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Abstract. This paper is concerned with optimal lower bounds of decay rates for solutions
to the Navier-Stokes equations in �n . Necessary and sufficient conditions are given such
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1. Introduction and the results

Consider the Navier-Stokes equations in �n , n � 2, which will be treated in this
paper in the form of the integral equation

(NS) u(t) = e−tAa−
∫ t

0
∇ · e−(t−s)AP (u⊗ u)(s) ds,

for prescribed initial velocity a(x) = (a1(x), . . . , an(x)), x = (x1, . . . , xn) ∈ �
n , and

unknown velocity u(x, t) = (u1(x, t), . . . , un(x, t)). Here, A = −∆ is the Laplacian
on �n ; {e−tA}t�0 is the heat semigroup; P = (Pjk) is the bounded projection onto

divergence-free vector fields; u ⊗ v is the matrix with entries (u ⊗ v)jk = ujvk;
∇ = (∂1, . . . , ∂n) with ∂j = ∂/∂xj; and

(∇ · e−tAP (u⊗ u))j =
n∑

k,�=1

∂�e−tAPjk(u�uk), j = 1, . . . , n.
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It is well known that for each a ∈ L2 with ∇ · a = 0, (NS) has a weak solution u
defined for all t � 0, satisfying the energy inequality

‖u(t)‖22 + 2
∫ t

0
‖∇u‖22 ds � ‖a‖22 for all t � 0.

Hereafter ‖ · ‖r denotes the Lr-norm.

As shown in [10], there exists a weak solution u such that

(1.1) ‖u(t)‖2 � C(1 + t)−
n+2
4 ,

whenever

(1.2) a ∈ L2, ∇ · a = 0 and
∫
(1 + |y|)|a(y)| dy <∞.

Assumption (1.2) implies a ∈ L1; so the divergence-free condition gives (see [4])

(1.3)
∫
a(y) dy = 0.

Furthermore, it is shown in [2] that in this case the solution u satisfies

(1.4)
lim

t→∞ t
n+2
4

∥∥∥uj(t) + (∂kEt)(·)
∫
ykaj(y) dy

+ F�,jk(·, t)
∫ ∞

0

∫
(u�uk)(y, s) dy ds

∥∥∥
2
= 0

for j = 1, . . . , n, where

Et(x) = (4�t)−n/2e−|x|2/4t, F�,jk(x, t) = ∂�Et(x)δjk +
∫ ∞

t

∂�∂j∂kEs(x) ds.

(Hereafter, we use the summation convention). Equation (NS) is then written in the
form

uj(x, t) =
∫
Et(x−y)aj(y) dy−

∫ t

0

∫
F�,jk(x−y, t−s)(u�uk)(y, s) dy ds, j = 1, . . . , n,

as proved in [2]; and the integrals in (1.4) are finite, due to (1.1) and (1.2). Assertion
(1.4) was first proved in [1] for smooth solutions when n = 3, and then extended

in [2] to the case of weak solutions in all space dimensions by applying the spectral
method as given in [3, 5].
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The argument of [10] suggests that the decay property (1.1) will be optimal in

general. So we are interested in finding a class of weak solutions u satisfying the
reverse estimate

‖u(t)‖2 � Ct−
n+2
4 at least for large t.

In this paper we discuss this kind of lower bound problem.

Theorem A. Under the assumption (1.2), let

bk� =
∫
y�ak(y) dy, ck� =

∫ ∞

0

∫
(u�uk)(y, s) dy ds.

(i) We have

(1.5) lim
t→∞ t

n+2
4 ‖u(t)‖2 = 0

if and only if (bk�) = 0 and (ck�) = (cδk�) for some constant c � 0.
(ii) There exists c′ > 0 such that

(1.6) ‖u(t)‖2 � c′t−
n+2
4 for large t > 0,

if and only if (bk�) �= 0 or (ck�) �= (cδk�). In particular, u satisfies (1.6) whenever

(bk�) �= 0.
������. Theorem A (i) implies only that

(1.5′) lim sup
t→∞

t
n+2
4 ‖u(t)‖2 > 0

if and only if (bk�) �= 0 or (ck�) �= (cδk�). Note, however, that our second assertion
(1.6) is more stringent than (1.5′). Moreover, (1.6) holds for all large t > 0 and
for all space dimensions, although ‖u(t)‖2 is only known to be lower semicontinuous
when n � 3. We know nothing about the characterization of solutions satisfying
(ck�) = (cδk�).

We next consider weak solutions u satisfying

(1.7) ‖u(t)‖2 � C(1 + t)−
n
4 .

As shown in [3, 6, 10], such solutions exist for all a ∈ L2 satisfying

(1.8) ∇ · a = 0, ‖e−tAa‖2 � C(1 + t)−
n
4 .
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Theorem B. Suppose a satisfies (1.8) and let u be a weak solution satisfying
(1.7). Then

(1.9) ‖u(t)‖2 � ct−
n
4 for large t > 0,

if and only if

(1.10) ‖e−tAa‖2 � ct−
n
4 for large t > 0.

The lemma below gives simple examples of a satisfying (1.10).

Lemma. Let a ∈ L2, ∇ · a = 0, and suppose that

(1.11)
∫

Sn−1
|â(r, ω)|2 dω ∈ L∞(�+ ), lim inf

r→0

∫
Sn−1

|â(r, ω)|2 dω > 0,

where the Fourier transform â is defined by

â(ξ) =
∫
e−ix·ξa(x) dx, i =

√−1,

Sn−1 is the unit sphere of �n , and ξ = (r, ω) in polar coordinates. Then,

(1.12) ‖e−tAa‖2 � C(1 + t)−
n
4 for all t > 0; ‖e−tAa‖2 � c′t−

n
4 for large t > 0,

with constants C > 0 and c′ > 0 independent of t.

�����. Parseval’s relation gives

‖e−tAa‖22 = (2�)−n

∫
e−2t|ξ|

2 |â(ξ)|2 dξ = (8�2t)−n
2

∫
e−|η|2 |â(η(2t)− 1

2 )|2 dη

so that

(8�2t)
n
2 ‖e−tAa‖22 =

∫
e−|η|2 |â(η(2t)− 1

2 )|2 dη.
The assumption and Fatou’s lemma together imply

lim inf
t→∞ (8�2t)

n
2 ‖e−tAa‖22 = lim inf

t→∞

∫
e−|η|2 |â(η(2t)− 1

2 )|2 dη

�
∫ ∞

0
e−r2

(
lim inf
t→∞

∫
Sn−1

|â(r(2t)− 1
2 , ω)|2 dω

)
rn−1 dr > 0.

This proves the second estimate of (1.12). The first estimate follows from ‖e−tAa‖2 �
‖a‖2 and

‖e−tAa‖22 = (8�2t)−
n
2

∫
e−|η|2 |â(η(2t)− 1

2 )|2 dη

� Ct−
n
2

∥∥∥
∫

Sn−1
|â(·, ω)|2 dω

∥∥∥
∞

∫ ∞

0
e−r2rn−1 dr.

The proof is complete. �
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������	. (i) Condition (1.11) implies that â is discontinuous at ξ = 0. Indeed,

since ∇·a = 0, we have ξ · â(ξ) = 0; so if â is continuous at ξ = 0, we get ω · â(0) = 0
for all unit vectors ω, and â(0) = 0. (For this reason, a ∈ L1 implies (1.3)).
(ii) The assumption of Lemma is not vacuous. Indeed, suppose â is written in the

form

â(ξ) = f(|ξ|)g(ξ/|ξ|),
in terms of functions f(r) and g(ω) such that

g ∈ L2(Sn−1), g �≡ 0, ω · g(ω) ≡ 0 (ω ∈ Sn−1)

and

f ∈ BC([0,∞)),
∫ ∞

0
|f(r)|2rn−1 dr <∞, f(0) �= 0.

Then, â satisfies condition (1.11).
(iii) In this connection, we note that under condition (1.2) we have

(1.10′) ‖e−tAa‖2 � ct−
n+2
4 for large t > 0

if and only if (bk�) �= 0. Indeed, using (1.2) and (1.3), we have (see Section 4)

(1.4′) lim
t→∞ t

n+2
4 ‖e−tAak + ∂�Etbk�‖2 = 0, k = 1, . . . , n.

Suppose (bk�) �= 0. Then (
∑
k

‖∂�Etbk�‖22)1/2 = Ct−
n+2
4 with C > 0; so we get

‖e−tAa‖2 �
( ∑

k

‖∂�Etbk�‖22
)1/2 − ( ∑

k

‖e−tAak + ∂�Etbk�‖22
)1/2 � ct−

n+2
4

for large t > 0. Conversely, if we assume (1.10′), then (1.4′) implies

( ∑
k

‖∂�Etbk�‖22
)1/2 � ‖e−tAa‖2 −

( ∑
k

‖e−tAak + ∂�Etbk�‖22
)1/2 � ct−

n+2
4

for large t > 0. Hence
∑
k

‖∂�Etbk�‖22 > 0 for large t > 0, which implies (bk�) �= 0.
The L2 decay problem for weak solutions of the Navier-Stokes equations was suc-

cessfully studied for the first time by [5] and the result was then systematically devel-

oped by [3, 6, 10]. Estimates (1.6) and (1.9) are studied in [6]–[9] in case n = 2, 3, and
some sufficient conditions are obtained. Our Theorems A and B provide necessary

and sufficient conditions for those estimates to hold. We further note that our lower
bound estimates (1.6) and (1.9) hold in all space dimensions n � 2, although the
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function ‖u(t)‖2 is known only to be lower semicontinuous when n � 3. As will be
seen in the proof below, this is due to (1.4) and the fact that the functions ∂�Et(x)
and F�,jk(x, t) are written in the form t−

n+1
2 K(xt−

1
2 ) in terms of some bounded,

integrable and uniformly continuous functions K.

We finally consider an example of two-dimensional flows u with (bk�) = 0, (ck�) =

(cδk�), which was first treated by [7].

Theorem C. When n = 2, there is a smooth weak solution u such that (bk�) = 0,

(ck�) = (cδk�), and, with some constant γ > 0,

(1.13) ‖u(t)‖q � Cqe−γt and |u(x, t)| � Cme−γt(1 + |x|)−m

for all 1 � q � ∞ and all integers m � 0.

The above example was studied by [7, 8, 9], in which is given the exponential

decay of ‖u(t)‖q for 2 � q � ∞. Our estimates (1.13) include the case 1 � q < 2 as
well as the decay estimates in the spatial direction. Theorem C is proved in [2].

In what follows we prove Theorems A and B, and conclude the paper with the

proof of (1.4) which was given also in [2].

2. Proof of Theorem A

We begin with the following

Proposition 2.1. Let (bk�) and (ck�) be real n × n matrices and let (ck�) be

symmetric. Then

(2.1) bk�∂�Et(x)δjk + ck�F�,jk(x, t) = 0, j = 1, . . . , n,

for all x ∈ �
n and for some t > 0, if and only if

(2.2) (bk�) = 0 and (ck�) = (cδk�) for some c ∈ �.

Furthermore, (2.2) implies that (2.1) holds for all x and for all t > 0.

�����. Assumption (2.1) implies, via the Fourier transformation,

bk�ξ�e−t|ξ|2δjk = −ck�ξ�

(
e−t|ξ|2δjk − ξjξk

∫ ∞

t

e−s|ξ|2 ds
)

= −(cj� − |ξ|−2ck�ξjξk)ξ�e−t|ξ|2
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for some t > 0, and we get |ξ|2(bj� + cj�)ξ� = ξjck�ξkξ�. Taking ξj = 0 for any fixed

j, ξ� = 1 for any fixed � �= j, and ξk = 0 for all k such that k �= j and k �= �, we
easily obtain bj� + cj� = 0 whenever j �= �, and so

|ξ|2(bjj + cjj)ξj = ξjck�ξkξ�, j = 1, . . . , n.

We let ξj = 1 and ξk = 0 for k �= j, to get bjj + cjj = cjj ; so bjj = 0. This implies

(2.3) |ξ|2cjjξj = ξjck�ξkξ�, j = 1, . . . , n.

Hence, c11 = . . . = cnn = ck�ξkξ�|ξ|−2. We then set j = 1, ξ1 = ξ2 = 1 and ξk = 0

for k � 3 in (2.3), to get 2c11 = c11+ c22+ c12+ c21 = 2(c11+ c12) since ck� = c�k by
assumption. Therefore, c12 = 0. We thus obtain cj� = 0 = −bj� whenever j �= �; so

(bk�) = 0 and (ck�) = (cδk�). That (2.2) implies (2.1) for all t > 0 is easily seen from

Fk,jk = ∂jEt +
∫ ∞

t

∂j∆Es ds = ∂jEt +
∫ ∞

t

∂j∂sEs ds = ∂jEt − ∂jEt = 0,

where ∂s = ∂/∂s. The proof of Proposition 2.1 is complete. �

To establish Theorem A, it suffices in view of (1.4) to prove the following

Proposition 2.2. Let a satisfy (1.2) and define

bk� =
∫
y�ak(y) dy, ck� =

∫ ∞

0

∫
(u�uk)(y, s) dy ds.

Then we have

(2.4) either (bk�) �= 0 or (ck�) �= (cδk�),

if and only if a corresponding weak solution u satisfies

(2.5) ‖u(t)‖2 � c′t−
n+2
4 for large t > 0

with a constant c′ > 0 indenpendent of t.

�����. In what follows we write

b� = (b1�, . . . , bn�), F�,k = (F�,1k, . . . , F�,nk).

Assume first (2.4). By Proposition 2.1, we have ‖∂�Etb� + F�,kck�‖2 = Ct−
n+2
4 for

all t > 0 with some C > 0, and so (1.4) implies

‖u(t)‖2 � ‖∂�Etb� + F�,kck�‖2 − ‖u(t) + ∂�Etb� + F�,kck�‖2
= Ct−

n+2
4 − o(t−

n+2
4 ) � c′t−

n+2
4
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for large t > 0. Assume next (2.5). By (1.4) we have

‖∂�Etb� + F�,kck�‖2 � ‖u(t)‖2 − ‖u(t) + ∂�Etb� + F�,kck�‖2 � c′t−
n+2
4 − o(t−

n+2
4 ),

and so

‖∂�Etb� + F�,kck�‖2 > 0 for large t > 0.

We thus obtain (2.4) by Proposition 2.1. This proves Proposition 2.2. �

3. Proof of Theorem B

Suppose that n � 3. We have

ck� =
∫ ∞

0

∫
(u�uk)(y, s) dy ds <∞;

so the argument given in [2, Sect. 5] applies to our present situation, implying

(3.1) lim
t→∞ t

n+2
4 ‖u(t)− e−tAa+ F�,kck�‖2 = 0.

Suppose (1.9) holds. Since ‖F�,kck�‖2 = Ct−n+2
4 , it follows from (3.1) that

‖e−tAa‖2 � ‖u(t)‖2 − ‖ − u(t) + e−tAa− F�,kck� + F�,kck�‖2
� ‖u(t)‖2 − ‖u(t)− e−tAa+ F�,kck�‖2 − ‖F�,kck�‖2
� ct−

n
4 − Ct−

n+2
4 � c′t−

n
4

for large t > 0. This proves (1.10). Conversely, if (1.10) holds, then (3.1) implies

‖u(t)‖2 � ‖e−tAa‖2 − ‖F�,kck�‖2 − ‖u(t)− e−tAa+ F�,kck�‖2
� ct−

n
4 − Ct−

n+2
4 � c′t−

n
4

for large t > 0. This proves (1.9) in case n � 3.
When n = 2, we introduce

ck�(t) =
∫ t/2

0

∫
(u�uk)(y, s) dy ds

instead of ck�. The argument of [2, Sect. 5] is then modified to yield

(3.1′) ‖u(t)− e−tAa+ F�,kck�(t)‖2 � Ct−1 log(1 + t).

450



See also Section 4 below. Since

‖F�,kck�(t)‖2 � Ct−1
∫ t/2

0
‖u(s)‖22 ds � Ct−1 log(1 + t),

this implies ‖u(t)− e−tAa‖2 � Ct−1 log(1 + t). Now we can prove the result in the
same way as in the case n � 3. Indeed, (1.10) implies

‖u(t)‖2 � ‖e−tAa‖2 − ‖u(t)− e−tAa‖2 � ct−
1
2 − Ct−1 log(1 + t) � c′t−

1
2

for large t > 0, while (1.9) yields

‖e−tAa‖2 � ‖u(t)‖2 − ‖u(t)e−tA‖2 � ct−
1
2 − Ct−1 log(1 + t) � c′t−

1
2

for large t > 0. The proof of Theorem B is complete.

4. Proof of (1.4)

Here we present the proof of (1.4) given in [2]. The same method can be applied

to the proof of (3.1) and (3.1′) with no essential change. Let a satisfy (1.2) and so
(1.3). We first prove

(4.1) lim
t→∞ t

n+2
4

∥∥∥e−tAa+ (∂kEt)(·)
∫
yka(y) dy

∥∥∥
2
= 0.

Direct calculation gives

e−tAa =
∫
[Et(x − y)− Et(x)]a(y) dy = −

∫ ∫ 1

0
(∂kEt)(x− yθ)yka(y) dθ dy

= − (∂kEt)(x)
∫
yka(y) dy −

∫ ∫ 1

0
[(∂kEt)(x− yθ)− (∂kEt)(x)]yka(y) dθ dy,

so

e−tAa+ (∂kEt)(x)
∫
yka(y) dy = −

∫ ∫ 1

0
[(∂kEt)(x− yθ)− (∂kEt)(x)]yka(y) dθ dy.

We can write (∂kEt)(x) = t−
n+1
2 (∂kE1)(xt−

1
2 ), to obtain

∥∥∥e−tAa+ (∂kEt)(·)
∫
yka(y) dy

∥∥∥
2

� Ct−
n+2
4

∫ ∫ 1

0
ϕt(y, θ)|y||a(y)| dθ dy.
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Here ϕt(y, θ) = ‖(∇E1)(· − yθt−
1
2 ) − (∇E1)(·)‖2 is bounded and lim

t→∞ϕt(y, θ) = 0

for any fixed (y, θ). Since |y||a(y)| is integrable by (1.2), the dominated convergence
theorem yields

lim
t→∞

∫ ∫ 1

0
ϕt(y, θ)|y||a(y)| dθ dy = 0.

This proves (4.1). Now let u satisfy (1.1). We next show that the function

w(t) = u(t)− e−tAa = −
∫ t

0

∫
F�,k(x− y, t− s)(u�uk)(y, s) dy ds

satisfies

(4.2) lim
t→∞ t

n+2
4

∥∥∥w(t) + F�,k(·, t)
∫ ∞

0

∫
(u�uk)(y, s) dy ds

∥∥∥
2
= 0.

Indeed, we have

w(t) + F�,k(x, t)
∫ ∞

0

∫
(u�uk)(y, s) dy ds

= F�,k(x, t)
∫ ∞

t/2

∫
(u�uk)(y, s) dy ds

−
∫ t/2

0

∫
[F�,k(x − y, t− s)− F�,k(x, t− s)](u�uk)(y, s) dy ds

−
∫ t/2

0

∫
[F�,k(x, t− s)− F�,k(x, t)](u�uk)(y, s) dy ds

−
∫ t

t/2

∫
F�,k(x− y, t− s)(u�uk)(y, s) dy ds

≡ I1 + I2 + I3 + I4.

It is easy to see that

(4.3) t
n+2
4 ‖I1‖2 � C

∫ ∞

t/2
(1 + s)−1−

n
2 ds→ 0 as t→ ∞.

We write I3 in the form

I3 =
∫ t/2

0

∫ ∫ 1

0
s(∂tF�,k)(x, t− sθ)(u�uk)(y, s) dθ dy ds

to get

‖I3‖2 � C

∫ t/2

0

∫ ∫ 1

0
s(t− sθ)−1−

n+2
4 |u(y, s)|2 dθ dy ds

� Ct−1−
n+2
4

∫ t/2

0
s‖u(s)‖22 ds
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and so

(4.4) t
n+2
4 ‖I3‖2 � Ct−1

∫ t

0
(1 + s)−

n
2 ds→ 0 as t→ ∞.

To estimate I2, note that we can write F�,k(x, t) = t−
n+1
2 K(xt−

1
2 ), to get

‖I2‖2 � Ct−
n+2
4

∫ t/2

0

∫
‖K(· − y(t− s)−

1
2 )−K(·)‖2|u(y, s)|2 dy ds

≡ Ct−
n+2
4

∫ t/2

0

∫
ϕt(y, s)|u(y, s)|2 dy ds ≡ Ct−

n+2
4

∫ t/2

0
ψt(s) ds.

Since ψt(s) � C‖u(s)‖22, the dominated convergence theorem implies

lim
t→∞

∫ M

0
ψt(s) ds = 0 for any fixed M > 0.

Given ε > 0, choose M > 0 so that
∫ ∞

M
‖u(s)‖22 ds < ε. Then for t > 2M ,

∫ t/2

0
ψt(s) ds �

∫ M

0
ψt(s) ds+ C

∫ ∞

M

‖u(s)‖22 ds �
∫ M

0
ψt(s) ds+ Cε.

This implies that

(4.5) lim
t→∞ t

n+2
4 ‖I2‖2 = 0.

It remains to prove

(4.6) lim
t→∞ t

n+2
4 ‖I4‖2 = 0.

To do so, we follow the arguments of [3, 5]. The function

v(t) = −
∫ t

τ

∫
F�,k(x− y, t− s)(u�uk)(y, s) dy ds = u(t)− e−(t−τ)Au(τ)

defined for t � τ > 0 satisfies

∂tv +Av = −P (u · ∇u) (t > τ), v(τ) = 0.

(We may assume v is smooth, replacing u by the approximate solutions uN given in
[3]). Since (P (u ·∇v), v) = (u ·∇v, v) = 0, the standard energy integral method gives

∂t‖v‖22 + 2‖A1/2v‖22 = −2(u · ∇u, v) = 2(u · ∇v, u) = 2(u · ∇v, u0)
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and

2|(u · ∇v, u0)| � 2‖u‖2‖A1/2v‖2‖u0‖∞ � C‖u‖2‖A1/2v‖2(t− τ)−
n
4 τ−

n+2
4

� C‖A1/2v‖2(t− τ)−
n+1
2 τ−

n+2
4 � ‖A1/2v‖22 + C(t− τ)−n−1τ−1−

n
2 ,

where u0(t) = e−(t−τ)Au(τ). We thus obtain

∂t‖v‖22 + ‖A1/2v‖22 � C(t− τ)−n−1τ−1−
n
2 .

Let {Eλ}λ�0 be the spectral measure associated to A. Since ‖A1/2v‖22 � (‖v‖22 −
‖E�v‖22) for any  > 0, the above estimate yields

∂t‖v‖22 + ‖v‖22 � ‖E�v‖22 + C(t− τ)−n−1τ−1−
n
2 .

But, ‖E�v‖22 � C
n+2
2

(∫ t

τ

‖u‖22 ds
)2
as shown in [3, 5]; so

∂t‖v‖22 + ‖v‖22 � C
n+4
2

(∫ t

τ

‖u‖22 ds
)2
+ C(t− τ)−n−1τ−1−

n
2 .

Here we set  = m/(t− τ), m > 0, and multiply both sides by (t− τ)m, to obtain

∂t((t− τ)m‖v‖22) � Cm(t− τ)m− n
2−2

( ∫ t

τ

‖u‖22 ds
)2
+ C(t− τ)m−n−1τ−1−

n
2 .

Now fix m so that m > n/2 + 2 and m > n+ 1, and integrate the above inequality,
to get

‖v(t)‖22 � C(t− τ)−2−
n
2

∫ t

τ

(∫ s

τ

‖u‖22 dσ
)2
ds+ C(t− τ)−nτ−1−

n
2 .

Inserting τ = t/2 yields v(t) = I4, so

tn+
n
2 ‖I4‖22 � Ctn−1

(∫ ∞

t/2
‖u‖22 ds

)2
+ Ct−1 � Ct−1 → 0

as t→ ∞. This proves (4.6).
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