THE INDUCED PATHS IN A CONNECTED GRAPH AND A TERNARY RELATION DETERMINED BY THEM

LADISLAV NEBESKÝ, Praha

(Received October 5, 2000)

Abstract. By a ternary structure we mean an ordered pair (X_0, T_0) , where X_0 is a finite nonempty set and T_0 is a ternary relation on X_0 . By the underlying graph of a ternary structure (X_0, T_0) we mean the (undirected) graph G with the properties that X_0 is its vertex set and distinct vertices u and v of G are adjacent if and only if

$$\{x \in X_0; T_0(u, x, v)\} \cup \{x \in X_0; T_0(v, x, u)\} = \{u, v\}.$$

A ternary structure (X_0, T_0) is said to be the B-structure of a connected graph G if X_0 is the vertex set of G and the following statement holds for all $u, x, y \in X_0$: $T_0(x, u, y)$ if and only if u belongs to an induced x - y path in G. It is clear that if a ternary structure (X_0, T_0) is the B-structure of a connected graph G, then G is the underlying graph of (X_0, T_0) . We will prove that there exists no sentence σ of the first-order logic such that a ternary structure (X_0, T_0) with a connected underlying graph G is the B-structure of G if and only if (X_0, T_0) satisfies σ .

Keywords: connected graph, induced path, ternary relation, finite structure

MSC 2000: 05C38, 03C13

INTRODUCTION

The letters i, j, k, m and n will be reserved for denoting integers.

By a graph we mean here a graph in the sense of [2], i.e. a finite undirected graph without loops or multiple edges. If G is a graph, then V(G) and E(G) denote its vertex set and its edge set, respectively.

Let G be a graph, let $v_0, \ldots, v_n \in V(G)$, and let

$$P: v_0, \ldots, v_n$$

Research supported by Grant Agency of the Czech Republic, grant No. 401/98/0383.

be a path in G. We say that P is an *induced path* in G if $v_i v_j \notin E(G)$ for all $i, j \in \{0, \ldots, n\}$ such that $|i - j| \neq 1$. Note that instead of the term "induced path" the term "minimal path" is sometimes used. If G is a connected graph, then we say that P is a *geodesic* in G, if $d(v_0, v_n) = n$, where d denotes the distance function of G. Instead of the term "geodesic" the term "shortest path" is sometimes used.

Let P and P' be induced paths in a graph G; we will say that P and P' are disjoint if no vertex of G belongs both to P and to P'; we will say that P and P' are non-adjacent in G if there exists no pair of vertices u and u' such that u belongs to P, u' belongs to P' and u and u' are adjacent in G.

Part 1

By a *ternary structure* we mean an ordered pair (X_0, T_0) , where X_0 is a *finite* nonempty set and T_0 is a ternary relation on X_0 .

Let (X_1, T_1) and (X_2, T_2) be ternary structures. By a *partial isomorphism* from (X_1, T_1) to (X_2, T_2) we mean such an injective mapping q that $\text{Def}(q) \subseteq X_1$, $\text{Im}(q) \subseteq X_2$ and

$$T_1(x, u, y)$$
 if and only if $T_2(q(x), q(u), q(y))$

for all $u, x, y \in \text{Def}(q)$. (Note that the notion of a partial isomorphism from a ternary structure to a ternary structure is a special case of the notion of a partial isomorphism in the sense of [4], p. 15). Let (X_0, T_0) be a ternary structure. By the *pseudointerval function* of (X_0, T_0) we mean the mapping J of $X_0 \times X_0$ into 2^{X_0} defined as follows:

$$J(x,y) = \{ u \in X_0; \ T_0(x,u,y) \}$$

for all $x, y \in X_0$.

Let (X_0, T_0) be a ternary structure, and let J denote its pseudointeval function. By the *underlying graph* of (X_0, T_0) we mean the graph G defined as follows: $V(G) = X_0$ and

$$E(G) = \{uv; u, v \in X_0, u \neq v \text{ and } J(u, v) \cup J(v, u) = \{u, v\}\}.$$

We will say that (X_0, T_0) is *connected* if its underlying graph is connected.

Let G be a connected graph, and let \mathbf{P}_0 be a subset of the set of all paths in G. By the \mathbf{P}_0 -structure of G we mean the ternary structure (X_0, T_0) such that $X_0 = E(G)$ and

 $T_0(x, u, y)$ if and only if

there exists an x - y path P in G such that $P \in \mathbf{P}_0$ and u belongs to P

for all $u, x, y \in X_0$. Let (X_0, T_0) be the \mathbf{P}_0 -structure of G. If \mathbf{P}_0 is the set of all paths in G, the set of all induced paths in G, or the set of all geodesics in G, then we say that (X_0, T_0) is the A-structure of G, the B-structure of G, or the Γ -structure of G, respectively.

Let G be a connected graph, and let d denote its distance function. By the Σ structure of G we mean the ternary structure (X_0, T_0) such that $X_0 = V(G)$ and

$$T_0(x, u, y)$$
 if and only if $d(x, u) = 1$ and $d(u, y) = d(x, y) - 1$

for all $u, x, y \in X_0$.

Let (X_0, T_0) be a ternary structure, and let **Z** stand for A, B, Γ or Σ . We say that (X_0, T_0) is a **Z**-structure if there exists a connected graph G such that (X_0, T_0) is the **Z**-structure of G.

Let (T_0, X_0) be a ternary structure, and let J denote its pseudointerval function. We will say that (X_0, T_0) satisfies condition C1, C1', C2 or C3 if

- (C1) $J(x,x) = \{x\} \text{ for all } x \in X_0,$
- (C1') $J(x, x) = \emptyset$ for all $x \in X_0$,

(C2) J(x,y) = J(y,x) for all $x, y \in X_0$, or

(C3) $x \in J(x, y)$ for all $x, y \in X_0$,

respectively. It is obvious that all A-structures, B-structures and Γ -structures satisfy conditions C1, C2 and C3 and that all Σ -structures satisfy condition C1'.

Let \mathbf{Z} stand for B, Γ or Σ . It is easy to see that if (X_0, T_0) is a \mathbf{Z} -structure, then it is the \mathbf{Z} -structure of exactly one connected graph, namely of the underlying graph of (X_0, T_0) . This means that all B-structures, all Γ -structures and all Σ -structures are connected. However, this is not the case with A-structures. The underlying graph of the A-structure of a complete graph with at least three vertices has no edges.

Let (X_0, T_0) be a ternary structure, and let J denote its pseudointerval function. We will say that (X_0, T_0) is *scant* if (a) it satisfies conditions C1 and C2, and (b) the following statement holds for all distinct $x, y \in X_0$: if $J(x, y) \neq \{x, y\}$, then $J(x, y) = X_0$. Clearly, every scant ternary structure is determined by its underlying graph. It is not difficult to see that if the Γ -structure of a connected graph G is scant, then the diameter of G does not exceed two. This is not the case with B-structures. It is obvious that the B-structure of every cycle is scant. Thus, for every $n \ge 3$ there exists a connected graph G of diameter n such that the B-structure of G is scant.

Let (X_0, T_0) be a ternary structure, let J denote its pseudointerval function, and let G denote the underlying graph of (X_0, T_0) . If J satisfies conditions C1, C2 and C3, then J is a transit function on G in the sense of Mulder [7]. Recall that if (X_0, T_0)

is a Γ -structure or a B-structure, then it is respectively the Γ -structure or the Bstructure of G. If (X_0, T_0) is a Γ -structure, then J is called the interval function of G; cf. Mulder [6], where the interval function of a connected graph was studied widely. If (X_0, T_0) is a B-structure, then J is called the induced path function or the minimal path function on G in [7]. The induced path function on a connected graph was studied by Duchet [3] and by Morgana and Mulder [5].

The pseudointerval functions of A-structures were characterized in Changat, Klavžar and Mulder [1] while the pseudointerval functions of Γ -structures were characterized by the present author in [8], [10] and [12]. These characterizations can be reformulated easily as characterizations of A-structures and of Γ -structures by a finite set of axioms or, more strictly, by a unique axiom.

The result obtained for Σ -structures by the present author in [9] and [11] is not too strong: Σ -structures were characterized as connected ternary structures satisfying a finite set of axioms. This result could be reformulated as follows: there exists an axiom σ in a language of the first order logic such that a connected ternary structure (X_0, T_0) is a Σ -structure if and only if (X_0, T_0) satisfies σ .

In the present paper we will prove that a similar result does not hold for B-structures. To prove this, we will need a certain portion of mathematical logic; for precise formulations and further details the reader is referred to Ebbinghaus and Flum [4], p. 1–12. (Especially, the explanation of the term "satisfy", which will be used in Theorem 1, can be found in [4], p. 6).

Let T be the symbol for a ternary relation. By an atomic formula of the first-order logic of vocabulary $\{T\}$ (shortly: by an atomic formula) we mean an expression

$$x = y,$$

where x and y are variables, or an expression

where u, x and y are variables. The formulae of the first-order logic of vocabulary $\{T\}$ (shortly: the formulae) will be defined as follows:

every atomic formula is a formula; if α is a formula, then $\neg \alpha$ is a formula; if α_1 and α_2 are formulae, then $\alpha_1 \lor \alpha_2$ is a formula; if α is a formula and x is a variable, then $\exists x \alpha$ is a formula; no other expressions are formulae.

Following [4] we define the quantifier rank $qr(\alpha)$ of a formula α :

if α is atomic, then $qr(\alpha) = 0$; if α is $\neg\beta$, where β is a formula, then $qr(\alpha) = qr(\beta)$; if α is $\beta_1 \lor \beta_2$, where β_1 and β_2 are formulae, then $qr(\alpha) = \max(qr(\beta_1), qr(\beta_2))$; if α is $\exists x\beta$, where β is a formula and x is a variable, then $qr(\alpha) = qr(\beta) + 1$.

The most important formulae are sentences: a formula α is called a sentence if for every atomic subformula β of α , every variable belonging to β is in the scope of the corresponding quantifier.

The next theorem, which is a special case of Fraïssé's Theorem, will be an important tool for us:

Theorem 1. Let (X_1, T_1) and (X_2, T_2) be ternary structures, and let $n \ge 1$. Then the following statements (A) and (B) are equivalent:

- (A) (X_1, T_1) and (X_2, T_2) satisfy the same sentences σ with $qr(\sigma) \leq n$.
- (B) There exist nonempty sets $\mathbf{Q}_0, \ldots, \mathbf{Q}_n$ of partial isomorphisms from (X_1, T_1) to (X_2, T_2) such that for each $m, 1 \leq m < n$, we have
 - (I) for every $q \in \mathbf{Q}_{m+1}$ and every $x \in X_1$ there exists $r \in \mathbf{Q}_m$ such that $q \subseteq r$ and $x \in \text{Def}(r)$;
 - (II) for every $q \in \mathbf{Q}_{m+1}$ and every $x \in X_2$ there exists $r \in \mathbf{Q}_m$ such that $q \subseteq r$ and $x \in \text{Im}(r)$.

For the proof of Fraïssé's Theorem (and further closely related results) the reader is referred to [4], Chapter 1.

Part 2

Assume that an infinite sequence

$$u_0, w_0, u_1, w_1, u_2, w_2, \ldots$$

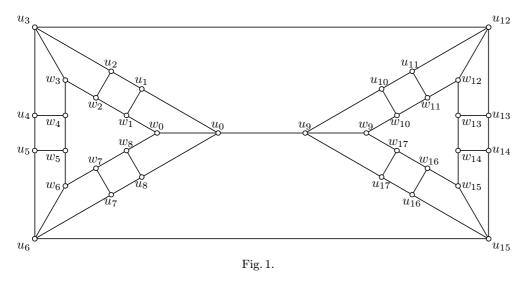
of mutually distinct vertices is given.

Let $k \ge 3$. By F_k we denote the graph with vertices

$$u_0, w_0, u_1, w_1, \ldots, u_{6k-1}, w_{6k-1}$$

$$\begin{split} & u_0u_1, u_1u_2, \dots, u_{3k-2}u_{3k-1}, u_{3k-1}u_0, \\ & u_{3k}u_{3k+1}, u_{3k+1}u_{3k+2}, \dots, u_{6k-2}u_{6k-1}, u_{6k-1}u_{3k}, \\ & w_0w_1, w_1w_2, \dots, w_{3k-2}w_{3k-1}, w_{3k-1}w_0, \\ & w_{3k}w_{3k+1}, w_{3k+1}w_{3k+2}, \dots, w_{6k-2}w_{6k-1}, w_{6k-1}w_{3k}, \\ & u_0w_0, u_1w_1, \dots, u_{6k-1}w_{6k-1}, \\ & u_0u_{3k}, u_ku_{4k}, u_{2k}u_{5k}. \end{split}$$

A diagram of F_3 is presented in Fig. 1.



Lemma 1. Let $k \ge 3$. Then the B-structure of F_k is scant.

Proof. Let $x \in V(F_k)$. Then there exists exactly one $i, 0 \leq i \leq 6k - 1$, such that $x = u_i$ or $x = w_i$; we define $\operatorname{ind}(x) = i$. For every $y \in V(F_k)$ we define y^L and y^R as follows:

if $\operatorname{ind}(y) \in \{0, k, 2k, 3k, 4k, 5k\}$, then $y^L = y^R = u_{\operatorname{ind}(y)}$; if $jk < \operatorname{ind}(y) < (j+1)k$, where $j \in \{0, 1, 3, 4\}$, then $y^L = u_{jk}$ and $y^R = u_{(j+1)k}$; if $2k < \operatorname{ind}(y) < 3k$, then $y^L = u_{2k}$ and $y^R = u_0$; if $5k < \operatorname{ind}(y) < 6k$, then $y^L = u_{5k}$ and $y^R = u_{3k}$.

Let J denote the pseudointerval function of the B-system of F_k . Consider arbitrary $x, y \in V(F_k)$ such that $d(x, y) \ge 2$, where d denotes the distance function of F_k . We want to prove that $J(x, y) = V(F_k)$.

Denote $V_1 = \{v \in V(F_k); 0 \leq ind(v) \leq 3k - 1\}$ and $V_2 = V(F_k) \setminus V_1$. Without loss of generality we assume that $x \in V_1$. We distinguish two cases.

C a se 1. Let $y \in V_1$. It is clear that $V_1 \subseteq J(x, y)$ and

$$V_2 \subseteq J(u_0, u_k) \cap J(u_k, u_{2k}) \cap J(u_{2k}, u_0).$$

Recall that $d(x, y) \ge 2$. We can see that there exist $x_1 \in \{x^L, x^R\}$ and $y_1 \in \{y^L, y^R\}$ such that $x_1 \ne y_1$ and there exist an induced $x - x_1$ path P_x in F_k and an induced $y_1 - y$ path P_y in F_k with the property that P_x and P_y are disjoint and non-adjacent in F_k . This implies that $J(x, y) = V(F_k)$.

Case 2. Let $y \in V_2$. We distinguish two subcases.

Subcase 2.1. Let d(x, y) = 2. Then $x \in \{u_0, u_k, u_{2k}\}$ or $y \in \{u_{3k}, u_{4k}, u_{5k}\}$. Without loss of generality we assume that $x = u_0$. Then $y = w_{3k}$ or $y = u_{3k+1}$ or $y = u_{6k-1}$.

First, let $y = w_{3k}$. Consider the following five sequences:

 $u_{0}, u_{3k}, w_{3k};$ $u_{0}, u_{1}, \dots, u_{k-1}, u_{k}, u_{4k}, u_{4k-1}, \dots, u_{3k+1}, u_{3k}, w_{3k};$ $u_{0}, u_{3k-1}, u_{3k-2}, \dots, u_{k+1}, u_{k}, u_{4k}, u_{4k+1}, \dots, u_{6k-2}, u_{6k-1}, u_{3k}, w_{3k};$ $u_{0}, w_{0}, w_{1}, \dots, w_{k-1}, w_{k}, u_{k}, u_{4k}, w_{4k}, w_{4k-1}, \dots, w_{3k+1}, w_{3k};$ $u_{0}, w_{0}, w_{3k-1}, w_{3k-2}, \dots, w_{k}, u_{k}, u_{4k}, w_{4k}, w_{4k+1}, \dots w_{6k-1}, w_{3k}.$

Each vertex of F_k belongs to at least one of these sequences. Moreover, each of these sequences is an induced x - y path in F_k . Thus $J(x, y) = V(F_k)$.

Now, let $y \neq w_{3k}$. Without loss of generality we assume that $y = u_{3k+1}$. Consider the following five sequences:

 $u_{0}, u_{3k}, u_{3k+1};$ $u_{0}, u_{1}, \dots, u_{k-1}, u_{k}, u_{4k}, u_{4k-1}, \dots, u_{3k+1};$ $u_{0}, u_{3k-1}, \dots, u_{k+1}, u_{k}, u_{4k}, u_{4k+1}, \dots, u_{6k-2}, u_{6k-1}, w_{6k-1}, w_{3k}, w_{3k+1}, u_{3k+1};$ $u_{0}, w_{0}, w_{1}, \dots, w_{k-1}, w_{k}, u_{k}, u_{4k}, w_{4k}, w_{4k-1}, \dots, w_{3k+1}, u_{3k+1};$ $u_{0}, w_{0}, w_{3k-1}, w_{3k-2}, \dots, w_{k}, u_{k}, u_{4k}, w_{4k}, w_{4k+1}, \dots, w_{6k-1}, w_{3k}, w_{3k+1}, u_{3k+1}.$

Again, each vertex of F_k belongs to at least one of these sequences and each of these sequences is an induced x - y path in F_k . Thus $J(x, y) = V(F_k)$.

S u b c a se 2.2. Let $d(x, y) \ge 3$. Then there exist $x_2 \in \{x^L, x^R\}$ and $y_2 \in \{y^L, y^R\}$ such that $d(x_2, y) \ge 3$ and $d(x, y_2) \ge 3$. Define $x^* = u_{ind(x_2)+3k}$ and $y^* = u_{ind(y_2)-3k}$. Obviously, $d(x^*, y) \ge 2$ and $d(x, y^*) \ge 2$. It is clear that $V_1 \subseteq J(x, y^*)$ and $V_2 \subseteq J(x^*, y)$. This implies that $J(x, y) = V(F_k)$.

The proof is complete.

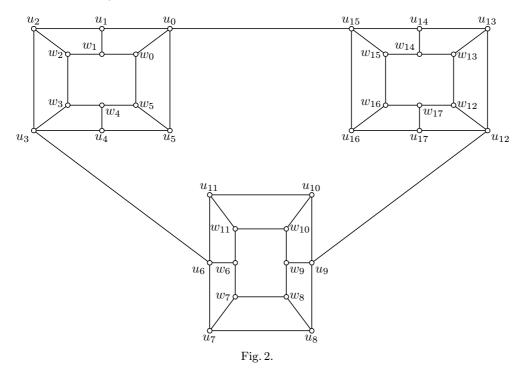
Let k > 2. By F'_k we denote the graph with vertices

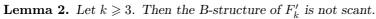
 $u_0, w_0, u_1, w_1, \ldots, u_{6k-1}, w_{6k-1}$

and with edges

```
\begin{split} &u_0u_1, u_1u_2, \dots, u_{2k-2}u_{2k-1}, u_{2k-1}u_0, \\ &u_{2k}u_{2k+1}, u_{2k+1}u_{2k+2}, \dots, u_{4k-2}u_{4k-1}, u_{4k-1}u_{2k}, \\ &u_{4k}u_{4k+1}, u_{4k+1}u_{4k+2}, \dots, u_{6k-2}u_{6k-1}, u_{6k-1}u_{4k}, \\ &w_0w_1, w_1w_2, \dots, w_{2k-2}w_{2k-1}, w_{2k-1}w_0, \\ &w_{2k}w_{2k+1}, w_{2k+1}w_{2k+2}, \dots, w_{4k-2}w_{4k-1}, w_{4k-1}w_{2k}, \\ &w_{4k}w_{4k+1}, w_{4k+1}w_{4k+2}, \dots, w_{6k-2}w_{6k-1}, w_{6k-1}w_{4k}, \\ &u_0w_0, u_1w_1, \dots, u_{6k-1}w_{6k-1}, \\ &u_ku_{2k}, u_{3k}u_{4k}, u_{5k}u_0. \end{split}
```

A diagram of F'_3 is presented in Fig. 2.





Proof. Let J denote the pseudointerval function of the B-structure of F'_k . Since $J(u_{k-1}, u_{k+1}) \neq V(F'_k)$, the result follows.

Lemma 3. Let $n \ge 1$ and $k > 2^{n+1}$. Assume that (X_1, T_1) and (X_2, T_2) are scant ternary structures such that the underlying graph of (X_1, T_1) is F_k and the underlying graph of (X_2, T_2) is F'_k . Then (X_1, T_1) and (X_2, T_2) satisfy the same sentences σ with $qr(\sigma) \le n$.

Proof. Put $U = \{u_0, u_1, \dots, u_{6k-1}\}, U^{\flat} = \{u_0, u_k, u_{2k}, u_{3k}, u_{4k}, u_{5k}\}, W = \{w_0, w_1, \dots, w_{6k-1}\}$ and $W^{\flat} = \{w_0, w_k, w_{2k}, w_{3k}, w_{4k}, w_{5k}\}.$ Obviously, $X_1 = U \cup W = X_2.$

If $x, y \in U \cup W$, then we will write $x \sim y$ if and only if $x, y \in U$ or $x, y \in W$. We define $u_i^{\diamond} = w_i$ and $w_i^{\diamond} = u_i$ for all $i, 0 \leq i \leq 6k - 1$. Thus $(x^{\diamond})^{\diamond} = x$ for each $x \in U \cup W$ and $y^{\diamond} \sim z^{\diamond}$ if and only if $y \sim z$ for all $y, z \in U \cup W$. We define [x] = x for every $x \in U$ and $[x] = x^{\diamond}$ for every $x \in W$.

By F^* we mean F_k or F'_k . Let d^* denote the distance function of F^* . Define

$$e^*(x, y) = d^*([x], [y])$$
 for all $x, y \in U \cup W$.

Obviously, $e^*(x, y) = 0$ if and only if x = y or $x^{\diamond} = y$ for all $x, y \in U \cup W$.

Recall that $k > 2^{n+1}$. Consider an arbitrary $x \in U \cup W$ and denote $D(x) = \{y \in U^{\flat} \cup W^{\flat}; e^*(x, y) \leq 2^n\}$; it is easy to see that $|D(x)| \leq 4$ and if $D(x) \neq \emptyset$, then the subgraph of F^* induced by D(x) is a path of length either one or three.

Consider arbitrary $x, y \in U \cup W$ such that $e^*(x, y) \leq 2^n$. It is easy to see that (i) every x - y geodesic in F^* contains at most two vertices in U^{\flat} ; (ii) if at least one x - y geodesic in F^* contains two vertices in U^{\flat} , then every x - y geodesic in F^* contains two vertices are adjacent in F^* . We will write $f^*(x, y) = 1$ if every x - y geodesic in F^* contains at most one vertex in U^{\flat} and $f^*(x, y) = 2$ otherwise.

For every $m, 0 \leq m \leq n$ and for all $x, y \in U \cup W$ we define

$$e_m^*(x,y) = e^*(x,y)$$
 if $e^*(x,y) \le 2^m$,
 $e_m^*(x,y) = \infty$ if $e^*(x,y) > 2^m$.

Consider an arbitrary $m, 0 \leq m < n$. We see that

(1) if $e_{m+1}^*(x,y) = \infty$ and $e_m^*(y,z) < \infty$, then $e_m^*(x,z) = \infty$ for all $x, y, z \in U \cup W$.

We will write e, e_m and f instead of e^*, e_m^* and f^* respectively if F^* is F_k , and e', e'_m and f' instead of e^*, e_m^* and f^* respectively if F^* is F'_k .

Recall that (X_1, T_1) and (X_2, T_2) are scant. We denote by PART the set of all partial isomorphisms p from F_k to F'_k such that $U^{\flat} \cup W^{\flat} \subseteq \text{Def}(p)$,

$$p(x) \sim x$$
 for all $x \in \text{Def}(p)$,

 $p(u_0) = u_0, p(w_0) = w_0, p(u_k) = u_k, p(w_k) = w_k, p(u_{2k}) = u_{4k}, p(w_{2k}) = w_{4k},$ $p(u_{3k}) = u_{5k}, p(w_{3k}) = w_{5k}, p(u_{4k}) = u_{2k}, p(w_{4k}) = w_{2k},$ $p(u_{5k}) = u_{3k} \text{ and } p(w_{5k}) = w_{3k}.$

Obviously, there exists exactly one $p_0 \in \text{PART}$ such that $\text{Def}(p_0) = U^{\flat} \cup W^{\flat}$.

For every $m, 0 \leq m \leq n$, we denote by \mathbf{Q}_m the set of all $q \in \text{PART}$ such that $|\operatorname{Def}(q)| \leq 12 + n - m$ and that $e'_m(q(x), q(y)) = e_m(x, y)$ for all $x, y \in \operatorname{Def}(q)$.

It is clear that $\mathbf{Q}_n = \{p_0\}$. As follows from the definition, $\mathbf{Q}_n \subseteq \ldots \subseteq \mathbf{Q}_0$.

Consider an arbitrary $m, 0 \leq m < n$. We need to show that conditions (I) and (II) (of Theorem 1) hold.

Consider an arbitrary $q \in \mathbf{Q}_{m+1}$ and an arbitrary $x \in U \cup W$. If $x \in \text{Def}(q)$, we put r = q. Assume that $x \notin \text{Def}(q)$. Then $x \notin U^{\flat} \cup Z^{\flat}$. We distinguish two cases.

Case 1. Assume that there exists $y \in \text{Def}(q)$ such that $e_m(x, y) < \infty$. Without loss of generality we assume that $e_m(x, y) \leq e_m(x, y_0)$ for every $y_0 \in \text{Def}(q)$.

First, let $e_m(x, y) = 0$. Since $x \notin \text{Def}(q)$, we have $y = x^{\diamond}$. We put $x' = (q(y))^{\diamond}$. Now, we assume that $e_m(x, y) > 0$. We distinguish four subcases.

Subcase 1.1. Assume that

(2) there exists
$$z \in \text{Def}(q)$$
 such that
 $e_m(x, z) < \infty$ and $e(y, z) = e_m(y, x) + e_m(x, z)$.

Without loss of generality we assume that $e_m(x,z) \leq e_m(x,z_0)$ for every $z_0 \in \text{Def}(q)$ such that $e_m(x,z_0) < \infty$ and $e(y,z_0) = e_m(y,x) + e_m(x,z_0)$. Since $e_m(x,y) > 0$, it is obvious that $e_m(x,z) > 0$. Since $e_m(x,y) < \infty$ and $e_m(x,z) < \infty$, we get $e_{m+1}(y,z) < \infty$. Since $y, z \in \text{Def}(q)$, we have $e'_{m+1}(q(y),q(z)) = e_{m+1}(y,z)$. There exists exactly one $x' \in (U \cup W) \setminus \text{Im}(q)$ such that $e'(q(y),q(z)) = e'_m(q(y),x') + e_m(x',q(z))$ and $x' \sim x$.

Subcase 1.2. Assume (2) does not hold and

(3) there exists
$$z \in \text{Def}(q)$$
 such that
 $0 < e_{m+1}(y, z) < \infty, f(y, z) = 1$ and $e(x, z) = e_m(x, y) + e_{m+1}(y, z).$

Without loss of generality we assume that $e_{m+1}(y,z) \leq e_{m+1}(y,z_0)$ for every $z_0 \in$ Def(q) such that $0 < e_{m+1}(y,z_0) < \infty$, $f(y,z_0) = 1$ and $e(x,z_0) = e_m(x,y) + e_{m+1}(y,z_0)$. Since $y,z \in$ Def(q), we get $e'_{m+1}(q(y),q(z)) = e_{m+1}(y,z)$. There exists exactly one $x' \in (U \cup W) \setminus \text{Im}(q)$ such that $e'(x',q(z)) = e'_m(x',q(y)) + e'_{m+1}(q(y),q(z))$ and $x' \sim x$.

406

and

S u b c a s e 1.3. Assume (2) and (3) do not hold and

(4) there exists
$$z \in \text{Def}(q)$$
 such that

$$0 < e_{m+1}(y, z) < \infty, f(y, z) = 2$$
 and $e(x, z) = e_m(x, y) + e_{m+1}(y, z)$.

Without loss of generality we assume that $e_{m+1}(y, z) \leq e_{m+1}(y, z_0)$ for every $z_0 \in$ Def(q) such that $0 < e_{m+1}(y, z_0) < \infty$, $f(y, z_0) = 2$ and $e(x, z_0) = e_m(x, y) + e_{m+1}(y, z_0)$. It is easy to see that $y, z \in U^{\flat} \cup W^{\flat}$ and e(y, z) = 1. Since $y, z \in$ Def(q), we get $q(y), q(z) \in U^{\flat} \cup W^{\flat}$ and e'(q(y), q(z)) = 1. There exist exactly two vertices belonging to $(U \cup W) \setminus \text{Im}(q)$, say vertices v_1 and v_2 , such that $e'(v_j, q(z)) = e'_m(v_j, q(y)) + 1$ and $v_j \sim x$ for j = 1, 2. Consider an arbitrary $x' \in \{v_1, v_2\}$.

Subcase 1.4. Assume (2), (3) and (4) do not hold. Then there exists no $z \in \text{Def}(q)$ such that $0 < e_{m+1}(y, z) \leq e_m(x, y) + 2^m$. Thus there exists no $z \in \text{Def}(q)$ such that $0 < e'_{m+1}(q(y), q(z)) \leq e_m(x, y) + 2^m$. This implies that there exist exactly two vertices belonging to $(U \cup W) \setminus \text{Im}(q)$, say vertices v_1 and v_2 , such that $e'_m(v_j, q(y)) = e_m(x, y)$ and $v_j \sim x$ for j = 1, 2. Consider an arbitrary $x' \in \{v_1, v_2\}$. Case 2. Assume that $e_m(x, y) = \infty$ for every $y \in \text{Def}(q)$. There exists $x' \in (U \cup W) \setminus \text{Im}(q)$ such that $x' \sim x$ and $e'_m(x', q(y)) = \infty$ for every $y \in \text{Def}(q)$.

Define $r = q \cup \{(x, x')\}$. If we take (1) into account, we can see that $r \in \mathbf{Q}_m$. Thus condition (I) holds.

The fact that condition (II) holds can be proved analogously. Applying Theorem 1, we obtain the result of the lemma. $\hfill \Box$

R e m a r k. The introduction of functions e_m^* in the proof of Lemma 3 is a modification of one of the ideas in Example 1.3.5 of [4].

Theorem 2. There exists no sentence σ of the first-order logic of vocabulary $\{T\}$ such that a connected ternary structure is a B-structure if and only if it satisfies σ .

Proof. Combining Lemmas 1, 2 and 3, we get the theorem.

Note that Theorem 2 can be reformulated as follows: There exists no finite set S of sentences of first-order logic of vocabulary $\{T\}$ such that a connected ternary structure is a B-structure if and only if it satisfies each sentence in S.

References

- M. Changat, S. Klavžar, H. M. Mulder: The all-path transit function of a graph. Czechoslovak Math. J. 52 (2001), 439–448.
- [2] G. Chartrand, L. Lesniak: Graphs & Digraphs. Third edition. Chapman & Hall, London, 1996.
- [3] P. Duchet: Convex sets in graphs, II. Minimal path convexity. J. Combinatorial Theory, Series B 44 (1998), 307–316.

407

- [4] H-D. Ebbinghaus, J. Flum: Finite Model Theory. Springer, Berlin, 1995.
- [5] *M. A. Morgana, H. M. Mulder*: The induced path convexity, betweenness and svelte graphs. To appear in Discrete Mathematics.
- [6] H. M. Mulder: The interval function of a graph. MC-tract 132, Mathematisch Centrum, Amsterdam, 1980.
- [7] H. M. Mulder: Transit functions on graphs. In preparation.
- [8] L. Nebeský: A characterization of the interval function of a connected graph. Czechoslovak Math. J. 44 (1994), 173–178.
- [9] L. Nebeský: Geodesics and steps in a connected graph. Czechoslovak Math. J. 47 (1997), 149–161.
- [10] L. Nebeský: Characterizing the interval function of a connected graph. Math. Bohem. 123 (1998), 137–144.
- [11] L. Nebeský: A theorem for an axiomatic approach to metric properties of connected graphs. Czechoslovak Math. J. 50 (2000), 121–133.
- [12] L. Nebeský: The interval function of a connected graph and a characterization of geodetic graphs. Math. Bohem. 126 (2001), 247–254.

Author's address: L. Nebeský, Univerzita Karlova v Praze, Filozofická fakulta, nám. Jana Palacha 2, 11638 Praha 1, Czech Republic, e-mail: ladislav.nebesky@ff.cuni.cz.