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Abstract. In this paper, the total divergence equation is investi-

gated by means of the methods used in the theory of finite order vari-

ational sequences. Integrability conditions for this equation are found,

and all solutions are described. The correspondence of the solutions

with some differential forms on jet spaces is established.

1. Introduction

Let U ⊂ R
n be an open set, let W ⊂ R

m be an open ball with cen-

ter at the origin, and denote V = U × W . We consider V as a fibered

manifold over U with the first Cartesian projection π : V → U . V s de-

notes the s-jet prolongation of V ; explicitly, V s = U ×W ×L(Rn, Rm)×

L2
sym(Rn, Rm)×...×Ls

sym(Rn, Rm), where Lk
sym(Rn, Rm) is the vector space
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of k-linear, symmetric mappings from R
n to R

m . The Cartesian coor-

dinates on V , and the associated jet coordinates on V s , are denoted by

xi, yσ, and xi, yσ, yσ
j1, y

σ
j1j2 , ..., y

σ
j1j2...js

, respectively; in these expressions

1 ≤ i, j1, j2, ..., js ≤ n and 1 ≤ σ ≤ m.

Let f : V r → R be a differentiable function (order of differentiability

in different variables can be easily deduced from the context). Our aim

in this paper is to find solutions g = (g1, g2, ..., gn) of the total divergence

equation

dig
i = f, (1)

whose components gi are differentiable real-valued functions on V s, where

s is a positive integer. Since the total divergence dig
i is defined by

dig
i =

∂gi

∂xi
+

∂gi

∂yσ
yσ

i +
∂gi

∂yσ
i1

yσ
i1i +

∂gi

∂yσ
i1i2

yσ
i1i2i + ... +

∂gi

∂yσ
i1i2...ir

yσ
i1i2...iri, (2)

equation (1) is a first order partial differential equation. From this ex-

pression we immediately see that every solution g = gi , defined on V s ,

such that s ≤ r + 1, satisfies

∂gi1

∂yσ
i2i3...is+1

+
∂gi2

∂yσ
i1i3i4...is+1

+ ... +
∂gis

∂yσ
i1i2...is−1is+1

+
∂gis+1

∂yσ
i1i2...is

= 0. (3)

In this paper, we solve the total divergence equation by means of the

methods, developed in the theory of finite order variational sequences

(Krupka [12]). For additional information on this theory, see also e.g.

Francaviglia, Palese, Vitolo [3], Grassi [4], Grigore [5], Krbek and Musilova

[9], Pommaret [14], and Vitolo [19]. We use standard concepts of the

calculus of differential forms on jet prolongations of fibered manifolds,

applied to open sets in Euclidean topological spaces R
n (see e.g. Krupka

[10], [11]). A systematic exposition of variational analysis and differential

equations in this context can be found in Hakova and Krupkova [6], and

Krupkova [13]. We prove two theorems on the structure of solutions of

the total divergence equation. We consider this equation as an overde-

termined equation, and find the corresponding integrability condition,

which guarantees existence of solutions. It turns out that integrability

of the total divergence equation is equivalent with the vanishing of the

Euler-Lagrange expressions of the right-hand side of equation (1), well

known from the multi-dimensional, higher order variational theory. If

the integrability condition is satisfied, we find all solutions. Moreover we

show that the solutions can naturally be interpreted as some differen-

tial forms. The tools we use include among others the theory of Lepage
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forms, the Young decompositions and the trace decompositions of tensor

spaces, and the fibered homotopy operator.

It seems that the total divergence equations, differential operators, and

algebraic constructions related with them, appeared for the first time

in the geometric theory of partial differential equations on infinite jet

spaces and, in particular, in the variational bicomplex theory (see e.g.

Anderson [1], Dedecker and Tulczyjew [2], Krasilschik [7], Krasilschik,

Lychagin, and Vinogradov [8], Saunders [15], Takens [16], Tulczyjew [17],

Vinogradov [18], Tsujishita [20], and references therein). These equations

play a crucial role in the proofs of exactness of the bicomplex. However,

no explicit discussion has appeared in this context yet; the structure of

solutions of the total divergence equation, and the meaning of condition

(3), in these sources remain unclear.

2. Notation

In what follows we use basic notions from the theory of contact forms

on jet prolongations of fibered manifolds (see e.g. [11], [13]). We denote

ω0 = dx1 ∧ dx2 ∧ ... ∧ dxn, ωi = i∂/∂xiω0, ωij = i∂/∂xii∂/∂xjω0.

The contact 1-forms ωσ
j1j2...jk

are defined by

ωσ
j1j2...jk

= dyσ
j1j2...jk

− yσ
j1j2...jkldxl, k = 0, 1, 2, ..., s− 1.

h and pk denote the horizontalization, and the k-contact mappings.

For any smooth function f : V r → R we define an n-form λf on V r

and a system of functions Eσ(f) : V 2r → R by

λf = fω0,

and

Eσ(f) =
∂f

∂yσ
− di1

∂f

∂yσ
i1

+ di1di2

∂f

∂yσ
i1i2

− di1di2di3

∂f

∂yσ
i1i2i3

+... + (−1)r−1di1di2...dir−1

∂f

∂yσ
i1i2...ir−1

+ (−1)rdi1di2...dir

∂f

∂yσ
i1i2...ir

.

λf is the lagrangian associated with f , and the (n + 1)-form

Ef = Eσ(f)ωσ ∧ ω0

is the Euler-Lagrange form, associated with f .
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3. Projectable extensions of horizontal (n − 1)-forms

Let us consider a πr-horizontal (n − 1)-form η on V r, expressed as

η = giωi =
1

(n − 1)!
hj2j3...jn

dxj2 ∧ dxj3 ∧ ... ∧ dxjn. (4)

Since

ωi =
1

(n − 1)!
εij2j3...jn

dxj2 ∧ dxj3 ∧ ... ∧ dxjn,

we have the transformation formulas

hj2j3...jn
= εij2j3...jn

gi, gk =
1

(n − 1)!
εkj2j3...jnhj2j3...jn

.

We prove the following assertion, in which alt and sym denote alternation

and symmetrization in the corresponding indices.

Lemma 1. The functions gi and hj1j2...jn−1
satisfy

1

(r+1)
εil2l3...ln

(

∂gi

∂yσ
k1k2...kr

+
∂gk1

∂yσ
ik2k3...kr

+
∂gk2

∂yσ
k1ik3k4...kr

+...+
∂gkr

∂yσ
k1k2...kr−1i

)

=
∂hl2l3...ln

∂yσ
k1k2...kr

−
r(n − 1)

(r + 1)

∂hil3l4...ln

∂yσ
ik2k3...kr

δk1

l2
alt(l2l3...ln) sym(k1k2...kr).

Proof. We have

∂gi

∂yσ
k1k2...kr

1

(n − 1)!
εij2j3...jn

∂hj2j3...jn

∂yσ
k1k2...kr

.

Multiplying this expression by εil2l3...ln we obtain

εil2l3...ln

∂gi

∂yσ
k1k2...kr

=
1

(n − 1)!
εil2l3...lnεij2j3...jn ∂hj2j3...jn

∂yσ
k1k2...kr

=
∂hl2l3...ln

∂yσ
k1k2...kr

.

The rest of the proof is routine. �

We say that a πr-horizontal form η, defined on V r, has a projectable

extension, if there exists a form µ on V r,r−1 such that

η = hµ.

Let us consider a form η, expressed in two bases of (n − 1)-forms by

(4).

Lemma 2. The following three conditions are equivalent:

(a) η has a πr,r−1-projectable extension.

(b) The components hi1i2...in−1
satisfy

∂hi1i2...in−1

∂yσ
j1j2...jr

−
r(n − 1)

r + 1

∂hsi2i3...in−1

∂yσ
sj2j3...jr

δj1
i1

= 0 sym(j1j2...jr) alt(i1i2...in−1).
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(c) The components gi satisfy

∂gi

∂yσ
k1k2...kr

+
∂gk1

∂yσ
ik2k3...kr

+
∂gk2

∂yσ
k1ik3k4...kr

+ ... +
∂gkr

∂yσ
k1k2...kr−1i

= 0.

Proof. 1. To show that (a) implies (b), suppose that we have an (n− 1)-

form µ on V r−1 such that η = hµ. To express µ in a fibered chart, we

use multi-indices J = (j1j2...jr−1) of length |J | ≤ r − 1. Then (πr,r−1)∗µ

is expressible as

(πr,r−1)∗µ =
1

(n − 1)!
hi1i2...in−1

dxi1 ∧ dxi2 ∧ ... ∧ dxin−1

+
n−2
∑

k=1

1

k!(n − 1 − k)!
hJ1

σ1

J2

σ2
...Jk

σkik+1ik+2...in−1
ωσ1

J1
∧ ωσ2

J2
∧ ... ∧ ωσk

Jk

∧dxik+1 ∧ dxik+2 ∧ ... ∧ dxin−1

+
1

(n − 1)!
hJ1

σ1

J2

σ2
...Jn−1

σn−1
ωσ1

J1
∧ ωσ2

J2
∧ ... ∧ ω

σn−1

Jn−1
.

Since µ is defined on V r−1, so is dµ. In particular, all terms in (πr,r−1)∗dµ

= d(πr,r−1)∗µ, containing dyν
j1j2...jr

, should vanish identically. We find the

terms in d(πr,r−1)∗µ, which do not contain any of the forms ωσ, ωσ
j1
, ωσ

j1j2
,

..., ωσ
j1j2...jr−1

; these terms should vanish separately. Obviously, they can

arise only from the summands

1

(n − 1)!
hi1i2...in−1

dxi1 ∧ dxi2 ∧ ... ∧ dxin−1

+
1

(n − 2)!
hJ1

σ1i2i3...in−1
ωσ1

J1
∧ dxi2 ∧ dxi3 ∧ ... ∧ dxin−1

(5)

in η, in which |J1| = r − 1. Writing J1 = (j1j2...jr−1), differentiating (5)

and omitting the terms containing ωσ1

J1
, we get

1

(n − 1)!
d′

i1hi2i3...indxi1 ∧ dxi2 ∧ dxi3 ∧ ... ∧ dxin

+
1

(n − 1)!

∂hi2i3...in

∂yσ
j1j2...jr

dyσ
j1j2...jr

∧ dxi2 ∧ dxi3 ∧ ... ∧ dxin

−
1

(n − 2)!
hj1j2...jr−1

σ i3i4...indyσ
j1j2...jr−1i2

∧ dxi2∧ dxi3∧ dxi4∧ ... ∧ dxin

=
1

(n − 1)!
d′

i1
hi2i3...indxi1 ∧ dxi2 ∧ dxi3 ∧ ... ∧ dxin

+
1

(n − 2)!

(

1

n − 1

∂hi2i3...in

∂yσ
j1j2...jr

− hj1j2...jr−1

σ i3i4...inδjr

i2

)

·dyσ
j1j2...jr

∧ dxi2 ∧ dxi3 ∧ ... ∧ dxin,
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where d′

i denotes the cut formal derivative,

d′

i1
hi2i3...in = di1hi2i3...in −

∂hi2i3...in

∂yσ
j1j2...jr

yσ
j1j2...jri1

.

Consequently, d(πr,r−1)∗µ can be written as

(πr,r−1)∗dµ =
1

(n − 1)!
d′

i1hi2i3...indxi1 ∧ dxi2 ∧ dxi3 ∧ ... ∧ dxin

+
1

(n − 2)!

(

1

n − 1

∂hi2i3...in

∂yσ
j1j2...jr

− hj1j2...jr−1

σ i3i4...inδjr

i2

)

·dyσ
j1j2...jr

∧ dxi2 ∧ dxi3 ∧ ... ∧ dxin + τ,

where τ is generated by the forms ωσ, ωσ
j1

, ωσ
j1j2

, ..., ωσ
j1j2...jr−1

. But

d(πr,r−1)∗µ is πr,r−1-projectable, so we see that µ satisfies

1

n − 1

∂hi1i2...in−1

∂yσ
j1j2...jr

− hj1j2...jr−1

σ i2i3...in−1
δjr

i1
= 0

alt(i1i2...in−1) sym(j1j2...jr).
(6)

The structure of this system of algebraic equations for hj1j2...jr−1

σ i3i4...in

is described by the trace decomposition theory. In what follows we use

the trace operation tr , and a complementary operation, denoted by q ,

which satisfy U = tr q U + q tr U for any tensor U , symmetric in the

superscripts, and antisymmetric in the subscripts (see [11]). In terms of

these operations, equation (6) can be written in the form q X = A, where

X = hj1j2...jr−1

σ i1i2...in−2
, A =

r

r + 1

∂hi1i2...in−1

∂yσ
j1j2...jr

.

Recall that

q X =
r(n − 1)

r + 1
hj2j3...jr

σ i2i3...in−1
δj1
i1

alt(i1i2...in−1) sym(j1j2...jr).

But we have the identities A = tr q A + q tr A and q q X = 0, and we

know that a necessary and sufficient condition for existence of a solution

X is q A = 0 or, equivalently, A − q trA = 0. Since

q trA =
r2(n − 1)

(r + 1)2

∂hsi2i3...in−1

∂yσ
sj2j3...jr

δj1
i1

sym(j1j2...jr) alt(i1i2...in−1),

and

A − q tr A =
r

r + 1

∂hi1i2...in−1

∂yσ
j1j2...jr

−
r2(n − 1)

(r + 1)2

∂hsi2i3...in−1

∂yσ
sj2j3...jr

δj1
i1

sym(j1j2...jr) alt(i1i2...in−1),
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we see that (a) implies (b). Note that condition (b) means that the

expression

∂hi1i2...in−1

∂yσ
j1j2...jr

has vanishing its traceless component.

2. Property (c) of the form η follows from (b) by Lemma 1.

3. Suppose that the functions gi satisfy condition (c),

∂gi1

∂yσ
i2i3...ir+1

+
∂gi2

∂yσ
i1i3...ir+1

+
∂gi3

∂yσ
i2i1i4...ir+1

+ ... +
∂gir+1

∂yσ
i2i3...iri1

= 0. (7)

We wish to show that these functions are necessarily polynomials of de-

gree ≤ n−1 in the variables yν
j1j2...jr

. In fact we prove that every solution

gi of equation (7) is necessarily a polynomial in the variables yν
J of degree

≤ n − 1. It will be convenient to work with multi-indices of length r,

J = (j1j2...jr). We assert that

∂ngi

∂yσ1

J1
∂yσ2

J2
...∂yσn

Jn

= 0. (8)

We prove (8) by showing that all Young diagrams, defining the Young

decomposition of the expression on the left of (8), vanish. Since this

expression is symmetric in the indices entering every of the multi-indices

J1, J2, ..., Jn, only the diagrams, which contain any of the blocks J1, J2, ...,

Jn in a row, can make a nonzero contribution. Thus, we can restrict our

attention to typical diagrams, which include the blocks J1, J2, ..., Jn as

follows:

J1 J2 J3 ... ... Jk1

Jk1+1 Jk1+2 ... Jk1+k2

Jk1+k2+1 Jk1+k2+2 ...

...

(diagrams with different position of indices in each row give analogous

Young projectors). On the other hand, the Young diagrams for the de-

composition of (8) should also include the index i. If this index stands

in a row, which contains at least one of the blocks J1, J2, ..., Jn, we get

necessarily the zero Young projector, by (7). Thus, a non-zero projector

may possibly arise only from the diagram, in which i is placed on the
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bottom:

J1 J2 J3 ... ... Jk1

Jk1+1 Jk1+2 ... Jk1+k2

Jk1+k2+1 Jk1+k2+2 ...

...

i

However, then it follows again from (7) and from antisymmetry of the

corresponding Young projector in the first column, that we get the zero

contribution whenever k1 ≥ 2; otherwise we simply transform the index i

to the first column by a permutation in the first column. Thus, a nonzero

contribution may arise only for the diagram

J1

J2

...

Jn

i

But the Young projector, corresponding with this diagram, is the zero

projector because this diagram contains n + 1 rows. This proves that gi

satisfies condition (8). In particular, gi must be a polynomial in yσ
i1i2...is

of degree ≤ n − 1.

Let gi
p be the homogeneous component of gi of degree p. Then

gi = gi
0 + gi

1 + gi
2 + ... + gi

n−1, (9)

and we have for each p = 0, 1, 2, ..., n − 1

∂gi1
p

∂yσ
i2i3...ir+1

+
∂gi2

p

∂yσ
i1i3...ir+1

+
∂gi3

p

∂yσ
i2i1i4...ir+1

+ ... +
∂gir+1

p

∂yσ
i2i3...iri1

= 0.

Moreover, since for every p = 1, 2, ..., n − 1

gi
p =

1

p

∂gi
p

∂yσ1

I1

yσ1

I1
,

we have

gi
p =

1

p2

∂2gi
p

∂yσ1

I1
∂yσ2

I2

yσ1

I1
yσ2

I2
+

1

p
gi

p,

i.e.,

gi
p =

1

p(p − 1)

∂2gi
p

∂yσ1

I1
∂yσ2

I2

yσ1

I1
yσ2

I2
.
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Continuing we get

gi
p =

1

p!

∂pgi
p

∂yσ1

I1
∂yσ2

I2
...∂y

σp

Ip

yσ1

I1
yσ2

I2
...y

σp

Ip
, (10)

where the coefficients are independent of yσ
I , |I| = r. Writing

∂pgi
p

∂yσ1

I1
∂yσ2

I2
...∂y

σp

Ip

=
∂pgi

p

∂yσ1

J1j1
∂yσ2

J2j2
...∂y

σp

Jpjp

(11)

and analyzing this expression in the same way as above, we see that

we have a unique Young diagram giving a possibly nontrivial Young

symmetrizer, namely

j1 J1

j2 J2

...

jp−1 Jp−1

jp Jp

i

Thus, the coefficients (11) are antisymmetric in i, j1, j2, ..., jp. This com-

pletes our description of the functions gi (9), satisfying condition (7).

Write for the coefficients in (10)

∂pgi
p

∂yσ1

I1
∂yσ2

I2
...∂y

σp

Ip

=
∂pgj

p

∂yσ1

J1i1
∂yσ2

J2i2
...∂y

σp

Jpip

δi
jδ

j1
i1

δj2
i2

...δ
jp

ip alt(ij1j2...jp)

=
1

(p + 1)!(n − p − 1)!

∂pgi
p

∂yσ1

J1i1
∂yσ2

J2i2
...∂y

σp

Jpip

·εii1i2...ip−1iplp+1...ln−1
εjj1j2...jp−1jplp+1...ln−1

where Ip = Jpjp. Set

AJ1

σ1

J2

σ2
...Jp

σp lp+1lp+2...ln−1
=

1

(p + 1)!

∂pgi
p

∂yσ1

J1k1
∂yσ2

J2k2
...∂y

σp

Jpkp

εik1k2...kplp+1lp+2...ln−1
,

and for each p = 1, 2, ..., n − 1

µp =
1

p!(n − p − 1)!
AJ1

σ1

J2

σ2
...Jp

σp lp+1lp+2...ln−1
dyσ1

J1
∧ dyσ2

J2
∧ ... ∧ dy

σp

Jp

∧dxlp+1 ∧ dxlp+2 ∧ ... ∧ dxln−1 .

We extend this definition for p = 0, setting

µ0 = gi
0ωi.

Let us now consider the form

µ = µ0 + µ1 + µ2 + ... + µn−1.
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µ is obviously defined on V r−1. Since

εik2k3...knωi = dxk2 ∧ dxk3 ∧ ... ∧ dxkn ,

we have

hµp =
1

p!(n − p − 1)!
AJ1

σ1

J2

σ2
...Jp

σp lp+1lp+2...ln−1
yσ1

J1i1
yσ2

J2i2
...y

σp

Jpip

·dxi1 ∧ dxi2 ∧ ... ∧ dxip ∧ dxlp+1 ∧ ... ∧ dxln−1

= (p + 1)
1

(p + 1)!

∂pgi
p

∂yσ1

J1i1
∂yσ2

J2i2
...∂y

σp

Jpip

yσ1

J1i1
yσ2

J2i2
...y

σp

Jpip
ωi

= gi
pωi,

in accordance with (10). Now we can conclude that

hµ = hµ0 +

n−1
∑

p=1

hµp = gi
0ωi +

n−1
∑

p=1

gi
pωi = giωi = η.

This completes the proof of Lemma 2. �

4. Lepage equivalents of a lagrangian

We have the following assertion.

Lemma 3. For any function f : V r → R, there exists an n-form Θ,

defined on V 2r−1, such that (a) λ = hΘ, and (b) the form p1dΘ is ωσ-

generated.

Proof. We search for Θ of the form

Θ=fω0+(f i
σωσ+f ij1

σ ωσ
j1
+f ij1j2

σ ωσ
j1j2

+...+f ij1j2...jr−1

σ ωσ
j1j2...jr−1

)∧ωi, (12)

with undetermined coefficients f i
σ, f ij1

σ , f ij1j2
σ , ..., f ij1j2...jr−1

σ . Note that

ωσ1

j1j2...jr−1
∧ ωi = ωσ1

j1j2...jr−1
∧ ωi sym(j1j2...jr−1i)

+
r − 1

r
d(ωσ1

j2j3...jr−1
∧ ωj1i) sym(j1j2...jr−1).

(13)
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Denote by f̃ ij1j2...jr−1

σ the expression f ij1j2...jr−1

σ , symmetrized in the su-

perscripts. Applying formula (13) to the last term in (12), we obtain

f ij1j2...jr−1

σ ωσ
j1j2...jr−1

∧ ωi = f̃ ij1j2...jr−1

σ ωσ
j1j2...jr−1

∧ ωi

+
r − 1

r
f ij1j2...jr−1

σ d(ωσ
j2j3...jr−1

∧ ωj1i)

= f̃ ij1j2...jr−1

σ ωσ
j1j2...jr−1

∧ ωi

+
r − 1

r
dk(f

kij2j3...jr−1

σ − f ikj2j3...jr−1

σ )ωσ
j2j3...jr−1

∧ ωi

+
r − 1

r
d(f ij1j2...jr−1

σ ωσ
j2j3...jr−1

∧ ωj1i)

−
r − 1

r
pdf ij1j2...jr−1

σ ∧ ωσ
j2j3...jr−1

∧ ωj1i.

Then

Θ = fω0 + (f i
σω

σ + f ij1
σ ωσ

j1 + f ij1j2
σ ωσ

j1j2

+... + f ij1j2...jr−2

σ ωσ
j1j2...jr−2

) ∧ ωi + f̃ ij1j2...jr−1

σ ωσ
j1j2...jr−1

∧ ωi

+
r − 1

r
dk(f

kij1j2...jr−2

σ − f ikj1j2...jr−2

σ )ωσ
j1j2...jr−2

∧ ωi

+
r − 1

r
d(f ij1j2...jr−1

σ ωσ
j2j3...jr−1

∧ ωj1i)

−
r − 1

r
pdf ij1j2...jr−1

σ ∧ ωσ
j2j3...jr−1

∧ ωj1i.

We can apply the same decomposition to the term
(

f ij1j2...jr−2

σ +
r − 1

r
dk(f

kij1j2...jr−2

σ − f ikj1j2...jr−2

σ

)

ωσ
j1j2...jr−2

∧ ωi

defined on V r, etc. After r − 1 steps we obtain a form on V 2r−1,

Θ = fω0+(f i
σωσ+f̃ ij1

σ ωσ
j1

+f̃ ij1j2
σ ωσ

j1j2
+...+f̃ ij1j2...jr−2

σ ωσ
j1j2...jr−2

+f̃ ij1j2...jr−1

σ ωσ
j1j2...jr−1

) ∧ ωi + dη + µ,
(14)

with symmetric coefficients f̃ ij1
σ , f̃ ij1j2

σ , ..., f̃ ij1j2...jr−2

σ , f̃ ij1j2...jr−1

σ .

From formula (14) we have

p1dΘ =

(

∂f

∂yσ
ωσ+

∂f

∂yσ
k1

ωσ
k1
+

∂f

∂yσ
k1k2

ωσ
k1k2

+...+
∂f

∂yσ
k1k2...kr

ωσ
k1k2...kr

)

∧ ω0

−
(

dif
i
σωσ+dif̃

ij1
σ ωσ

j1
+dif̃

ij1j2
σ ωσ

j1j2
+...+dif̃

ij1j2...jr−1

σ ωσ
j1j2...jr−1

)

∧ ω0

−(f i
σωσ

i +f̃ ij1
σ ωσ

ij1 +f̃ ij1j2
σ ωσ

ij1j2 +...+f̃ ij1j2...jr−2

σ ωσ
ij1j2...jr−2

+f̃ ij1j2...jr−1

σ ωσ
ij1j2...jr−1

) ∧ ω0.
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Collecting together the terms with the same elements of the basis of

(n + 1)-forms, we obtain

p1dΘ =

(

∂f

∂yσ
− dif̃

i
σ

)

ωσ ∧ ω0 +

(

∂f

∂yσ
j1

− dif̃
ij1
σ − f̃ j1

σ

)

ωσ
j1
∧ ω0

+

(

∂f

∂yσ
j1j2

− dif̃
ij1j2
σ − f̃ j2j1

σ

)

ωσ
j1j2

∧ ω0

+... +

(

∂f

∂yσ
j1j2...jr−1

− dif̃
ij1j2...jr−1

σ − f̃ jr−1j1j2...jr−2

σ

)

ωσ
j1j2...jr−1

∧ ω0

+

(

∂f

∂yσ
j1j2...jr

− f̃ jrj1j2...jr−1

σ

)

ωσ
j1j2...jr

∧ ω0.

Consequently, p1dΘ is ωσ-generated if and only if

∂f

∂yσ
j1j2...jr

− f̃ jrj1j2...jr−1

σ = 0,

∂f

∂yσ
j1j2...jr−1

− dif̃
ij1j2...jr−1

σ − f̃ jr−1j1j2...jr−2

σ = 0,

∂f

∂yσ
j1j2...jr−2

− dif̃
ij1j2...jr−2

σ − f̃ jr−2j1j2...jr−3

σ = 0,

...

∂f

∂yσ
j1j2

− dif̃
ij1j2
σ − f̃ j2j1

σ = 0,

∂f

∂yσ
j1

− dif̃
ij1
σ − f̃ j1

σ = 0.

These equations have a unique solution

f̃ jrj1j2...jr−1

σ =
∂f

∂yσ
j1j2...jr

,

f̃ jr−1j1j2...jr−2

σ =
∂f

∂yσ
j1j2...jr−1

− dir

∂f

∂yσ
j1j2...jr−1ir

,

f̃ jr−2j1j2...jr−3

σ =
∂f

∂yσ
j1j2...jr−2

− dir−1

∂f

∂yσ
j1j2...jr−2ir−1

+dir−1
dir

∂f

∂yσ
j1j2...jr−2ir−1ir

,

...
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f̃ j2j1
σ =

∂f

∂yσ
j1j2

− di3

∂f

∂yσ
j1j2i3

+ di3di4

∂f

∂yσ
j1j2i3i4

−... + (−1)r−2di3di4...dir

∂f

∂yσ
j1j2i3i4...ir

,

f̃ j1
σ =

∂f

∂yσ
j1

− di2

∂f

∂yσ
j1i2

+ di2di3

∂f

∂yσ
j1i2i3

−... + (−1)r−1di2di3...dir

∂f

∂yσ
j1i2i3i4...ir

.

This proves Lemma 3. �

Any form Θ , satisfying properties (a) and (b) of Lemma 3, is called a

Lepage equivalent of f . The form

Θf = fω0 + (f i
σωσ + f̃ ij1

σ ωσ
j1 + f̃ ij1j2

σ ωσ
j1j2 + ... + f̃ ij1j2...jr−2

σ ωσ
j1j2...jr−2

+f̃ ij1j2...jr−1

σ ωσ
j1j2...jr−1

) ∧ ωi

is the principal Lepage equivalent of f .

Note that Lepage equivalents Θ of f are defined by prescribing some

properties of the exterior derivative dΘ. The meaning of any Θ for the

total divergence equation consists in the structure of the form p1dΘ.

Computing p1dΘ, we obtain the Euler-Lagrange form

p1dΘ =

(

∂f

∂yσ
− dif

i
σ

)

ωσ ∧ ω0 = Eσ(f)ωσ ∧ ω0.

5. The fibered homotopy operator

Let U ⊂ R
n be an open set, let W ⊂ R

m be an open ball with center

at the origin, and let ζ : U → U × W be the zero section. We define a

mapping χ : [0, 1] × U × W → U × W by

χ(s, (xi, yσ)) = (xi, syσ).

Then

χ∗dxi = dxi, χ∗dyσ = yσds + sdyσ. (15)

For any k-form ρ on U × W , where k ≥ 1, consider the pull-back χ∗ρ,

which is a k-form on the set [0, 1] × U × W . Obviously, there exists a

unique decomposition

χ∗ρ = ds ∧ ρ(0)(s) + ρ′(s) (16)

such that the (k − 1)-form ρ(0)(s) and k-form ρ′(s) do not contain ds.

Note that by (15), ρ′(s) arises from ρ by replacing each factor dyσ by
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sdyσ, and by replacing each coefficient f in ρ by f ◦ χ; the factors dxi

remain unchanged. Thus, ρ′(s) obeys

ρ′(1) = ρ, ρ′(0) = π∗ζ∗ρ. (17)

Define

Iρ =

∫

ρ(0)(s), (18)

where the expression on the right means integration of the coefficients in

the form ρ(0)(s) over s from 0 to 1. If f : ×W → R is a function, we

define

If = 0.

The mapping ρ → Iρ is called the fibered homotopy operator.

We prove the following result.

Lemma 4. For any differential k-form ρ on U × W ,

ρ = Idρ + dIρ + π∗ζ∗ρ.

Proof. 1. Let k = 0. If f is a function, we have by (15)

χ∗df =

(

∂f

∂xi
◦ χ

)

dxi +

(

∂f

∂yσ
◦ χ

)

(yσds + sdyσ),

and

Idf = yσ

∫
(

∂f

∂yσ
◦ χ

)

ds.

Now the identity

f − π∗ζ∗f = f ◦ χ|s=1 − f ◦ χ|s=0 =

∫

d(f ◦ χ)

ds
ds = yσ

∫
(

∂f

∂yσ
◦ χ

)

ds

gives the result.

2. Let k = 1. ρ has an expression

ρ = Aidxi + Bσdyσ.

Thus

χ∗ρ = yσ(Bσ ◦ χ)ds + (Ai ◦ χ)dxi + (Bσ ◦ χ)sdyσ,

and

χ∗dρ = ds ∧

(

−d(yσ(Bσ ◦ χ)) +
∂(Ai ◦ χ)

∂s
dxi +

∂((Bσ ◦ χ)s)

∂s
dyσ

)

+

(

∂(Ai ◦ χ)

∂xj
dxj +

∂(Ai ◦ χ)

∂yν
dyν

)

∧ dxi

+

(

∂(Bσ ◦ χ)

∂xj
dxj +

∂(Bσ ◦ χ)

∂yν
dyν

)

∧ dyσ,
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hence

Iρ = yσ

∫

Bσ ◦ χ · ds,

Idρ =

∫
(

∂(Ai ◦ χ)

∂s
−

∂(yν · Bν ◦ χ)

∂xi

)

ds · dxi

+

∫
(

∂((Bσ ◦ χ)s)

∂s
−

∂(yν · Bν ◦ χ)

∂yσ

)

ds · dyσ,

and

dIρ = yσ

∫

∂

∂xi
(Bσ ◦ χ)ds · dxi +

∫

∂

∂yσ
(yν · Bν ◦ χ)ds · dyσ.

Consequently,

Idρ + dIρ =

∫
(

∂(Ai ◦ χ)

∂s

)

ds · dxi +

∫
(

∂((Bσ ◦ χ)s)

∂s

)

ds · dyσ

= ρ − π∗ζ∗ρ.

3. Let k ≥ 2 . Write ρ in the form

ρ = dxi ∧ Φi + dyσ ∧ Ψσ,

and we define differential forms Φ
(0)
i (s), Φ′

i(s), Ψ
(0)
σ (s), Ψ′

σ(s) by the fol-

lowing decompositions

χ∗Φi = ds ∧ Φ
(0)
i (s) + Φ′

i(s), χ∗Ψσ = ds ∧ Ψ(0)
σ (s) + Ψ′

σ(s).

Then we get

χ∗ρ = ds ∧ (−dxi ∧ Φ
(0)
i (s) − sdyσ ∧ Ψ(0)

σ (s) + yσΨ′

σ(s))

+dxi ∧ Φ′

i(s) + sdyσ ∧ Ψ′

σ(s).

Thus,

Iρ = −dxi ∧

∫

Φ
(0)
i (s) − dyσ ∧

∫

sΨ(0)
σ (s) + yσ

∫

Ψ′

σ(s)ds.

To determine Idρ, we compute χ∗dρ. We get

χ∗dρ = dχ∗ρ = ds ∧

(

−dxi ∧ dΦ
(0)
i (s) + dxi ∧

∂Φ′

i(s)

∂s
−sdyσ ∧ dΨ(0)

σ (s) − dyσ ∧ Ψ′

σ(s)

−yσdΨ′

σ(s) + dyσ ∧
∂(sΨ′

σ(s))

∂s

)

−dxi ∧

(

dxj ∧
∂Φ′

i(s)

∂xj
+ dyν ∧

∂Φ′

i(s)

∂yν

)

−dyσ ∧

(

dxj ∧
∂(sΨ′

σ(s))

∂xj
+ dyν ∧

∂(sΨ′

σ(s))

∂yν

)

,

(19)
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where ∂η(s)/∂s denotes the form, arising from η(s) by differentiation of

the coefficients with respect to s. Now by (19) and (18),

Idρ = −dxi ∧

∫

dΦ
(0)
i (s) − dyσ ∧

∫

sdΨ(0)
σ (s) − dyσ ∧

∫

Ψ′

σ(s)

−yσ

∫

dΨ′

σ(s) + dxi ∧

∫

∂Φ′

i(s)

∂s
+ dyσ ∧

∫

∂(sΨ′

σ(s))

∂s
.

It is important to notice that the exterior derivatives dΦ
(0)
i (s), dΨ

(0)
σ (s),

and dΨ′

σ(s) have the meaning of the derivatives with respect to xi, yσ

(the terms containing ds are canceled; see the definition of I (16), (18)).

Now we easily get

Idρ + dIρ = dxi ∧

∫

∂Φ′

i(s)

∂s
+ dyσ ∧

∫

∂(sΨ′

σ(s))

∂s
.

Remembering that the integral symbol denotes integration of coefficients

in the corresponding forms with respect to s from 0 to 1, and using (17),

one obtains the final formula

Idρ + dIρ = dxi ∧ Φi + dyσ ∧ Ψσ − dxi ∧ π∗ζ∗Φi

= ρ − π∗ζ∗ρ.

�

6. The total divergence equation

We now prove two theorems, describing solutions of the total diver-

gence equation

dig
i = f, (20)

where f : V r → R is a given function. By a solution of this equation we

mean any system of functions g = gi , defined on V s for some nonnegative

integer s, satisfying condition (20).

Lemma 5. If the total divergence equation has a solution defined on V s

and s ≥ r + 1, then it has a solution defined on V s−1.

Proof. Suppose that we have a solution g = gi of equation (20), defined

on V s. Since f and gi do not depend on yν
j1j2...jsjs+1

, the functions gi
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satisfy

∂f

∂yσ
i1i2...is+1

= di
∂gi

∂yσ
i1i2...is+1

+
1

s + 1

(

∂gi1

∂yσ
i2i3...is+1

+
∂gi2

∂yσ
i1i3...is+1

+
∂gi3

∂yσ
i2i1i4...is+1

+ ... +
∂gis+1

∂yσ
i2i3...isi1

)

=
1

s + 1

(

∂gi1

∂yσ
i2i3...is+1

+
∂gi2

∂yσ
i1i3...is+1

+
∂gi3

∂yσ
i2i1i4...is+1

+... +
∂gis+1

∂yσ
i2i3...isi1

)

= 0.

(21)

Analogously, with the help of (21),

∂f

∂yσ
i1i2...is

= d′

i

∂gi

∂yσ
i1i2...is

+
∂2gi

∂yν
j1j2...js

∂yσ
i1i2...is

yν
j1j2...jsi

+
1

s

(

∂gi1

∂yσ
i2i3...is

+
∂gi2

∂yσ
i1i3...is

+
∂gi3

∂yσ
i2i1i4...is

+ ... +
∂gis

∂yσ
i2i3...is−1i1

)

= d′

i

∂gi

∂yσ
i1i2...is

+
1

s

(

∂gi1

∂yσ
i2i3...is

+
∂gi2

∂yσ
i1i3...is

+
∂gi3

∂yσ
i2i1i4...is

+... +
∂gis

∂yσ
i2i3...is−1i1

)

= 0

(22)

because s ≥ r + 1. From (21) and (22) we obtain

f =
∂gi

∂xi
+

∂gj1

∂yν
yν

j1
+

∂gj2

∂yν
j1

yν
j1j2

+ ... +
∂gjs−1

∂yν
j1j2...js−2

yν
j1j2...js−2js−1

−d′

i

∂gi

∂yν
j1j2...js

yν
j1j2...js

.
(23)

We already know that as a consequence of condition (1),

gi = gi
0 + gi

1 + gi
2 + ... + gi

n−1, (24)

where gi
p is a homogeneous polynomial of degree p (proof of Lemma 2,

part 3). Note that substituting from (24) to (23), we get the sum of

homogeneous polynomials of degree p in yσ
l1l2...ls

,

∂gi
p

∂xi
+

∂gj1
p

∂yν
yν

j1+
∂gj2

p

∂yν
j1

yν
j1j2+...+

∂gjs−1

p

∂yν
j1j2...js−2

yν
j1j2...js−2js−1

−d′

i

∂gi
p

∂yν
j1j2...js

yν
j1j2...js

.

Then setting yν
j1j2...js

= 0 on both sides, we obtain

f =
∂gi

0

∂xi
+

∂gj1
0

∂yσ
yσ

j1
+

∂gj2
0

∂yσ
j1

yσ
j1j2

+ ... +
∂g

js−1

0

∂yσ
j1j2...js−2

yσ
j1j2...js−2js−1

= dig
i
0.
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Thus, under the hypothesis (b), we have constructed from the solution

gi of the total divergence equation, defined on V s, a new solution, gi
0,

defined on V s−1. �

Theorem 1. Let f : V r → R be a function. The following two conditions

are equivalent:

(a) The total divergence equation has a solution, defined on V r.

(b) The function f satisfies

Eσ(f) = 0.

Proof. 1. Suppose that (1) has a solution g = gi. Then from (2), Section

1,

∂dig
i

∂yσ
= di

∂gi

∂yσ
,

and for every k = 1, 2, ..., r,

∂dig
i

∂yσ
i1i2...ik

= di
∂gi

∂yσ
i1i2...ik

+
1

k

(

∂gi1

∂yσ
i2i3...ik

+
∂gi2

∂yσ
i1i3...ik

+
∂gi3

∂yσ
i2i1i4...ik

+... +
∂gik

∂yσ
i2i3...ik−1i1

)

.

Using these formulas, we can compute the expression Eσ(f) = Eσ(dig
i)

in several steps. First, we have

Eσ(dig
i) = di1

(

∂gi1

∂yσ
−

∂dsg
s

∂yσ
i1

+ di2

∂dsg
s

∂yσ
i1i2

−... + (−1)rdi2di3 ...dir

∂dsg
s

∂yσ
i1i2...ir

)

= di1di2

(

−
∂gi2

∂yσ
i1

+
∂dsg

s

∂yσ
i1i2

− di3

∂dsg
s

∂yσ
i1i2i3

+... + (−1)r−1di3di4...dir−1

∂dsg
s

∂yσ
i1i2...ir−1

+ (−1)rdi3di4...dir

∂dsg
s

∂yσ
i1i2...ir

)

.
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Second, using symmetrization,

Eσ(dig
i) = di1di2

(

−
∂gi2

∂yσ
i1

+ di
∂gi

∂yσ
i1i2

+
1

2

(

∂gi1

∂yσ
i2

+
∂gi2

∂yσ
i1

)

− di3

∂dsg
s

∂yσ
i1i2i3

+... + (−1)r−1di3di4...dir−1

∂dsg
s

∂yσ
i1i2...ir−1

+ (−1)rdi3di4...dir

∂dsg
s

∂yσ
i1i2...ir

)

= di1di2di3

(

∂gi3

∂yσ
i1i2

−
∂dsg

s

∂yσ
i1i2i3

+ ... + (−1)r−1di4di5...dir−1

∂dsg
s

∂yσ
i1i2...ir−1

+(−1)rdi4di5 ...dir

∂dsg
s

∂yσ
i1i2...ir

)

.

Third, again with the help of symmetrization,

Eσ(dig
i) = di1di2di3

(

− di4

∂gi4

∂yσ
i1i2i3

+ di4

∂dsg
s

∂yσ
i1i2i3i4

−... + (−1)r−1di4di5...dir−1

∂dsg
s

∂yσ
i1i2...ir−1

+ (−1)rdi4di5...dir

∂dsg
s

∂yσ
i1i2...ir

)

= di1di2di3di4

(

−
∂gi4

∂yσ
i1i2i3

+
∂dsg

s

∂yσ
i1i2i3i4

−... + (−1)r−1di5di6...dir−1

∂dsg
s

∂yσ
i1i2...ir−1

+ (−1)rdi5di6...dir

∂dsg
s

∂yσ
i1i2...ir

)

.

We continue this process, and obtain after r − 1 steps

Eσ(dig
i) = (−1)rdi1di2...dir−1

dirdi
∂gi

∂yσ
i1i2...ir

. (25)

But since f is defined on V r, the solution g of equation (1) necessarily

satisfies

∂gk

∂yσ
i1i2...ir

+
∂gi1

∂yσ
ki2i3...ir

+
∂gi2

∂yσ
i1ki3i4...ir

+ ...+
∂gir−1

∂yσ
i1i2...ir−2kir

+
∂gir

∂yσ
i1i2...ir−1k

= 0.

Using this formula in (25) we see that condition (b) is satisfied.

2. From now on, we suppose that condition (b) is satisfied. We want

to show that there exist functions gi : V r → R such that dig
i = f , or, in

an explicit form,

∂gi

∂xi
+

∂gj1

∂yσ
yσ

j1
+

∂gj2

∂yσ
j1

yσ
j1j2

+ ... +
∂gjr

∂yσ
j1j2...jr−1

yσ
j1j2...jr−1jr

= f,
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and

∂gi1

∂yσ
i2i3...ir+1

+
∂gi2

∂yσ
i1i3i4...ir+1

+
∂gi3

∂yσ
i2i1i4i5...ir+1

+... +
∂gir

∂yσ
i2i3...ir−1i1ir+1

+
∂gir+1

∂yσ
i2i3...ir−1iri1

= 0.

Let I be the fibered homotopy operator for differential form on V 2r,

associated with the projection π2r : V 2r → U (Section 5). We have

Θf = IdΘf + dIΘf + Θ0 = Ip1dΘf + Ip2dΘf + dIΘf + Θ0,

where Θ0 is an n-form, projectable on U . In this formula, p1dΘf = 0

by hypothesis, and we may suppose that Θ0 = dϑ0 (on U). Moreover

hΘf = hd(IΘf + ϑ0) = fω0. Defining functions gi on V s, where s ≤ 2r,

by the condition

h(IΘf + ϑ0) = giωi,

we see we have constructed a solution of the total divergence equation

dig
i = f . Explicitly,

∂gi

∂xi
+

∂gj1

∂yσ
yσ

j1
+

∂gj2

∂yσ
j1

yσ
j1j2

+ ... +
∂gjs+1

∂yσ
j1j2...js

yσ
j1j2...jsjs+1

= f. (26)

Note, however, that in general, we have not yet proved that the total

divergence equation has a solution defined on V r.

If s ≤ r, formula (26) shows that condition (a) holds. If s ≥ r + 1,

we apply Lemma 5 several times, and obtain a solution of equation (26)

defined on V r.

This concludes the proof. �

Combining Theorem 1 and Lemma 2, we can easily describe all solu-

tions of the total divergence equations dig
i = f such that the right side

f satisfies the integrability condition Eσ(f) = 0. In particular, we show

that a convenient description of solutions arises when we interpret them

as some differential forms.

Theorem 2. Let f : V r → R be a function such that Eσ(f) = 0. The

following conditions are equivalent:

(a) g = gi is a solution of the total divergence equation dig
i = f ,

defined on V r.

(b) The form η = giωi has a projectable extension.
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(c) gi is given by

gi =
1

(n − 1)!
εii1i2...in−1

(

Ai1i2...in−1

+

n−1
∑

k=1

(n − 1)!

k!(n − 1 − k)!
AJ1

σ1

J2

σ2
...Jk

σkik+1ik+2...in−1
yσ1

J1i1
yσ2

J2i2
...yσk

Jkik

)

,

where Ai1i2...in−1
, AJ1

σ1

J2

σ2
...Jk

σkik+1ik+2...in−1
are arbitrary functions on V r−1,

antisymmetric in all indices and multi-indices, and |J1|, |J2|, ..., |Jn−1| =

r − 1.

Proof. Assertions (a) and (b) are equivalent by Lemma 2. To show that

(c) is equivalent with (b), we consider any (n − 1)-form on V r−1,

µ =
1

(n − 1)!
Ai1i2...in−1

dxi1 ∧ dxi2 ∧ ... ∧ dxin−1

+

n−2
∑

k=1

1

k!(n − 1 − k)!
AJ1

σ1

J2

σ2
...Jk

σkik+1ik+2...in−1
dyσ1

J1
∧ dyσ2

J2
∧ ... ∧ dyσk

Jk

∧dxik+1 ∧ dxik+2 ∧ ... ∧ dxin−1

+
1

(n − 1)!
AJ1

σ1

J2

σ2
...Jn−1

σn−1
dyσ1

J1
∧ dyσ2

J2
∧ ... ∧ dy

σn−1

Jn−1
+ τ,

where τ is a contact form. µ has the horizontal component

hµ =
1

(n − 1)!

(

Ai1i2...in−1

+

n−1
∑

k=1

(n − 1)!

k!(n − 1 − k)!
AJ1

σ1

J2

σ2
...Jk

σkik+1ik+2...in−1
yσ1

J1i1
yσ2

J2i2
...yσk

Jkik

)

·dxi1 ∧ dxi2 ∧ ... ∧ dxik ∧ dxik+1 ∧ ... ∧ dxin−1 .

Transforming hµ we obtain hµ = giωi, where

gi =
1

(n − 1)!
εii1i2...in−1

(

Ai1i2...in−1

+

n−1
∑

k=1

(n − 1)!

k!(n − 1 − k)!
AJ1

σ1

J2

σ2
...Jk

σkik+1ik+2...in−1
yσ1

J1i1
yσ2

J2i2
...yσk

Jkik

)

.

�

Note that Theorem 2 together with Lemma 2 show that solutions of

the total divergence equation can be interpreted as certain differential
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(n − 1)-forms on V r−1; the correspondence between these two objects is

given by formula

η = giωi =
1

(n − 1)!
hj2j3...jn

dxj2 ∧ dxj3 ∧ ... ∧ dxjn,

and Lemma 1.
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