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Abstract. The goal of this paper is to characterize the family of averages of comparable
(Darboux) quasi-continuous functions.
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PRELIMINARIES

The letters R, @ and N denote the real line, the set of rationals and the set of
positive integers, respectively. The word function denotes a mapping from R into R.
We say that functions ¢ and 1) are comparable if either ¢ < 1) on R or ¢ > 1 on R.
For each A C R we use the symbols cl A and bd A to denote the closure and the
boundary of A, respectively.

Let f be a function. If A C R is nonvoid, then let w(f, A) be the oscillation of f
on A, ie., w(f,A) =sup{|f(z) — f(t)|: x,t € A}. For each z € R let w(f,z) be the
oscillation of f at x, i.e., w(f,x) = 51_i>%1+ w(f, (x—d,z+ 5)) The symbol € denotes
the set of points of continuity of f.

We say that a function f is quasi-continuous in the sense of Kempisty [4]
(cliquish [10]) at a point x € R if for each € > 0 and each open set U > x there is
a nonvoid open set V C U such that w(f,{z} UV) < e (w(f,V) < € respectively).
We say that f is quasi-continuous (cliquish) if it is quasi-continuous (cliquish) at
each point « € R. Cliquish functions are also known as pointwise discontinuous.
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Let I be an interval and f: I — R. We say that f is Darbouz if it has the
intermediate value property. We say that f is strong Swiatkowski [6] if whenever
a,be I, a<b,and yis a number between f(a) and f(b), there is an « € (a,b) N €
with f(z) = y. One can easily verify that strong Swiatkowski functions are both
Darboux and quasi-continuous, and that the converse is not true.

For brevity, if f is a cliquish function and = € R, then we define

LIM(f,z) = lim f(t).

t—x,tECy

The symbols LIM(f,z~) and LIM(f, z") are defined analogously.

INTRODUCTION

In 1974 A. M. Bruckner, J. G. Ceder, and T. L. Pearson characterized the averages
of comparable Darboux functions [1, Theorem 2|. In this paper we solve an analo-
gous problem, namely we characterize the averages of comparable quasi-continuous
functions.

A similar problem is to determine a necessary and sufficient condition that for
a function f there exists a quasi-continuous function v such that ¢¥» > f on R. (The
answer to this question for Darboux functions can be easily obtained using the proof
of [1, Theorem 2].) In both cases we ask whether there is a positive function g such
that both f 4 g and —f + ¢ are quasi-continuous (the first problem) or such that
f + g is quasi-continuous (the second problem). This suggests a similar problem for
larger classes of functions. Theorem 4.1 contains a solution of this problem for finite
classes of cliquish functions. Recall that by [5, Example 2|, we cannot in general
allow infinite families in Theorem 4.1. Unlike [7, Theorem 4], we cannot conclude
in condition (ii) of Theorem 4.1 that g is a Baire one function; actually, we cannot
even conclude that g is Borel measurable (Corollary 4.5).

The Baire class one case makes no difficulty if we require only quasi-continuity of
the sums, but it needs a separate argument if we require both the Darboux property
and the quasi-continuity. Notice that by Proposition 4.3, the necessary and sufficient
condition for Darboux quasi-continuous Baire one functions is essentially stronger.

AUXILIARY LEMMAS
Lemma 3.1. If f is a cliquish function, then the mapping x — LIM(f, z) is lower
semicontinuous, while the mapping x — LIM(f,2~) belongs to Baire class two.

Proof. Lety € R For every z € R, if LIM(f,z) > y, then there exist an
open interval I, 3 x and a rational ¢, > y such that f > ¢, on €7 N I, whence
LIM(f,t) > g, >y for each t € I,. Thus the set {x € R: LIM(f,z) > y} is open.
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To prove the other assertion put A4, = {x € R: LIM(f,z7) > y} for each y € R.
Let y € R. If z € Ay, then proceeding as above we can find a closed interval I, C 4,
with z € I,. So A, NbdA, is at most countable. Hence A, is an F;, set, while
{z € R: LIM(f,z7) <y} =U{R\ 44: ¢ <y, g € Q} is the difference of an F, set
and a countable one. O

Lemma 3.2. Let I = [a,b] and n € N. Suppose that functions fi,..., fi are
cliquish and max{w(fl, D),...,w(fr, I)} < 1. There is a positive Baire one function g

k
such that g = 1 on bdI, €, O () €}, and for each i the function (f; +g) | I is
i=1

1=

strong Swiatkowski and

(fi+9) [Iﬂ 61 ‘ﬁfll O [inf f;[I] + 1, max{inf f;[I] + 1,n}].

Proof. Put7 =max{|n—inf f;[I]|: i € {1,...,k}} +1. Construct a nonnega-
tive continuous function ¢ such that ¢[I] = [0,7] and ¢ = 0 outside of I. For each i
define fi(z) = (f; + ¢)(x) if z € I, and let f; be constant on (—oc, a] and [b, c0). By
[7, Theorem 4], there is a Baire one function § such that ﬁ + g is strong Swiadtkowski

k
for each ¢ (see condition (8) in the proof of [7, Theorem 4|), €3 D () ¢%,, and |g| < 1
i—1

.
on R; by its proof, we can conclude that § = 0 on {a,b}. Put g = ¢ + §+ 1. Then
for each i, since f; + § is strong Swiatkowski and f; + ¢ = fi + §+ 1 on I, we have

Ui+ 910 (0] > (i + 1) suptfs + 9)1)

D (fi(a),inf f;[I] + sup g[I])
O [inf f;[I] + 1, max{inf f;[I] + 1,n}].

The other requirements are evident. O

MAIN RESULTS

Theorem 4.1. Let % be one of the following classes of functions: all cliquish
functions, Lebesgue measurable cliquish functions, cliquish functions in Baire class «
(o > 1), and suppose f1,..., fr € F. The following are equivalent:

(i) there is a positive function g such that f; + g is quasi-continuous for each i;

k
(ii) there is a positive function g € # such that 6, O (| 6y, and f; + g is quasi-
i=1

continuous for each i;
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(iii) for each x € R and each i we have LIM(f;, x) < oo.

Proof. The implication (ii) = (i) is obvious.
(i)= (iii). Let z € Rand ¢ € {1,...,k}. Since f; + g is quasi-continuous, so by [2]
(see also [3, Lemma 2]) we obtain

LIM(f;,z) < LIM(f; + g,2) < (fi + 9)(z) < o0.

k
(iii) = (ii). Put A = (J{z € R: w(fi,z) > 1}. Then A is closed and nowhere
i=1

1=
dense. Find a family {I,,: n € N} consisting of nonoverlapping compact intervals,

such that |J I, = R\ A and each ¢ A is an interior point of I,,UI,, for some n,m €
neN

N. Since each I,, is compact and w(f;,z) < 1 for each x € I,, and i € {1,...,k}, so
we may assume that w(f;, [,,) < 1 for each i and n. For each n € N use Lemma 3.2 to

k
construct a positive Baire one function g,, such that g, =1 on bd I, €,, D () €.,
i=1
and for each i the function (f; + gn) | I, is strong Swiatkowski and

(*) (fi + gn) [In n ﬁ %fl} > [inf f;[L,) + 1, max{inf f;[L,] + 1,n}].

Define g(x) = gn(x) if z € I,, for some n € N, and
g(z) = max{max{ LIM(f;,z) — fi(z): i € {1,...,k}},0} +1

if z € A. By Lemma 3.1, each mapping = — LIM(f;, z) is Baire one, so g € Z.
Fix an ¢ € {1,...,k}. Clearly f; + ¢ is quasi-continuous outside of A. On the
other hand, if € A, then by (x), for each § > 0 we have

(fl +g) [(.13 - 5"1: + 6) n %fﬁ-g] ) (M(flax) + 1,00).
Hence f; + g is quasi-continuous. O

Theorem 4.2. Let % be one of the following classes of functions: all cliquish
functions, Lebesgue measurable cliquish functions, cliquish functions in Baire class «
(o > 2), and suppose f1,..., fr € .F. The following are equivalent:

(i) there is a positive function g such that f; + g is both Darboux and quasi-
continuous for each i;
E
(ii) there is a positive function g € .F such that 6, D (| €y, and f; + g is strong
i=1
Swiatkowski for each i;

(iii) for each z € R and each i we have max{LIM(f;, =~ ), LIM(f;,2™)} < occ.
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Proof. The proof of the implication (iii) = (ii) is a repetition of the argument
used in Theorem 4.1, and the implication (ii) = (i) is obvious.

(i)= (iii). Let x € R and ¢ € {1,...,k}. Since f; + ¢ is both Darboux and
quasi-continuous, so by [9, Lemma 2] we obtain

LIM(fs, 2 ) <LIM(f; +9,27) < (fi +9)(x) < o0.
Similarly LIM(f;,z7) < oo. O

Proposition 4.3. There is a Baire one function f such that f+ g is strong Swiat-
kowski for some positive function g in Baire class two, but f + g is Darboux for no
positive Baire one function g.

Proof. Let F be the Cantor ternary set and let % = {(an,b,): n € N} and #
be disjoint families of components of R \ F' such that F = (c1lJ.#) N (U _#).
Define f(z) = n if x € (an,by,) for some n € N and f(z) = 0 otherwise. Clearly f
belongs to Baire class one.

Let z € R. If 2 € (an,b,] for some n € N, then LIM(f,2~) = n, otherwise
LIM(f,z~) = 0. Similarly LIM(f,2%) < oco. By Theorem 4.2 there is a positive
Baire two function g such that f + g is strong Swigtkowski.

On the other hand, by [8, Proposition 6.10], f + g is Darboux for no positive Baire
one function g. O

In Proposition 4.4 the symbol ¢ denotes the first ordinal equipollent with R.

Proposition 4.4. Given a family of positive functions, {ge: £ < ¢}, we can find
a cliquish function f which fulfils condition (iii) of Theorem 4.2 and such that f + g¢
is not quasi-continuous for each & < c.

Proof. Let F be the Cantor ternary set and let {z¢: £ < ¢} be an enumeration
of F. Define f(z) = —ge(x) — 1 if x = ¢ for some ¢ < ¢, and f(z) = 0 otherwise.
Clearly f is cliquish, and for each x € R we have LIM(f,z~) = LIM(f,z%) = 0.

Let £ < ¢. Then (f + g¢)(x¢) = —1 and f + g¢ is positive on a dense open set.
Thus f + g¢ is not quasi-continuous at x¢. O

Corollary 4.5. There is a cliquish function f which fulfils condition (iii) of
Theorem 4.2 and such that f + g is not quasi-continuous for each positive Borel
measurable function g.

Theorem 4.6. Let fi,...,fr be Baire one functions. The following are
equivalent:
(i) there is a positive Baire one function g such that f; + g is both Darboux and
quasi-continuous for each i;
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k
(ii) there is a positive Baire one function g such that €, O ()| 6y, and f; + g is
i=1

strong Swiatkowski for each i ;
(iii) there is a Baire one function h such that for each € R and each i we have
maX{M(fiv LUi), M(fh LL’+)} < h(.’E)

Proof. The implication (i) = (iii) can be proved similarly as in Theorem 4.2
(we let h = max{f1,..., fx} + g), and the implication (ii) = (i) is obvious.

(iii) = (ii). The proof of this implication is a repetition of the argument used in
Theorem 4.1. The only difference is in the definition of the function g on the set A.
More precisely, we put

g(z) = max{max{h(z) — fi(z): i€ {1,...,k}},0} +1

if x € A. Then clearly ¢ is a Baire one function. O
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