Abstract: In this paper I discuss two questions on $p$-Laplacian type operators: I characterize sets that are removable for Hölder continuous solutions and then discuss the problem of existence and uniqueness of solutions to $-\div (|\nabla u|^{p-2}\nabla u)=\mu $ with zero boundary values; here $\mu $ is a Radon measure. The joining link between the problems is the use of equations involving measures.
Keywords: $p$-Laplacian, removable sets
Classification (MSC2000): 35J60, 35J70
Full text of the article: