0

|g′(t)|p dt, ∀ g ∈ C∞

0 (0, π).

Hence, cp(n, Ω)/(2M0) ≥ 1. This completes the proof of (10) in the case

n ≤ p.

In the case 1 ≤ p < n and cp(n, Ω) < ∞, we again combine the Hardy

and Hölder inequalities in the following way
∫

Ω

|f |n

δn
dx =

∫

Ω

(|f |n/p)p

δn
dx

≤

(

n

p

)p

cp(n, Ω)p
∫

Ω

|f |n−p|∇f |p

δn−p
dx

≤

(

n

p

)p

cp(n, Ω)p
(
∫

Ω

|f |n

δn
dx

)1−p/n(∫

Ω

|∇f |n dx

)p/n

,

where δ = dist(x, ∂Ω). It follows that cn(n, Ω) ≤ n
p
cp(n, Ω). Since

cn(n, Ω) ≥ 2M0(Ω), we get

cp(n, Ω) ≥
p

n
M0(Ω),

when p ∈ [1, n).

The proof of Theorem 4 is complete.

It seems to be natural the following generalization of Theorem 1.

Conjecture. The equivalence {cp(n, Ω) < ∞ ⇐⇒ M0(Ω) < ∞} is

true in the spatial case, too.

Remark. In the literature on uniformly perfect sets one can find

several definitions of maximum modulus of Ω. To define M0(Ω) we have

used ring domains in Ω with centers on ∂Ω. This directly is connected

with the basic definition of Ch. Pommerenke in [40]. One can consider a

slightly different parameter M(Ω) defined as the maximum modulus of

ring domains which are in Ω and separate ∂Ω
⋃

{∞} (compare [12] and

[28]). It is easy to show that

M0(Ω) ≤ M(Ω) ≤ M0(Ω) +
1

2π
log 3.
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4. Solution of a problem by J.L. Lewis and A. Wannebo

In [31], J. L. Lewis proved that there is cp(p, Ω) < +∞ for any open

set Ω ⊂ Rn if p > n. A. Wannebo [44] proved a generalization of this

assertion: if p > n and s > p − ε(p, n) for a convenient ε(p, n) > 0, then

cp(s, Ω) < +∞ for any open set Ω ⊂ R
n.

We find that the single condition s > n assure that cp(s, Ω) < +∞ for

any open set Ω ⊂ Rn and any p ≥ 1. Surprisingly, the constant has a

simple upper bound in this case. More precisely, we obtain the following

extension of the one dimensional Hardy inequality.

Theorem 5. Let Ω be an open and proper subset of Rn. If p ≥ 1 and

s > n then
∫

Ω

|f |p

δs
dx ≤

(

p

s − n

)p ∫

Ω

|∇f |p

δs−p
dx, ∀f ∈ C∞

0 (Ω), (11)

where δ = δ(x) = dist(x, ∂Ω).

The constant pp(s − n)−p in (11) is the best one for many sets Ω. For

example, it is sharp for every Ω of the form Ω0 \ {x0}, where Ω0 is an

open set in Rn and x0 ∈ Ω0.

From Theorem 5 it follows that the basic inequality of Hardy
∫ +∞

0

|u(t)|2

t2
dt ≤ 4

∫ +∞

0

|u′(t)|2dt, u′ ∈ L2, u(0) = 0,

has a sharp analog in Rn:
∫

Ω

|f |2n

δ2n
dx ≤ 4n

∫

Ω

|∇f |2ndx, ∀f ∈ C∞

0 (Ω),

which is valid for any open set Ω ⊂ R
n (Ω 6= R

n).

We will prove that equality in (11) is not attained in the corresponding

Sobolev space if f 6≡ 0 and

δ0 = δ0(Ω) := sup{dist(x, ∂Ω) : x ∈ Ω} < +∞.

More precisely, we prove the following refined version of Theorem 5.

Theorem 6. Let Ω be an open and proper subset of Rn. If p ≥ 1 and

s > n, then
∫

Ω

|f |p

δs
dx+

1

(s − 1)δs0

∫

Ω

|f |pdx ≤

(

p

s − n

)p ∫

Ω

|∇f |p

δs−p
dx, ∀f ∈ C∞

0 (Ω),

(12)

where δ = dist(x, ∂Ω), δ0 = sup{δ(x) : x ∈ Ω}.
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Proof of Theorems 5 and 6. Let Ω be an open and proper subset of

Rn. For given f ∈ C∞

0 (Ω) we use the following approximation of Ω.

For h ∈ (0, 1) we consider the simplest covering of Rn by cubes

Qh,z = [0, h]n + hz, z ∈ Zn,

and define the finite set

Zn(Ω, h) = {z ∈ Zn : Qh,z ⊂ Ω ∩ {x ∈ R
n : |x| < 1/h}}

and the following approximation of Ω:

Ωh = int ∪z∈Zn(Ω,h) Qh,z.

For a given f ∈ C∞

0 (Ω) it is clear that it suffices to prove (11) and (12)

with Ω = Ωh and any h ∈ (0, 1). By the change y = x/h, x ∈ Ωh,

of variables we also see that (11) and (12) for Ω = Ωh and Ω = Ω1 are

equivalent. Thus, we have to prove (11) and (12) for a set of the form

Ω1 = int ∪mj=1 ([0, 1]n + zj), zj ∈ Zn.

Let S be a q-face of Q1,zj
. Suppose that S ⊂ ∂Ω1 and define the

following subset of Ω1:

Q(S) = {x ∈ R
n : x′ ∈ int S, B(x, |x − x′|) ⊂ Ω1},

where B(x, |x − x′|) is the ball {y ∈ Rn : |y − x| < |x′ − x|}. We have

to note that the interior of S is taken in Rq ⊃ S and, by definition,

int S = S if S is a 0-face i.e. a point.

Suppose that Q(S) 6= ∅, this is always the case if S is a (n − 1)-

face and S ⊂ ∂Ω1. The set Q(S) 6= ∅ is starlike with respect to S,

i.e. x′ + t(x − x′) ∈ Q(S) for every x′ ∈ int S and all t ∈ (0, 1) if

|x−x′| = dist(x, ∂Ω1) and x ∈ Q(S). Up to a rotation, Q(S) ⊂ S×R
n−q
+ ,

and

Q(S) = S × {t ∈ R
n−q
+ : 0 ≤ |t| ≤ ϕ(

t

|t|
; S, Q)},

where ϕ is a positive function satisfying the inequality

sup ϕ ≤ sup{dist(x, ∂Ω1) : x ∈ Ω1}.

If S ′ is a cubic j-face (j = 0, 1, . . . , n− 1) and S ′ ⊂ (∂Ω1) \ S then the

set

(S, S ′) := {x ∈ Ω : dist(x, S) = dist(x, S ′) ≤ dist(x, ∂Ω1)}

is a bounded subset of a (n − 1)-plane or a (n − 1)-surface of order 2.

Since mesn(S, S ′) = 0 and

(∂Q(S)) \ S ⊂ ∪S′(S, S ′),
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we obtain that mesn∂Q(S) = 0. Consequently, for any g ∈ C(Ω1)
∫

Ω1

g(x) dx =
∑

S⊂∂Ω1

∫

Q(S)

g(x) dx. (13)

In the sequel we will need the notations:

Sn−q
+ = {ω ∈ R

n−q
+ : |ω| = 1},

ϕq = ϕ(.; S, Q1).

Let S be a cubic (n − k)-face such that S ⊂ ∂Ω1 and Q(S) 6= ∅, where

k = 1, 2, . . . , n. By Fubini’s theorem, we get the following formulas,

depending of the dimension of S:

if k = 1, then
∫

Q(S)

g(x) dx =

∫

S

dx′

∫ ϕn−1(x′)

0

g(x′ + rν(x′))dr; (14)

if 2 ≤ k ≤ n − 1, then
∫

Q(S)

g(x) dx =

∫

S

dx′

∫

Sk
+

dω

∫ ϕn−k(ω)

0

g(x′ + ωr)rk−1dr; (15)

if k = n and S = {x′}, then
∫

Q(S)

g(x) dx =

∫

Sn
+

dω

∫ ϕ0(ω)

0

g(x′ + ωr)rn−1dr. (16)

Suppose that f ∈ C∞

0 (Ω1), p ≥ 1, s > n, δ = δ(x) = dist(x, ∂Ω1),

δ0 = sup{δ(x) : x ∈ Ω1}. We will use (14), (15) and (16) for the function

g(x) = |f(x)|p
(

1

δs(x)
+

1

(s − 1)δs0

)

.

Since δ(x) = r, 1 ≤ k ≤ n in (14)–(16), we have
∫ ϕn−k

0

|f |p
(

1

rs
+

1

(s − 1)δs0

)

rk−1dr

≤

∫ ϕn−k

0

(

tk−s−1 +
tk−1

(s − 1)δs0

)

dt

∫ t

0

|f |p−1|∇f |dr

= p

∫ ϕn−k

0

|f |p−1|∇f |A(r, ϕn−k)dr,

where

A(r, ϕn−k) =
1

s − k

(

1

rs−k
−

1

ϕs−kn−k

)

+
1

k(s − 1)δs0
(ϕkn−k − rk)

≤
1

s − k

(

1

rs−k
−

rk

δs0

)
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≤
rk−1

(s − n)rs−1
.

Therefore, one gets
∫

Q(S)

|f |p
(

1

δs(x)
+

1

(s − 1)δs0

)

dx ≤
p

s − n

∫

Q(S)

|f |p−1|∇f |

δs−1(x)
dx

for all k = 1, 2, . . . , n. By using this and formula (13) we obtain
∫

Ω1

|f |p
[

1

δs(x)
+

1

(s − 1)δs0

]

dx ≤
p

s − n

∫

Ω1

|f |p−1|∇f |

δs−1(x)
dx.

This is the inequality to prove in the case p = 1. If p > 1 then we apply

the Hölder inequality to get (12) for Ω = Ω1.

The proof is complete.

Finally, we consider a simple example to get that the upper bound

(p/(s− n))p in Theorems 5 and 6 is sharp (compare with the example of

Hardy [25] for one dimensional case).

Let Ω0 be an open set in Rn such that

0 ∈ ∂Ω0, {x ∈ R
n : 0 < |x| < 3} ⊂ Ω0.

Let us denote

X =

∫

Ω0

|u|p

δs
dx, Y =

∫

Ω0

|∇u|p

δs−p
dx, δ = dist(x, ∂Ω0).

If p ≥ 1, s > n, ε > 0 and

uε(x) = |x|(s−n+ε)/p, 0 < |x| ≤ 1,

uε(x) = 2 − |x| , 1 < |x| ≤ 2,

uε(x) = 0 , 2 < |x| < ∞,

then straightforward computations give (ωn−1 = |∂B1|)

X(uε) =
ωn−1

ε
+ O(1), Y (uε) =

ωn−1

ε

(

s − n + ε

p

)p

+ O(1).

Approximating uε by radial functions that belong to C∞

0 (B(0, 3) \ {0})

and letting ε → 0 we obtain that cp(s, Ω0) ≥ p(s − n)−1. Consequently,

cp(s, Ω0) = p(s − n)−1 for any p ∈ [1,∞) and any s ∈ (n,∞). In

particular, the constant from Theorem 5 is sharp for the punctured ball

B(0, 3)\{0}. Since the Hardy constant is invariant under linear transfor-

mations of Ω, there exist extremal domains with given δ0 ∈ (0,∞]. For in-

stance, if Ω0 = B(0, 2δ0)\{0} and s ∈ (n,∞), then cp(s, Ω0) = p(s−n)−1

and δ0(Ω0) = δ0. Hence, the constant pp(s− n)−p in Theorem 6 is sharp,

too.
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5. Boundary moments of an open set in connection with

constants in Hardy type inequalities

In [3] and [4], we used α-moment of Ω about its boundary i.e. the

quantity
∫

Ω

dist(x, ∂Ω)αdx

to get bilateral estimates of constants in some inequalities of Mathemat-

ical Physics. The aim of this section is to show that these moments are

also connected with constants in some Hardy type inequalities.

In the sequel we will use the following consequences of formulas (14),

(15) and (16):
∫

Q(S)

|f |p

δs
dx ≤ p

∫

Q(S)

|f |p−1

δs−1
|∇f |Φs(x, S)dx, (17)

where p ≥ 1, s ∈ R, S is a cubic (n − k)-face and

Φs(x, S) = δs−k
∫ ψn−k

δ

dt

ts−k+1
(1 ≤ k ≤ n). (18)

Evidently, by using (17) and (18) and following the proof of Theorem

5, one can give generalizations of Theorem 5 for admissible values of

parameters in the inequality
(
∫

Ω

|f |q

δα
dx

)1/q

≤ c

(
∫

Ω

|∇f |p

δβ
dx

)1/p

, ∀f ∈ C∞

0 (Ω).

We illustrate this idea by some particular cases, only. Consider first a

case, when the constant in a Hardy type inequality is connected with the

volume of Ω, i. e. with the 0-moment of Ω. Let us denote

c(p, Ω) = sup

{

∥

∥

∥

∥

f

δ

∥

∥

∥

∥

Ln(Ω)

: ‖∇f‖Lp(Ω) = 1, f ∈ C∞

0 (Ω)

}

, p ∈ (n,∞).

Theorem 7. Let Ω be an open set in Rn(n ≥ 1) with finite volume

|Ω| = mes Ω. If p > n, then

|Ω|1/n−1/p ≤ c(p, Ω) ≤
p

p − n
|Ω|1/n−1/p, (19)

i.e. the following inequality
(

1

|Ω|

∫

Ω

|f |n

δn
dx

)1/n

≤ λ

(

1

|Ω|

∫

Ω

|∇f |pdx

)1/p

, ∀f ∈ C∞

0 (Ω), (20)

is valid with a constant λ such that

1 ≤ λ ≤
p

p − n
.
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Proof of Theorem 7. Let f ∈ C∞

0 (Ω). Applying the Hölder inequality

with the exponents p/n and p/(p − n) and Theorem 5, we easily obtain
(
∫

Ω

|f |n

δn
dx

)1/n

≤ |Ω|1/n−1/p

(
∫

Ω

|f |p

δp
dx

)1/p

≤
p

p − n
|Ω|1/n−1/p

(
∫

Ω

|∇f |p dx

)1/p

.

From this one immediately obtains the upper bounds for c(p, Ω) and λ.

Now we prove the lower estimate for c(p, Ω). According to the theorem

on regularized distance functions (see V.I. Burenkov [14], P. 78, compare

A.P. Calderon and A. Zigmund [15] and L.E. Fraenkel [21]), for any open

set Ω ⊂ Rn (Ω 6= Rn) and for any β ∈ (0, 1) there exists a C∞(Ω)-function

δβ(., Ω) such that

βδ(x, Ω) ≤ δβ(x, Ω) ≤ δ(x, Ω), |∇δβ(x, Ω)| ≤ 1, x ∈ Ω.

Consider the functions

fαβε(x) =

{

(δβ(x, Ω) − ε)α, if x ∈ Ω(β, ε),

0, if x ∈ Ω \ Ω(β, ε),

where 0 < β ≤ 1, 1 ≤ α < ∞, 0 < ε < βδ0(Ω) and

Ω(β, ε) = {x ∈ Ω : δβ(x, Ω)| > ε}, Ω(1, ε) = {x ∈ Ω : δ(x, Ω)| > ε}.

The set Ω(β, ε) is bounded since the volume of Ω is finite. It is clear that

fαβε ∈ C1
0 (Ω) for α > 1 and β < 1. Since C∞

0 (Ω) is dense in C1
0 (Ω) (see,

for instance, [14] ), one can write

c(p, Ω) ≥

(
∫

Ω(β,ε)

|fαβε|
n

δn
dx

)1/n(∫

Ω(β,ε)

|∇fαβε|
p dx

)

−1/p

,

where α > 1 and β < 1. Letting α → 1 and β → 1 and using

|∇δβ(x, Ω)| ≤ 1, we get

c(p, Ω) ≥

(
∫

Ω(1,ε)

|f11ε|
n

δn
dx

)1/n(∫

Ω(1,ε)

dx

)

−1/p

=

(
∫

Ω(1,ε)

(δ − ε)n

δn
dx

)1/n

|Ω(1, ε)|−1/p,

where δ = dist(x, ∂Ω). Lebesgue’s theorem on majorized convergence

applied to the last inequality as ε → 0 gives

c(p, Ω) ≥ |Ω|1/n−1/p.

This completes the proof of Theorem 7.
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In the next theorem we consider the following inequality
∫

Ω

|f |

δs
dx ≤ c

(
∫

Ω

|∇f |p

δs
dx

)1/p

, ∀f ∈ C∞

0 (Ω). (21)

Theorem 8. Suppose that Ω is an open set in Rn (n ≥ 1) such that

M =

∫

Ω

δ
p

p−1
−sdx < +∞.

If p > 1, s ≥ n and 1/p+1/s > 1, then the best constant in (21) satisfies

the inequalities

1 −
1

p
≤

c

M1−1/p
≤ Γ1−1/p

(

2p

p − 1

)(

1 −
1

p

)

, (22)

where Γ is Euler’s gamma function.

Proof of Theorem 8. Following the proof of Theorem 6 with a little

change we obtain the upper estimate in (22). Namely, by using (17)

and (18) for s > n and p = 1, summing over all S with Q(S) 6= ∅, and

applying the Hölder inequality with the exponents p and q = p
p−1

, we

easily obtain
∫

Ω1

|f |

δs
dx ≤

(
∫

Ω1

|∇f |p

δs
dx

)1/p(∫

Ω1

Φqdx

)1/q

,

where

Φ|Q(S) =
δs/p

δs−1

∫ ψn−k

δ

dt

ts−k+1
(k = 1, 2, . . . , n)

for any cubic (n − k)-face S. From this it follows that
∫

Ω1

Φqdx ≤
1

qq
Γ(q + 1) · M

since
∫ ϕ

0

(

rs/p

rs−1

∫ ϕ

r

dt

ts−k+1

)q

rk−1dr

=
ϕq−s+k

(s − k)q

∫ 1

0

τ q−s(1 − τ s−k)qτk−1dτ

=
Γ( q

s−k
)Γ(q + 1)

(s − k)qΓ( q
s−k

+ q)

∫ ϕ

0

rq−srk−1dr

≤ q−qΓ(q + 1)

∫ ϕ

0

rq−srk−1dr.

To obtain the last inequality we have used that

Γ( q
s−k

)

(s − k)qΓ( q
s−k

+ q)
≤ q−q.
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This inequality is a simple consequence of the identity Γ(α +1) = αΓ(α)

and the sharp estimates by W. Gautschi for the gamma function (see [23]

or the book by D. S. Mitrinovic [37]).

To obtain the lower estimate in (22), we first observe that
∫

Ω

|f0|

δs
dx

(
∫

Ω

|∇f0|
p

δs
dx

)

−1/p

= (1 − 1/p)M 1−1/p

for the function f0 = δ
p

p−1 .

To complete the proof, we apply the Calderon - Zigmund - Burenkov

theorem on regularized distance functions ([14], P. 78) as in the proof of

Theorem 7.

6. An improved form of the Brezis-Marcus inequality and

related results.

We shall obtain the following generalization of the cited equation

cp(p, Ω) = p/(p − 1)

for convex domains.

Theorem 9. Let Ω be an open, convex and proper subset of Rn. If p ≥ 1

and s > 1 then
∫

Ω

|f |p

δs
dx ≤

(

p

s − 1

)p ∫

Ω

|∇f |p

δs−p
dx, ∀f ∈ C∞

0 (Ω), (23)

where δ = δ(x) = dist(x, ∂Ω).

Also, we shall prove the following lower estimate (compare the case

α = n − 1 of Theorem 5.1 in [16]). Let Ω be a bounded open set in Rn.

Consider its boundary surface area by Minkowski (see [24]):

σ(Ω) = lim
t→+0

sup
A(t)

t
,

where A(t) = mes{x ∈ Ω : dist(x, ∂Ω) < t}.

Theorem 10. If p ≥ 1 and s > 1 and Ω is a bounded open set in Rn

with finite surface area σ(Ω), then

cp(s, Ω) ≥
p

s − 1
.

From Theorems 9 and 10 it follows that cp(s, Ω) = p/(s− 1) for p ≥ 1

and s > 1 and any bounded convex domain Ω ⊂ Rn. The main aim of this

section is to improve this result using additional terms in the inequality

(23). To this end, examine first the following theorem of H.Brezis and
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M.Marcus [13]: if Ω is a bounded open and convex subset of Rn and

λ = 1/diam(Ω)2 then
∫

Ω

|f |2

δ2
dx + λ

∫

Ω

|f |2dx ≤ 4

∫

Ω

|∇f |2dx, ∀f ∈ C∞

0 (Ω). (24)

In [27] M.Hoffmann–Ostenhof, T.Hoffmann–Ostenhof and A.Laptev proved

that λ in (24) can be replaced by c(n)/|Ω|2/n, where |Ω| = mes Ω.

It is natural to ask whether inequality (24) is valid with some λ > 0

for an unbounded convex domain. It is clear that the validity of (24)

implies

λ ≤ 4λ1(Ω),

where λ1(Ω) is the first Dirichlet eigenvalue for the Laplace equation.

According to the theory of Isoperimetric Inequalities in Mathematical

Physics (see [8], [10], [41]) we have

λ ≤
const.

δ2
0(Ω)

.

This argument shows that (24) is not true with λ > 0 for any unbounded

convex domain Ω in the case δ0 = δ0(Ω) = +∞. It is also clear that

there are unbounded convex domains Ω ⊂ Rn with δ0(Ω) < +∞ in the

case n ≥ 2, only.

We extend the Brezis - Marcus inequality to certain unbounded convex

domains. More precisely, we prove that (24) is true with λ = 1/δ2
0, and

that a similar improved version of (23) is valid.

Theorem 11. Let Ω be an open, convex and proper subset of Rn. If

p ≥ 1 and s > 1, then for any f ∈ C∞

0 (Ω)
∫

Ω

|f |p

δs
dx +

1

(s − 1)δs0

∫

Ω

|f |pdx ≤

(

p

s − 1

)p ∫

Ω

|∇f |p

δs−p
dx, (25)

where δ = dist(x, ∂Ω), δ0 = sup{δ(x) : x ∈ Ω}.

Proof of Theorems 9 and 11. Let Ω be an open, convex and proper

subset of R
n. It is known that for any compact set K ⊂ Ω there exists

a convex n-dimensional polytope Q such that K ⊂ intQ ⊂ Ω (see [24]).

Hence, for given f ∈ C∞

0 (Ω) it is sufficient to prove inequalities (23) and

(25) for every convex, n-dimensional polytope Q such that

supp f ⊂ intQ ⊂ Ω.

Let Q be such a polytope, and let S1, S2, . . . , Sm be the collection of

all (n − 1)-faces of Q. First we will construct a special decomposition of
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Q:

Q = ∪mj=1Qj, intQj ∩ Qk = ∅ for j 6= k, (26)

where Qj are convex and compact sets. Namely, for each x′ ∈ intSj we

define

ϕj(x
′) = max{t ∈ R+ : B(x′ + tν(x′), t) ⊂ Q},

where ν(x′) is the interior normal to Sj at the point x′, B(x, t) is the ball

{y ∈ R
n : |y − x| ≤ t}, R+ = [0,∞). We easily obtain that

Qj := Sj ∪ {x = x′ + tν(x′) : 0 < t ≤ ϕj(x
′)}

is a closed, n-dimensional and convex set, and Q1, Q2, . . . , Qm satisfy

(26). Due to convexity of Qj, mesn∪
m
j=1∂Qj = ∅. Hence, for any function

g ∈ L1(Q)
∫

Q

g(x) dx =
m
∑

j=1

∫

Qj

g(x) dx

and, by Fubini’s theorem
∫

Qj

g(x) dx =

∫

Sj

dx′

∫ ϕj(x
′)

0

g(x′ + tν(x′))dt. (27)

For any x = x′ + tν(x′) ∈ Qj one has

δ(x) = t, δ(x) ≤ ϕj(x
′) ≤ δ0, (28)

where δ = δ(x) = dist(x, ∂Q) and δ0 is its maximum in Q.

Suppose that p ≥ 1, s > 1 and f ∈ C∞

0 (Q). By using (27) and (28)

for the function

g(x′ + tν(x′)) = |f(x′ + tν(x′))|p
(

1

ts
+

1

(s − 1)δs0

)

,

we get
∫

Qj

|f(x)|p
[

1

δs(x)
+

1

(s − 1)δs0

]

dx

≤ p

∫

Sj

dx′

∫ ϕj(x
′)

0

(

1

ts
+

1

(s − 1)δs0

)

dt

∫ t

0

|f(y)|p−1

∣

∣

∣

∣

∂f(y)

∂τ

∣

∣

∣

∣

dτ

=
p

s − 1

∫

Sj

dx′

∫ ϕj(x′)

0

|f(y)|p−1

τ s−1

∣

∣

∣

∣

∂f(y)

∂τ

∣

∣

∣

∣

A(x′, τ)dτ,

where y = x′ + τν(x′), and

A(x′, τ) = 1 −
τ s−1

ϕs−1
j

+
τ s−1

δs0
[ϕj(x

′) − τ ] ≤ 1,

By using this and the inequality
∣

∣

∂f
∂τ

∣

∣ ≤ |∇f | and by summing over

j = 1, 2, . . . , m we get
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IQ :=

∫

Q

|f |p
(

1

δs
+

1

(s − 1)δs0

)

dx ≤
p

s − 1

∫

Q

|f |p−1

δs−1
|∇f |dx. (29)

If p = 1, then (29) is the inequality (25) for Ω = Q. Following Hardy

(see [25], Theorem 330), in the case p > 1 we apply Hölder’s inequality

in (29) to get

IQ ≤
p

s − 1

(

∫

Q

(

|f |p−1

δs−s/p

)p′

dx

)1/p′
(
∫

Q

(

|∇f |

δs/p−1

)p

dx

)1/p

=
p

s − 1

(
∫

Q

|f |p

δs
dx

)1/p′ (∫

Q

|∇f |p

δs−p
dx

)1/p

,

where 1/p′ = 1 − 1/p. Consequently,

IQ ≤

(

p

s − 1

)p ∫

Q

|∇f |p

δs−p
dx.

This completes the proof of Theorems 9 and 11.

Proof of Theorem 10. Suppose that p ≥ 1, s > 1 and σ(Ω) is finite.

Let us denote

X =

∫

Ω

|u|p

δs
dx, Y =

∫

Ω

|∇u|p

δs−p
dx, δ = dist(x, ∂Ω).

For ε ∈ (0, 1) and u = uε(x) = δ(s−1+ε)/p we have

X = M−1+ε(Ω), Y =

(

s − 1 + ε

p

)p

M−1+ε(Ω), (30)

where M−1+ε(Ω) is the following moment of Ω about its boundary

M−1+ε(Ω) =

∫

Ω

δ−1+εdx.

Using (30), the equation

lim
ε→+0

sup εM−1+ε(Ω) ≤ σ(Ω) (31)

and the Calderon - Zigmund - Burenkov theorem (see [14], P. 78), we

obtain that

cp(s, Ω) ≥ p(s − 1)−1.

To prove (31) we remark that

γk := sup

{

A(t)

t
: 0 < t <

δ0

k

}

− σ(Ω) → 0
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as k → ∞. Consequently,

b := lim
ε→+0

sup ε

∫ δ0

0

A(t)

t2−ε
dt = lim

k→∞

lim
ε→+0

sup ε

∫ δ0/k

0

A(t)

t2−ε
dt

≤ lim
k→∞

[σ(Ω) + γk] lim
εø0

(

δ0

k

)ε

= σ(Ω).

Integrating by parts and using the known formulas (see [43], Chapter 1),

we have

(1 − ε)

∫ δ0

0

A(t)

t2−ε
dt =

A(δ0)

δ1−ε
0

+

∫ δ0

0

dA(t)

t1−ε
= M−1+ε(Ω).

for any ε ∈ (0, 1). Consequently,

lim
ε→+0

sup εM−1+ε(Ω) = b ≤ σ(Ω)

which proves (31).

The proof of Theorem 10 is complete.

Example 4. Suppose that p ≥ 1 and s > 1. Our aim is to obtain an

upper estimate for λ > 0 in the inequality
∫

Ω

|u|p

δs
dx +

λ

δs0

∫

Ω

|u|pdx ≤

(

p

s − 1

)p ∫

Ω

|∇u|p

δs−p
dx, ∀u ∈ C∞

0 (Ω), (32)

for convex domains (compare formula (25)).

We will examine the domains

Ωε = (−ε, 1 + ε)n−1 × (−ε, ε) ⊂ Rn

and functions uε defined by

uε(x) = δ(s−1+ε)/p, 0 < ε < 1,

in the case n = 2 only. Note that δ0 = sup δ = ε for Ωε.

For n = 2, straightforward computations give

X =
2εε

ε
+

8εε

1 + ε
, Y =

(

s − 1 + ε

p

)p

X,

Z :=
λ

δs0

∫

Ωε

upεdx =
2λεε

s + ε

(

1 +
4ε

s + 1 + ε

)

and
X + Z −

(

p
s−1

)p
Y

2εε
=

λ

s
−

p

s − 1
+ O(ε).

If (32) is true then

λ ≤
ps

s − 1
.
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Hence, the best possible value of λ in (32) satisfies the inequalities

1

s − 1
≤ λ ≤

ps

s − 1
(∀p ≥ 1, s > 1).

Acknowledgments. I wish to express my gratitude to D. Kh. Mush-

tary, K.-J.Wirths, W. Sander, and T. Carroll for their help with the

bibliographical sources.

This research was supported by a grant of the Deutsche Forschungs-

gemeinschaft and by the Russian Fund of Basic Research (Grant 05-01-

00523).

References

[1] L.V. Ahlfors , Conformal invariants, Topics in Geometric Function Theory,

McGraw–Hill, 1973.

[2] A. Ancona, On strong barriers and an inequality of Hardy for domains in Rn, J.

London Math. Soc. (2) 37 (1986), 274–290.

[3] F.G. Avkhadiev, Solution of the generalized Saint Venant problem, Matem.

Sbornik, 189, No. 12 (1998), 3 - 12 (Russian); Sb.Math. (1998), 189: 12, 1739–

1748.

[4] F.G. Avkhadiev, Geometrical characteristics of domains that are equivalent to

the norms of some embedding operators , Proc. of Int. Conference in honour of

Chebyshev, Moscow State University, V.1 (1996), 12–14 (Russian).

[5] F.G. Avkhadiev, On multidimensional Hardy type inequalities , Int. Conference

”Geom. Analysis and its Applications”, Abstracts, Volgograd State University,

(2004), 6–8 (in Russian).

[6] F.G. Avkhadiev, Hardy type inequalities in plane and space domains, Int. Confer-

ence and workshop dedicated to the centennial of Sergei Mikhailovich Nikolskii,

Russian Academy of Sciences, Moscow (2005), P. 21 (in Russian).

[7] F.G. Avkhadiev, Sharp estimates of constants in the Hardy type inequalities ,

13-th Saratov winter school on the function theory and its applications, Saratov

State University, (2006), 4–5 (Russian).

[8] C. Bandle, Isoperimetric Inequalities and Applications, Pitman Publ. Inc.,

Boston, Mass. – London, 1980.

[9] C. Bandle and M. Flucher, Harmonic radius and concentration of energy, hyper-

bolic radius and Liouville’s equations ∆U = eU and ∆U = U (n+2)/(n−2), SIAM

Rev. (2) 38 (1996), 191–238.

[10] C.Bandle and M.Flucher, Table of inequalities in elliptic boundary value prob-

lems. In ”Recent Progress in Inequalities.” – V.Milovanovic (ed.) 1998, Kluwer

Academic Publ., 97–125.
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[41] G. Pólya and G. Szegö, Isoperimetric Inequalities in Mathematical Physics,

Princeton Univ. Press, N.J., 1951.

[42] F. Rellich, Halbbeschränkte Differetialoperatoren höherer Ordnung, Proc. of Int.
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