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A STABLE AND OPTIMAL COMPLEXITY SOLUTION METHOD

FOR MIXED FINITE ELEMENT DISCRETIZATIONS

Jan Brandts, Rob Stevenson, Utrecht

Abstract. We outline a solution method for mixed finite element discretizations based
on dissecting the problem into three separate steps. The first handles the inhomogeneous
constraint, the second solves the flux variable from the homogeneous problem, whereas the
third step, adjoint to the first, finally gives the Lagrangian multiplier. We concentrate
on aspects involved in the first and third step mainly, and advertise a multi-level method
that allows for a stable computation of the intermediate and final quantities in optimal
computational complexity.
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1. Introduction

There are well-known examples in the finite element literature of problems that

are cast into the form of a saddle-point problem as a result of applying mixed varia-
tional principles. Already in 1973, Babuška [1] handled non-homogeneous Dirichlet

boundary conditions for an elliptic problem by introducing a Lagrange multiplier and
solving the resulting saddle-point problem. Around the same time, also Brezzi [5]

published his abstract theory of approximation of saddle point problems, which led
to the development of mixed finite element methods for elliptic equations, starting

with the elements of Raviart and Thomas [10] in 1979. Since then, a large amount
of attention has been paid to several aspects of saddle-point problems, ranging from

the design of stable finite element spaces to the efficient solution of the indefinite lin-
ear systems that arise from the discretization [2], [4], [12]. In particular concerning

the latter, much progress has been made with the realization that such systems can
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often be solved in three separate steps [6], [8]. The first step handles the inhomo-

geneous constraint, the second step involves the homogeneous problem, whereas the
third step constitutes a problem that is adjoint to the first. In the literature, the
emphasis is on the analysis of the second step, whereas for the first and third step

either unstable methods are suggested, or stable methods left unanalyzed. In this
paper we perform a rigorous analysis of the first and third step, and present recent

insights that follow from employing several aspects of the papers [6], [8], [9].
We start by introducing the mixed finite element discretization of a model problem

in Section 2, and proceed to illustrate the three separate solution steps. In Section 3
we present a stable method for handling steps one and three, both of optimal com-

putational complexity. We conclude with some further comments in Section 4.

2. Mixed discretization of a model problem

Consider the Poisson problem with, for simplicity, homogeneous Neumann bound-

ary conditions,

(1) −∆u = f in Ω, ∇uT ν = 0 on ∂Ω,

where f ∈ L20(Ω), the space of L
2(Ω) functions with mean zero. For simplicity, we will

assume that Ω is a bounded polygonal domain in �2 , although the arguments remain
valid for three-dimensional domains. The mixed weak formulation of (1) introduces

a second variable p = −∇u ∈ H0(div ; Ω), the space of vectorfields in [L2(Ω)]2 with
weak divergence in L2(Ω) and with vanishing normal trace on ∂Ω. It seeks a pair

(u,p) ∈ L20(Ω)×H0(div ; Ω) such that for all (w,q) ∈ L20(Ω)×H0(div ; Ω),

(2) (p,q)− (u, divq) = 0 and (divp, w) = (f, w).

For the discretization of (2) we use, again for ease of presentation only, the space

Wh of piecewise constant functions with mean value zero, and the space Γ0h =
Γh ∩ H0(div ; Ω). Here, Γh is the lowest order Raviart-Thomas [10] space of all

piecewise linear vector fields with constant and continuous normal fluxes on each
edge. With this choice, the mixed finite element approximations (uh,ph) ∈ Wh×Γ0h
satisfy

(3) (ph,qh)− (uh, divqh) = 0 and (divph, wh) = (f, wh),

for all (wh,qh) ∈ Wh ×Γ0h. To conclude, we note that divΓ0h =Wh and moreover

that Γ0h and Wh satisfy the Babuška-Brezzi conditions (see also Section 3.2) which
guarantee that there exists a unique solution.
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2.1. Optimal complexity solution of the mixed system. The system of
algebraic equations that results from (3) after choosing a suitable basis, is symmetric
indefinite. Various methods have been proposed to solve it. Here we will discuss a
method of optimal complexity. It makes use of the well-known property [7],

(4) qh ∈ Γ0h and divqh = 0 ⇔ qh ∈ curlV0h,

where V0h is the space of continuous piecewise linear functions that are zero on the
boundary—the usual standard finite element space. This property, together with the

first equation in (3), immediately gives that

(5) (ph, curl vh) = 0 for all vh ∈ V0h.

The key idea is now to split the solution process for the pair (uh,ph) in three separate
steps. We will discuss these steps in detail afterwards.

(A) Find a particular solution rh ∈ Γ0h such that (div rh, wh) = (f, wh) for all
wh ∈ Wh, or, equivalently, such that div rh = Phf , where Ph denotes L2(Ω)-

projection onto Wh.
(B) Compute the difference ph−rh, which by (4) equals curlωh for some ωh ∈ V0h,

by solving the positive definite system (curl ωh, curl vh) = (ph − rh, curl vh) =
−(rh, curl vh), where the latter (and crucial) equality is due to (5).

(C) Compute uh ∈ Wh from the system (uh, divqh) = (ph,qh), ∀qh ∈ Γ0h. This
system, though usually overdetermined, admits a unique solution.

Step (B) is similar to solving a Poisson problem using standard nodal linear ele-
ments, since (curl ·, curl ·) = (∇·,∇·). For the discretization of the Poisson problem
with continuous piecewise linear elements, optimal complexity solvers of multi-grid
type are available. To obtain an optimal complexity method for step (B) above in

a similar fashion, the size of the right-hand side should be bounded uniformly in
h. Thus, the procedure in step (A) should yield a uniformly bounded solenoidal

component curlωh of the particular solution rh. For this, it is sufficient that
‖rh‖L2 � C‖f‖L2 with C independent of h. This point, which as far as we know has

been neglected in the literature [6], [8], necessitates the use of a multi-level approach
in step (A).

������ 2.1. If the triangulation of the domain does not have internal nodes,

then by (4) the only divergence-free function is the zero function. In that case, step
(B) becomes redundant.

������ 2.2. In three space dimensions, the homogeneous problem that results

in step (B) is the so-called curl-curl problem, for which there is also an optimal
complexity multi-level solver available [8].
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In step (C), which constitutes the adjoint of the operation performed in (A), a

similar multi-level approach is necessary since in practice ph is not computed exactly
in step (B). Instead, a perturbation p̂h is obtained, resulting in a perturbation ûh

of uh. Typically, one would like to have that ‖ûh − uh‖L2 � C‖p̂h − ph‖L2 with C

independent of h. As was shown in [11], this is not the case if more naive solution
methods are used.

3. Two procedures for steps (A) and (C)

We will now describe two procedures for steps (A) and (C) above. The first one is

based on a simple two-term recursion. The second procedure is a multi-level version
of the first. For the first procedure it is not guaranteed that the solenoidal component

that is introduced in the particular solution, remains bounded independent of the
mesh size, whereas for the second, it is. Both procedures are based on the fact

that divΓ0h = Wh, whereas generally dim(Γ0h) > dim(Wh). Implicitly, subspaces
Zh ⊂ Γ0h are defined such that divZh =Wh and dim(Zh) = dim(Wh), which means

that rh is uniquely determined by Zh.

3.1. A marching process. A marching process for step (A) constructs a par-
ticular solution rh with div rh = Phf by matching the prescribed divergence Phf

triangle by triangle in the following way.
(M1) Construct a list (�j)Mj=1 of triangles such that �j+1 shares an edge with �j, and

each triangle occurs in the list at least once.
(M2) Set rh = 0, fh = Phf initially.

(M3) For j = 1 toM−1, let ϕj be the unique function from Γ0h such that divϕj = fh

on �j and supp(ϕj)=�j ∪ �j+1 and set rh := rh + ϕj and fh := fh − divϕj .

������ 3.1. Note that ϕj in (M3) is a multiple of the function in Γ0h with
normal flux equal to one on the edge between �j and �j+1 and normal flux zero on

all other edges. Clearly, its support is �j ∪ �j+1.

Proposition 3.2. The algorithm above results in an rh ∈ Γ0h with div rh = Phf .

�����. Let K∗ = �M be the last triangle in the list and let K be a triangle

different from K∗. Let k be such, that �k = K and �j 	= K for all j > k. The
k-th execution of step (M3) sets fh = 0 on K. By definition of k, for all j > k we

have K ∩ supp(ϕj) = ∅, so fh remains zero on K until completion of the algorithm.
Since K 	= K∗ was chosen arbitrarily, and fh has mean value zero on Ω, we conclude

that fh = 0 also on K∗ and hence on Ω. Since div rh + fh = Phf during the whole
execution of the algorithm, we conclude that div rh = Phf . �
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The list (�j)Mj=1 can always be chosen such that M � 2 dim(Wh), which shows

that the process has optimal complexity. The procedure (M1)–(M3) defines a linear
mappingWh → Γ0h : fh �→ rh, which we will denote by div+h . Proposition 3.2 states
that divdiv+h is the identity on Wh. Defining Zh as the image of div

+
h in Γ0h, rh is

the unique element in Zh that satisfies (div rh, wh) = (f, wh) for all wh ∈ Wh.
The space Zh can alternatively be used as a 	�
	
���� in step (C) to solve

uh once ph has been computed as rh + curlωh in steps (A) and (B). Defining the
discrete adjoint div∗h : Wh → Zh of the divergence by the relation

(6) ∀wh ∈ Wh, ∀zh ∈ Zh, (div∗hwh, zh) = (wh, div zh)

and denoting L2-orthogonal projection of Γ0h onto Zh by Πh, it is not difficult to

verify that the solution uh of the equation div
∗
huh = Πhph results from the following

consecutive steps:

(N2) Assign an arbitrary value to uh(�1).
(N3) For j = 1 to M − 1, let ϕj ∈ Γ0h be such that supp(ϕj)=�j ∪ �j+1 and compute

uh(�j+1) from uh(�j) by using the relation (uh, divϕj) = (ph, ϕj).
(N4) Shift the solution obtained to mean zero.

Theorem 3.3. There exists a constant C0 = C0(h) such that

(7) ∀zh ∈ Zh, ‖zh‖L2 � C0‖div zh‖L2 ,

or, equivalently, ∀w ∈ Wh, ‖wh‖L2 � C0‖div∗hwh‖L2 . In particular, for rh =
div+h Phf and for the solutions of the perturbed and exact equations div∗hũh =Πhp̃h

and div∗huh = Πhph in step (C), we have

(8) ‖rh‖L2 � C0‖f‖L2 and ‖uh − ũh‖L2 � C0‖ph − p̃h‖L2.

�����. Since Zh = div
+
h Wh and divdiv

+
h is the identity on Wh, it follows that

div is a bijection between the finite dimensional spaces Zh and Wh. Obviously, the
norm of its inverse equals the norm of the inverse of its adjoint. �

As discussed in Section 2.1, steps (A), (B) and (C) can only be expected to give
a method of optimal complexity for solving the mixed system when the procedure

div+h , or equivalently the space Zh, is chosen such that (7) is valid with a constant C0
that is bounded uniformly in h. Unfortunately, as can be deduced from an example

in [11], using marching as in this section, it may increase rapidly as h tends to zero.

3.2. A multi-level procedure. We will now study the important practical case
of nested sequences of discrete spaces W0 ⊂ W1 ⊂ . . . and Γ0 ⊂ Γ1 ⊂ . . . corre-
sponding to a sequence of triangulations (T�). We denote the discrete solution on T�
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by (u�,p�). For simplicity, only spaces arising from uniform refinements of an initial

triangulation T0 are considered. By this we mean that each T� arises from T�−1 by
subdividing each triangle K ∈ T�−1 into four congruent subtriangles. Denote orthog-
onal projection on W� by P�. Then (P� − P�−1)f is orthogonal to W�−1 and to each

constant function, and hence to the characteristic function χK ∈ W�−1 ⊕ � of each
K ∈ T�−1. This implies that (P� − P�−1)f has zero mean on each K ∈ T�−1. So, by

Remark 2.1, for each K ∈ T�−1 there exists a unique y� ∈ Γ� with supp(y�) ⊂ K

such that divy� = (P� − P�−1)f on K and zero elsewhere. This leads to the follow-

ing multi-level method for finding a particular solution in step (A), in which each
function r� is such that div r� = P�f .

(S1) Use steps (M1)–(M3) to find r0 such that div r0 = P0f . Set � = 1.
(S2) For each K ∈ T�−1, find the function yK

� ∈ Γ� with supp(yK
� ) ⊂ K such that

divyK
� = (P�−P�−1)f on K and zero elsewhere. Afterwards, set r� = r�−1+y�,

where y� =
∑

K∈T�−1
yK

� .

(S3) Until some final level is reached, set � := �+ 1 and return to step (S2).

Just as in the previous section, this procedure implicitly constructs linear map-
pings div+� : W� → Γ� with divdiv

+
� equal to the identity on W� and spaces Z� =

div+� (W�). For all � � 1, the space Z� can then be written as Z� = Z�−1⊕Y�, where
Y� is the span of all functions in Γ� with support contained in some K ∈ T�−1.

Lemma 3.4. There exists a constant C∞ such that with C� = 2−�C∞(� � 1),

(9) ∀y� ∈ Y�, ‖y�‖L2 � C�‖divy�‖L2 .

�����. The statement follows easily from a homogeneity argument. One may

consult [9], where this result was used in a different context. �

Theorem 3.5. There exists a β > 0 such that for each � � 0,

(10) ∀z� ∈ Z�, β‖z�‖L2 � ‖div z�‖L2 .

�����. Write z� ∈ Z� as z� =
�∑

j=0
yj , with y0 ∈ Z0 and yj ∈ Yj for j � 1.

Then

(11) ‖z�‖L2 �
�∑

j=0

‖yj‖L2 �
�∑

j=0

Cj‖divyj‖L2 � ‖div z�‖L2

√
C20 +

1
3
C2∞

where we have used the triangle inequality, Theorem 3.3 applied to y0, Lemma 3.4
applied to the yj with j � 1, the Schwarz inequality, the orthogonality of the diver-
gences of the yj , and the convergence of the geometric sum. �
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This proves the stability of step (A) uniformly in �. As noted before, Theorem 3.5

is equivalent to the statement that for each � � 0,

(12) ∀w� ∈ W�, β‖w�‖L2 � ‖div∗�w�‖L2 ,

which takes care of the stability of step (C). Finally, we show how all this is related

to the Babuška-Brezzi inf-sup condition for the pairs Z�, W�. For this, recall the
definition ‖q‖2div = ‖divq‖2L2 + ‖q‖2L2.

Theorem 3.6. The spaces Z�, W� satisfy the Babuška-Brezzi inf-sup condition

(13) ∃γ > 0, ∀� � 0, ∀w� ∈ W�, γ‖w�‖L2 � sup
0�=z�∈Z�

(div z�, w�)
‖z�‖div

.

�����. Theorem 3.5 shows that for all q ∈ Z�, (1 + β−2)−1/2‖z�‖div �
‖div z�‖L2, and using this, (13) follows by choosing z� = div

+
� w� for given nonzero

w�. �

In fact, if (13) holds for some pair of spaces Z�, W� with divZ� = W� then there
exists a β > 0 such that (12) holds. Indeed, using that ‖z�‖L2 � ‖z�‖div , we obtain

(14) γ‖w�‖L2 � sup
0�=z�∈Z�

(div z�, w�)
‖z�‖L2

� sup
0�=z�∈Z�

(z�,div
∗
�w�)

‖z�‖L2
= ‖div∗�w�‖L2 .

If Z� and W� are finite dimensional, (12) is again equivalent with (10). This shows

that alternatively, the Babuška-Brezzi inf-sup condition could have been taken as a
starting point in proving the stability of the multi-level solvers.

It is interesting to note that since there are no nonzero divergence-free functions

in Z�, also the Babuška-Brezzi ellipticity condition is satisfied. So, the spaces Z�, W�

themselves form a stable pair for the mixed discretization of the Poisson equation
as in (3). Even though this allows for an optimal complexity and direct solver, the

spaces Z� unfortunately lack approximation properties.
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4. Further remarks

For the Laplace equation, things simplify considerably, and the consequences will
be briefly outlined in Section 4.1. In Section 4.2 we note that Babuška’s saddle point

problem [1] can be treated similarly.

4.1. Solving the mixed discretization of the Laplace equation. Consider
the Laplace equation with Dirichlet boundary data, that are assumed to have mean

zero without loss of generality,

(15) −∆u = 0 in Ω, and u = g on ∂Ω with 〈g, 1〉 = 0.

Its mixed finite element formulation seeks (uh,ph) in Wh × Γ0h satisfying

(16) (ph,qh)− (uh, divqh) = 〈g,qT
h ν〉 and (divph, wh) = 0,

for all (wh,qh) ∈ Wh×Γ0h, where here Γ0h denotes the subspace of Raviart-Thomas
functions with mean zero normal traces. By a variant of (4) we have that ph =
curlωh for some ωh ∈ Vh, where Vh is the space of continuous piecewise linear

functions, so step (B) reduces to finding a solution ωh of

(17) ∀vh ∈ Vh, (curl ωh, curl vh) = 〈g, curl vT
h ν〉.

This system also produces (modulo a constant) the standard finite element approxi-
mation ωh of the solution ω of the Laplace equation

(18) −∆ω = 0 in Ω, ∇ωT ν =
∂

∂τ
g on ∂Ω,

and as observed in [3], ω is related to u in the sense that the pair (ω, u) solves the

Cauchy-Riemann equations. Testing the left equation of (16) in the same spaces Z�

as in Section 3.2, the boundary term vanishes because each z� ∈ Z� has normal trace

zero on ∂Ω. So, given the standard approximation ωh of ω, the multi-level method
can be used to solve the mixed approximation uh of u from div

∗
�uh = Πhcurlωh in

a stable way and in optimal complexity. See [3] for more details.

4.2. The Poisson equation with inhomogeneous boundary data. Consider
the Poisson equation −∆u = f with inhomogeneous Dirichlet boundary condition

u = g on ∂Ω. Let γ : H1(Ω) → H
1
2 (∂Ω) be the trace operator. Then the Poisson

problem can be written as a saddle point problem by looking for the pair (u, λ) ∈
H1(Ω)× H− 1

2 (∂Ω) such that for all (v, µ) ∈ H1(Ω)× H− 1
2 (∂Ω),

(19) (∇u,∇v)− 〈γ(v), λ〉 = (f, v) and 〈γ(u), µ〉 = 〈g, µ〉.
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Note that the trace operator takes the place of the divergence in the previous section.

Discretizing this in Vh and Wh = γ(Vh) gives the mixed discrete problem of finding
(uh, λh) ∈ Vh × Wh such that for all (vh, µh) ∈ Vh × Wh,

(20) (∇uh,∇vh)− 〈γ(vh), λh〉 = (f, vh) and 〈γ(uh), µh〉 = 〈g, µh〉.

Similar to before, this problem can be solved in three separate steps: finding a

particular solution satisfying the second equation, solving the homogeneous problem
in V0h, and finally computing the Lagrangian multiplier. It can be shown that a

naive choice for the particular solution may hamper the overall solution process and
that a similar multi-level method should be used instead. An abstract treatment of

the methods presented in this paper is in preparation.
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