RADICAL CLASSES OF DISTRIBUTIVE LATTICES
 HAVING THE LEAST ELEMENT

Ján Jakubík, Košice

(Received October 9, 2000)

Abstract. Let \mathcal{D} be the system of all distributive lattices and let \mathcal{D}_{0} be the system of all $L \in \mathcal{D}$ such that L possesses the least element. Further, let \mathcal{D}_{1} be the system of all infinitely distributive lattices belonging to \mathcal{D}_{0}. In the present paper we investigate the radical classes of the systems $\mathcal{D}, \mathcal{D}_{0}$ and \mathcal{D}_{1}.

Keywords: distributive lattice, infinite distributivity, radical class
MSC 2000: 06D05, 06D10

1. Introduction

Radical classes of generalized Boolean algebras have been studied in [15]. A nonempty subclass X of the class \mathcal{B}_{0} of all generalized Boolean algebras is called a radical class if it is closed with respect to isomorphisms, convex subalgebras and joins of convex subalgebras.

Earlier, radical classes of other types of ordered algebraic structures have been dealt with (under the definitions analogous to that given above); namely, the radical classes of lattice ordered groups and linearly ordered groups (cf. [1], [3]-[13], [17], [21]; see also Section 9.5 of the monograph [19]), convergence lattice ordered groups [14], cyclically ordered groups [18] and $M V$-algebras [16].

The reviewer of the paper [15] (Math. Reviews, 99m:06024) proposed to investigate the question what are radical classes in the systems of distributive lattices, lattice ordered semi-rings and autometrized algebras.

Supported by VEGA grant 2/1131/21.

Let \mathcal{D} be the system of all distributive lattices. Further, let \mathcal{D}_{0} be the system of all $L \in \mathcal{D}$ such that L has the least element.

The aim of the present paper is to investigate the radical classes in the systems \mathcal{D} and \mathcal{D}_{0}.

We show that there exists exactly one radical class in the system \mathcal{D} (namely, \mathcal{D}) and that there are many radical classes of elements of \mathcal{D}_{0} (namely, there exists an injective mapping of the class of all infinite cardinals into $R\left(\mathcal{D}_{0}\right)$, where $R\left(\mathcal{D}_{0}\right)$ is the collection of all radical classes of elements of \mathcal{D}_{0}.)

We deal also with the radical classes of the system \mathcal{D}_{1} consisting of all infinitely distributive lattices which have the least element; here we generalize a result of [15].

2. Preliminaries

We start by considering the system \mathcal{D}. Let $L \in \mathcal{D}$ and $\emptyset \neq L_{1} \subseteq L$. If L_{1} is a sublattice of L, then it is said to be a subalgebra of L (with respect to \mathcal{D}). A subset $L_{2} \subseteq L$ is convex in L if $z \in L_{2}$, whenever $z_{1}, z_{2} \in L_{2}, x \in L$ and $z_{1} \leqslant x \leqslant z_{2}$.

We denote by $c(L)$ the system of all convex subalgebras of L. Further, let $c^{\prime}(L)=$ $c(L) \cup\{\emptyset\}$. The system $c^{\prime}(L)$ is partially ordered by the set-theoretical inclusion.

Let $\emptyset \neq\left\{L_{i}\right\}_{i \in I} \subseteq c^{\prime}(L)$. Put $L^{1}=\bigcap_{i \in I} L_{i}, L^{2}=\bigcap_{j \in J} L_{j}^{\prime}$, where $\left\{L_{j}^{\prime}\right\}_{j \in J}$ is the system of all upper bounds of $\left\{L_{i}\right\}_{i \in I}$ in $c^{\prime}(L)$. Then L^{1} and L^{2} is the meet and the join, respectively, of the system $\left\{L_{i}\right\}_{i \in I}$ in $c^{\prime}(L)$. Hence $c^{\prime}(L)$ is a complete lattice. We denote $L^{1}=\bigwedge_{i \in I}^{1} L_{i}, L^{2}=\bigvee_{i \in I}^{1} L_{i}$. It is clear that $L^{2} \supseteq \bigcup_{i \in I} L_{i}$.
2.1. Definition. A nonempty class X of distributive lattices is called a radical class (with respect to \mathcal{D}) if it satisfies the following conditions:
(i) X is closed with respect to isomorphisms;
(ii) whenever $L \in X$ and $L_{1} \in c(L)$, then $L_{1} \in X$;
(iii) whenever $L \in \mathcal{D}$ and $\emptyset \neq\left\{L_{i}\right\}_{i \in I} \subseteq c(L) \cap X$, then $\bigvee_{i \in I}^{1} L_{i} \in X$.
2.2. Proposition. Let X be a radical class of distributive lattices (with respect to $\mathcal{D})$. Then $X=\mathcal{D}$.

Proof. There exists $L \in X$. Choose any $x \in L$ and let L_{1} be an arbitrary element of \mathcal{D}. Then $\{x\} \in c(L)$, whence $\{x\} \in X$. Thus all one-element lattices belong to X. Let us express the lattice L_{1} as $L_{1}=\left\{y_{i}\right\}_{i \in I}$. We have $\bigvee_{i \in I}^{1}\left\{y_{i}\right\}=L_{1}$, whence $L_{1} \in X$. Therefore $X=\mathcal{D}$.

Now let us consider the system \mathcal{D}_{0}. Let $L \in \mathcal{D}_{0}$; the least element of L will be denoted by 0_{L} (or by 0 , if no misunderstanding can occur). A sublattice L_{1} of L will be called a subalgebra of L if $0_{L} \in L_{1}$. We denote by $c_{0}(L)$ the system of all convex subalgebras of L; this system is partially ordered by the set-theoretical inclusion.

Similarly as in the case of $c(L)$ for $L \in \mathcal{D}$, we can verify that for each $L \in \mathcal{D}_{0}$, $c_{0}(L)$ is a complete lattice. The lattice operations in $c_{0}(L)$ will be denoted by \wedge^{0} and \vee^{0}. If $\left\{L_{i}\right\}_{i \in I}$ is a nonempty subsystem of $c_{0}(L)$, then $\bigwedge_{i \in I}^{0} L_{i}=\bigcap_{i \in I} L_{i}$.
2.3. Lemma. Let $L \in \mathcal{D}_{0}$ and $\emptyset \neq\left\{L_{i}\right\}_{i \in I} \subseteq c_{0}(L)$. Let Z be the set of all $z \in L$ such that there exist $z_{1}, z_{2}, \ldots, z_{n} \in \bigcup_{i \in I} L_{i}$ with $z=z_{1} \vee z_{2} \vee \ldots \vee z_{n}$. Then $Z=\bigvee_{i \in I}^{0} L_{i}$.

Proof. Let z and z^{\prime} be elements of Z. For z we apply the notation as above; further, let $z^{\prime}=z_{1}^{\prime} \vee z_{2}^{\prime} \vee \ldots \vee z_{m}^{\prime}$ (under analogous assumptions). Then we have

$$
z \vee z^{\prime}=z_{1} \vee \ldots \vee z_{n} \vee z_{1}^{\prime} \vee \ldots \vee z_{m}^{\prime}
$$

whence $z \vee z^{\prime} \in Z$. Further,

$$
z \wedge z^{\prime}=\bigvee\left(z_{k} \wedge z_{j}^{\prime}\right) \quad(k \in\{1,2, \ldots, n\}, j \in\{1,2, \ldots, m\})
$$

For each $k \in\{1,2, \ldots, n\}$ there is $i(k) \in I$ with $z_{k} \in L_{i(k)}$, thus $z_{k} \wedge z_{j}^{\prime} \in L_{i(k)}$ for each $j \in\{1,2, \ldots, m\}$. Therefore $z \wedge z^{\prime} \in Z$ and hence Z is a sublattice of L.

Let $z \in Z, x \in L, x \leqslant z$. Then (under the notation as above)

$$
x=x \wedge z=\left(x \wedge z_{1}\right) \vee \ldots \vee\left(x \wedge z_{n}\right)
$$

yielding that $x \in Z$. Thus Z belongs to $c_{0}(L)$.
Clearly $L_{i} \leqslant Z$ for each $i \in I$. Assume that $Z_{1} \in c_{0}(L)$ and $L_{i} \leqslant Z_{1}$ for each $i \in I$. Let z be as above. Then $z \in Z_{1}$, whence $Z \leqslant Z_{1}$. This shows that Z is the join of the system $\left\{L_{i}\right\}_{i \in I}$ in $c_{0}(L)$.
2.4. Definition. Let X be a nonempty class of lattices belonging to \mathcal{D}_{0}. Assume that X is closed with respect to isomorphisms and that it satisfies the following conditions:
(iio) Whenever $L \in X$ and $L_{1} \in c_{0}(L)$, then $L_{1} \in X$.
(iiio) Whenever $L \in \mathcal{D}_{0}$ and $\left\{L_{i}\right\}_{i \in I} \subseteq c_{0}(L) \cap X$, then $\bigvee_{i \in I}^{0} L_{i} \in X$.
Under these conditions we call X a radical class (in \mathcal{D}_{0}).

In what follows, mainly radical classes in \mathcal{D}_{0} will be considered (thus the words 'in \mathcal{D}_{0} ' will be omitted when no misunderstancing can occur).

We denote by $R\left(\mathcal{D}_{0}\right)$ the collection of all radical classes; for X_{1} and X_{2} belonging to $R\left(\mathcal{D}_{0}\right)$ we put $X_{1} \leqslant X_{2}$ if X_{1} is a subclass of X_{2}. Thus we can consider the partial order \leqslant on $R\left(\mathcal{D}_{0}\right)$. Then we have
2.5. Lemma. \mathcal{D}_{0} is the greatest element of $R\left(\mathcal{D}_{0}\right)$. The class X_{0} consisting of all one-element lattices is the least element of $R\left(\mathcal{D}_{0}\right)$.

Let T be a nonempty subclass of \mathcal{D}_{0} which is closed with respect to isomorphisms. We denote by $c_{0} T$ the class of all lattices L having the property that there exists $L_{1} \in T$ such that $L \in c_{0}\left(L_{1}\right)$.

Further, let $j_{0} T$ be the class of all lattices L which can be written as $L=\bigvee_{i \in I}^{0} L_{i}$, where $L_{i} \in c_{0}(L) \cap T$ for each $i \in I$.

It is obvious that the relations

$$
\begin{equation*}
c_{0} c_{0} T=c_{0} T, \quad j_{0} j_{0} T=j_{0} T \tag{*}
\end{equation*}
$$

are satisfied. Moreover, both $c_{0} T$ and $j_{0} T$ are closed with respect to isomorphisms.
2.6. Lemma. Let T be as above. Then $c_{0} j_{0} c_{0} T=j_{0} c_{0} T$.

Proof. This is an easy consequence of 2.3 .
2.7. Lemma. Let $\emptyset \neq T \subseteq \mathcal{D}_{0}$. Assume that T is closed with respect to isomorphisms.
(i) $j_{0} c_{0} T$ is a radical class.
(ii) If X is a radical class and $T \subseteq X$, then $j_{0} c_{0} T \subseteq X$.

Proof. The class $j_{0} c_{0} T$ is closed with respect to isomorphisms. Thus from (*) and 2.6 we obtain that (i) holds.

Let $T \subseteq X$, where X is a radical class. Then $j_{0} c_{0} T \subseteq j_{0} c_{0} X=X$.
From 2.7 and from the definition 2.4 we conclude
2.8. Theorem. Let X be a subclass of \mathcal{D}_{0} which is closed with respect to isomorphisms. Then the following conditions are equivalent:
(i) $X \in R\left(\mathcal{D}_{0}\right)$.
(ii) There exists $\emptyset \neq T \subseteq \mathcal{D}_{0}$ such that T is closed with respect to isomorphisms and $X=j_{0} c_{0} T$.
2.9. Example. Let T be the class of all chains having the least element. Then $c_{0} j_{0} T$ is a radical class. (E.g., the lattice L on Fig. 1 belongs to $j_{0} c_{0} T$, the lattice dual to L does not belong to $c_{0} j_{0} T$.)

Fig. 1
In view of 2.7 and 2.8 we say that the radical class $j_{0} c_{0} T$ is generated by T.

3. RADICAL MAPPINGS

The notion of radical mapping of lattice ordered groups has been introduced in [5]. Analogously we proceed in the case of elements of \mathcal{D}_{0}.
3.1. Definition. A radical mapping in \mathcal{D}_{0} is defined to be a rule that assigns to each element L of \mathcal{D}_{0} an ideal $L=\varrho L$ of L such that the following conditions are satisfied:
(i) If $L_{1}, L_{2} \in \mathcal{D}_{0}$ and if $\varphi: L_{1} \rightarrow L_{2}$ is an isomorphism, then $\varphi\left(\varrho L_{1}\right)=\varrho \varphi\left(L_{1}\right)$.
(ii) If $L \in \mathcal{D}_{0}$ and $Z \in c_{0}(L)$, then $\varrho Z=Z \cap \varrho L$.

We denote by $R_{1}\left(\mathcal{D}_{0}\right)$ the collection of all radical mappings on \mathcal{D}_{1}. For $\varrho_{1}, \varrho_{2} \in$ $R_{1}\left(\mathcal{D}_{0}\right)$ we put $\varrho_{1} \leqslant \varrho_{2}$ if $\varrho_{1} L \leqslant \varrho_{2} L$ is valid for each $L \in \mathcal{D}_{0}$.
3.2. Lemma. Let $L \in \mathcal{D}_{0}, Z \in c_{0}(L), \emptyset \neq\left\{L_{i}\right\}_{i \in I} \subseteq c_{0}(L)$. Then

$$
Z \wedge^{0}\left(\bigvee_{i \in I}^{0} L_{i}\right)=\bigvee_{i \in I}^{0}\left(Z \wedge^{0} L_{i}\right)
$$

Proof. The relation $Z \wedge^{0}\left(\bigvee_{i \in I}^{0} L_{i}\right) \geqslant \bigvee_{i \in I}^{0}\left(Z \wedge^{0} L_{i}\right)$ is obvious. Let $x \in$ $Z \wedge^{0}\left(\bigvee_{i \in I}^{0} L_{i}\right)$. Hence $x \in Z$ and $x \in \bigvee_{i \in I}^{0} L_{i}$. Thus in view of 2.3 there are $i(1), i(2), \ldots, i(n) \in I$ and $z_{1} \in L_{i(1)}, \ldots, z_{n} \in L_{i(n)}$ such that $x=z_{1} \vee z_{2} \vee \ldots \vee z_{n}$. Then we have

$$
x=x \wedge\left(z_{1} \vee z_{2} \vee \ldots \vee z_{n}\right)=\left(x \wedge z_{1}\right) \vee \ldots \vee\left(z \wedge z_{n}\right)
$$

Clearly $x \wedge z_{1} \in Z \wedge^{0} Z_{i(1)}, \ldots, x \wedge z_{n} \in Z \wedge^{0} Z_{i(n)}$.
By using 2.3 again we conclude that

$$
x \in \bigvee_{i \in I}^{0}\left(Z \wedge L_{i}\right), \quad Z \wedge^{0}\left(\bigvee_{i \in I}^{0} L_{i}\right) \leqslant \bigvee_{i \in I}^{0}\left(Z \wedge^{0} L_{i}\right)
$$

Let $X \in R\left(\mathcal{D}_{0}\right)$. For $L \in \mathcal{D}_{0}$ let $\left\{L_{i}\right\}_{i \in I}$ be the set of all elements of $c_{0}(L)$ which belong to X. We put

$$
\begin{equation*}
\varrho_{X} L=\bigvee_{i \in I}^{0} L_{i} . \tag{1}
\end{equation*}
$$

3.3. Lemma. For each $X \in R\left(\mathcal{D}_{0}\right)$, ϱ_{X} belongs to $R_{1}\left(\mathcal{D}_{0}\right)$.

Proof. a) Let $L \in \mathcal{D}_{0}$. According to the definition of the operation \bigvee^{0}, $\varrho_{X} L$ belongs to $c_{0}(L)$, whence it is an ideal of L.
b) Let $L_{1}, L_{2} \in \mathcal{D}_{0}$ and let $\varphi: L_{1} \rightarrow L_{2}$ be an isomorphism. Let $\left\{L_{i}\right\}_{i \in I}$ be the set of all elements of $c_{0}\left(L_{1}\right)$ which belong to the class X. Then $\left\{\varphi\left(L_{i}\right)\right\}_{i \in I}$ is the set of all elements of $c_{0}\left(L_{2}\right)$ which belong to X. Hence we have $\varphi\left(\varrho_{X} L_{1}\right)=\varrho_{X} \varphi\left(L_{1}\right)$.
c) Let $L \in \mathcal{D}_{0}$ and $Y \in c_{0}(L)$. We have to verify that $\varrho_{X} Z=Z \cap \varrho_{X} L$.

Let $\left\{L_{1}\right\}_{i \in I}$ be as in (1). Further, let $c_{0}(Z) \cap X=\left\{Z_{j}\right\}_{j \in J}$. Thus we have $\varrho_{X} Z=\bigvee_{j \in J}^{0} Z_{j}$.

Assume that $t \in \varrho_{X} Z$. Then in view of 2.3 there are $j(1), j(2), \ldots, j(n)$ in J and $z_{1} \in Z_{j(1)}, \ldots, z_{n} \in Z_{j(n)}$ such that $t=z_{1} \vee z_{2} \vee \ldots \vee z_{n}$. Further, $t \in Z$. There are $i(1), \ldots, i(n) \in I$ such that $Z_{j(1)}=L_{i(1)}, \ldots, Z_{j(n)}=L_{i(n)}$. Thus $t \in \varrho_{X} L$ and $\varrho_{X} Z \subseteq Z \cap \varrho_{X} L$.

Conversely, assume that $p \in Z \cap \varrho_{X} L$. Again, by 2.3 and (1) there are $i(1), \ldots, i(n) \in I$ and $y_{1} \in L_{i(1)}, \ldots, y_{n} \in L_{i(n)}$ such that $p=y_{1} \vee y_{2} \vee \ldots \vee y_{n}$. Thus

$$
p=\left(y_{1} \wedge p\right) \vee\left(y_{2} \wedge p\right) \vee \ldots \vee\left(y_{n} \wedge p\right)
$$

We have $y_{1} \wedge p \in L_{1} \cap Z=L_{1} \wedge^{0} Z$ and analogously for y_{2}, \ldots, y_{n}. Hence

$$
p \in \bigvee_{i \in I}^{0}\left(L_{i} \wedge^{0} Z\right)
$$

Therefore according to 3.2,

$$
p \in\left(\bigvee_{i \in I}^{0} L_{i}\right) \wedge^{0} Z=Z \cap \varrho_{X} L
$$

whence $Z \cap \varrho_{X} L \subseteq \varrho_{X} Z$.

Let $\varrho \in R_{1}\left(\mathcal{D}_{0}\right)$. We denote by X_{ϱ} the class of all $L \in \mathcal{D}_{0}$ such that $\varrho L=L$.
3.4. Lemma. For each $\varrho \in R_{1}\left(\mathcal{D}_{0}\right)$, X_{ϱ} belongs to $R\left(\mathcal{D}_{0}\right)$.

Proof. In view of the condition (i) from 3.1, the class X_{ϱ} is closed with respect to isomorphisms.

Let $L \in X_{\varrho}$ and $L_{1} \in c_{0}(L)$. We have $\varrho L_{1}=L_{1} \cap \varrho L=L_{1} \cap L=L_{1}$, whence $L_{1} \in X_{\varrho}$.

Further, let $L \in \mathcal{D}_{0}$ and $\emptyset \neq\left\{L_{i}\right\}_{i \in I} \subseteq c_{0}(L) \cap X_{\varrho}$. Hence $\varrho L_{i}=L_{i}$ for each $i \in I$.
Put $Z=\bigvee_{i \in I}^{0} L_{i}$. Then $Z \geqslant \varrho Z \geqslant \varrho L_{i}=L_{i}$ for each $i \in I$, therefore

$$
\varrho Z \geqslant \bigvee_{i \in I}^{0} L_{i}=Z
$$

and thus $\varrho Z=Z$. Thus $Z \in X_{\varrho}$, which completes the proof.
From the definitions of ϱ_{X} and X_{ϱ} we immediately obtain
3.5. Lemma. (i) If $X(1), X(2) \in R\left(\mathcal{D}_{0}\right)$ and $X(1) \leqslant X(2)$, then $\varrho_{X(1)} \leqslant \varrho_{X(2)}$.
(ii) If $\varrho(1), \varrho(2) \in R_{1}\left(\mathcal{D}_{0}\right)$ and $\varrho(1) \leqslant \varrho(2)$, then $X_{\varrho(1)} \leqslant X_{\varrho(2)}$.
(iii) If $X(1) \in R\left(\mathcal{D}_{0}\right), \varrho(1) \in R_{1}\left(\mathcal{D}_{0}\right)$ and $\varrho_{X(1)}=\varrho(2), X_{\varrho(1)}=X(2)$, then $X_{\varrho(2)}=X(1), \quad \varrho_{X(2)}=\varrho(1)$.

For $X \in R\left(\mathcal{D}_{0}\right)$ we put $\psi(X)=\varrho_{X}$. In view of $3.3,3.4$ and 3.5 we conclude that
3.6. Proposition. ψ is a bijective mapping of $R\left(\mathcal{D}_{0}\right)$ onto $R_{1}\left(\mathcal{D}_{0}\right)$. Moreover, if $X(1), X(2) \in R\left(\mathcal{D}_{0}\right)$, then

$$
X(1) \leqslant X(2) \Longleftrightarrow \psi(X(1)) \leqslant \psi(X(2))
$$

Let $\left\{\varrho_{i}\right\}_{i \in I}$ be a nonempty subcollection of the collection $R_{1}\left(\mathcal{D}_{0}\right)$. Further, let $L \in \mathcal{D}_{0}$. Consider the subset $\left\{\varrho_{i} L\right\}_{i \in I}$ of the set $c_{0}(L)$. We put

$$
Z^{1}(L)=\bigwedge_{i \in I}^{0} \varrho_{i} L, \quad Z^{2}(L)=\bigvee_{i \in I}^{0} \varrho_{i} L
$$

For each $L \in \mathcal{D}_{0}$ we denote $\varrho^{1} L=Z^{1}(L), \varrho^{2} L=Z^{2}(L)$. Then $\varrho^{1}(L)$ and $\varrho^{2} L$ are elements of $c_{0}(L)$.

Let $L_{1} \in c_{0}(L)$. We have

$$
\begin{aligned}
\varrho^{1} L_{1} & =Z^{1}\left(L_{1}\right)=\bigwedge_{i \in I}^{0} \varrho_{i} L_{1}=\bigwedge_{i \in I}^{0}\left(L_{1} \cap \varrho_{i} L\right) \\
& =\bigwedge_{i \in I}^{0}\left(L_{1} \wedge^{0} \varrho_{i} L\right)=L_{1} \wedge^{0}\left(\bigwedge_{i \in I}^{0} \varrho_{i} L\right)=L_{1} \wedge^{0} \varrho^{1} L=L_{1} \cap \varrho^{1} L
\end{aligned}
$$

Further, 3.2 yields

$$
\begin{aligned}
\varrho^{2} L_{1} & =Z^{2}\left(L_{1}\right)=\bigvee_{i \in I}^{0} \varrho_{i} L_{1}=\bigvee_{i \in I}^{0}\left(L_{1} \cap \varrho_{i} L\right) \\
& =\bigvee_{i \in I}^{0}\left(L_{1} \wedge^{0} \varrho_{i} L\right)=L_{1} \wedge^{0}\left(\bigvee_{i \in I}^{0} \varrho_{i} L\right)=L_{1} \wedge^{0} \varrho^{2} L=L_{1} \cap \varrho^{2} L
\end{aligned}
$$

Therefore we obtain
3.7. Lemma. ϱ^{1} and ϱ^{2} are elements of $R_{1}\left(\mathcal{D}_{0}\right)$.

From the definitions of ϱ^{1}, ϱ^{2} and from 3.7 we infer that
3.8. Proposition. Let $S=\left\{\varrho_{i}\right\}_{i \in I}$ be a nonempty subcollection of the collection $R_{1}\left(\mathcal{D}_{0}\right)$. Further, let ϱ^{1} and ϱ^{2} be as in 3.7. Then ϱ^{1} is the meet of S and ϱ^{2} is the join of S in the partially ordered collection $R_{1}\left(\mathcal{D}_{0}\right)$.

In view of 3.8 we denote $\varrho^{1}=\bigwedge_{i \in I} \varrho_{i}, \varrho^{2}=\bigvee_{i \in I} \varrho_{i}$.
According to 3.2 and 3.8 we have
3.9. Proposition. Let $\left\{\varrho_{i}\right\}_{i \in I}$ be a nonempty subcollection of $R_{1}\left(\mathcal{D}_{0}\right)$ and $\varrho \in R_{1}\left(\mathcal{D}_{0}\right)$. Then

$$
\varrho \wedge\left(\bigvee_{i \in I} \varrho_{i}\right)=\bigvee_{i \in I}\left(\varrho \wedge \varrho_{i}\right)
$$

Now let $S_{1}=\left\{X_{i}\right\}_{i \in I}$ be a nonempty subcollection of $R\left(\mathcal{D}_{0}\right)$ and let ψ be as in 3.6. Put

$$
\begin{aligned}
\varrho^{1} & =\bigwedge_{i \in I} \psi\left(X_{i}\right), & \varrho^{2} & =\bigvee_{i \in I} \psi\left(X_{i}\right) \\
X^{1} & =\psi^{-1}\left(\varrho^{1}\right), & X^{2} & =\psi^{-1}\left(\varrho^{2}\right)
\end{aligned}
$$

Then in view of 3.8 and 3.6 we conclude that X^{1} is the meet of S_{1} in $R\left(\mathcal{D}_{0}\right)$ and, analogously, X^{1} is the join of S_{1} in $R\left(\mathcal{D}_{0}\right)$. Further, a rule analogous to that given in 3.9 is valid in $R\left(\mathcal{D}_{0}\right)$.

4. Generalized Boolean algebras

An element $X \in \mathcal{D}_{0}$ is called a generalized Boolean algebra if for each $x \in X$, the interval $\left[0_{x}, x\right]$ is a Boolean algebra. The collection of all generalized Boolean algebras will be denoted by $\mathcal{A}(\mathcal{B})$.

The notion of a radical class in $\mathcal{A}(\mathcal{B})$ is defined analogously as in the case of \mathcal{D}_{0}.
Let X be a radical class in \mathcal{D}_{0}. If X is closed with respect to homomorphisms, then it is called a torsion class in \mathcal{D}_{0}. This terminology is in accordance with that used in the theory of lattice ordered groups (cf. [20]).

Analogously we define the notion of the torsion class in $\mathcal{A}(\mathcal{B})$.
Torsion classes in \mathcal{D}_{0} have been investigated in the paper [2] with applications in the theory of lattice ordered groups. Let us denote by $T\left(\mathcal{D}_{0}\right)$ the collection of all torsion classes in \mathcal{D}_{0}.
4.1. Theorem. ([2], Theorem 2.3.) The class of generalized Boolean algebras forms a torsion class of distributive lattices with the least element.

In other words, we have $\mathcal{A}(\mathcal{B}) \in T\left(\mathcal{D}_{0}\right)$.
4.2. Corollary. $\mathcal{A}(\mathcal{B}) \in R\left(\mathcal{D}_{0}\right)$.
4.3. Corollary. Each radical class of generalized Boolean algebras (i.e., a radical class in $\mathcal{A}(\mathcal{B})$) is a radical class in \mathcal{D}_{0}.
4.4. Theorem. There exists an injective mapping φ of the class of all infinite cardinals into the collection $R\left(\mathcal{D}_{0}\right)$ such that for each infinite cardinal α and each $L \in \varphi(\alpha)$, the lattice L is conditionally complete.

Proof. This is a consequence of 4.3 and of Theorem 5.1 in [15].
Let α be an infinite cardinal. We denote by $A_{e(\alpha)}$ the class of all generalized Boolean algebras L such that for each interval $\left[a_{1}, a_{2}\right]$ of L the relation card $\left[a_{1}, a_{2}\right] \leqslant$ α is valid.
4.5. Theorem. ([15], Proposition 3.11.) For each infinite cardinal $\alpha, A_{e(\alpha)}$ is a radical class in $\mathcal{A}(\mathcal{B})$.

Then in view of 4.3 we have
4.6. Corollary. For each infinite cardinal $\alpha, A_{e(\alpha)}$ is a radical class in \mathcal{D}_{0}.

Again, let α be an infinite cardinal and let M_{α} be a set of cardinality M_{α}. Let $L\left(M_{\alpha}\right)$ be the system of all subsets M of M_{α} such that either M is finite or the
set $M_{\alpha} \backslash M$ is finite. Further, let $L\left(M_{\alpha}\right)$ be partially ordered by the set-theoretical inclusion. Then $L\left(M_{\alpha}\right)$ is a Boolean algebra with $\operatorname{card} L\left(M_{\alpha}\right)=\alpha$. Hence we have
(i) $L\left(M_{\alpha}\right) \in A_{e(\alpha)}$;
(ii) if $\alpha(1)$ is a cardinal with $\alpha(1)>\alpha$, then $L\left(M_{\alpha(1)}\right) \notin A_{e(\alpha)}$.

Thus $A_{e(\alpha)} \neq \emptyset$ for each infinite cardinal α, and $A_{e(\alpha)} \neq A_{e(\alpha(1))}$ whenever $\alpha(1)>\alpha$.
4.7. Lemma. For each infinite cardinal α, the class $A_{e(\alpha)}$ is closed with respect to homomorphisms.

Proof. Let $L \in A_{e(\alpha)}, L^{\prime} \in \mathcal{D}_{0}$ and let ψ be a homomorphism of L onto L^{\prime}. Let $\left[b_{1}, b_{2}\right]$ be an interval in L^{\prime}. Then there exist $a_{1}, a_{2} \in L$ such that $a_{1} \leqslant a_{2}$ and $\psi\left(\left[a_{1}, a_{2}\right]\right)=\left[b_{1}, b_{2}\right]$. Hence $\operatorname{card}\left[b_{1}, b_{2}\right] \leqslant \operatorname{card}\left[a_{1}, a_{2}\right] \leqslant \alpha$.

Thus in view of 4.6 we have
4.8. Corollary. For each infinite cardinal $\alpha, A_{e(\alpha)}$ is a torsion class in \mathcal{D}_{0}.

According to the properties (i) and (ii) above we conclude
4.9. Theorem. There exists an injective mapping of the class of all infinite cardinals into the collection $T\left(\mathcal{D}_{0}\right)$.

5. The classes C_{α} And C_{α}^{1}

We denote by $R\left(\mathcal{B}_{0}\right)$ the collection of all radical classes of generalized Boolean algebras. We have already observed (see 4.5) that $R\left(\mathcal{B}_{0}\right) \subseteq R\left(\mathcal{D}_{0}\right)$ and from this we deduced that $R\left(\mathcal{D}_{0}\right)$ is a large collection (cf. 4.6). We can ask whether the collection $R\left(\mathcal{D}_{0}\right) \backslash R\left(\mathcal{B}_{0}\right)$ has this property as well.
5.1. Theorem. There exists an injective mapping of the class of all infinite cardinals into the collection $R\left(\mathcal{D}_{0}\right) \backslash R\left(\mathcal{B}_{0}\right)$.

We need some lemmas. The following assertion is obvious.
5.2. Lemma. Let α be an infinite cardinal. Then there exists a linearly ordered set L_{α} such that card $L_{\alpha}=\alpha$.

In what follows, L_{α} is as in 5.2. We have $L_{\alpha} \notin \mathcal{B}_{0}$.
For each infinite cardinal α we denote by C_{α} the class of all lattices $L \in \mathcal{D}_{0}$ such that $\operatorname{card}[0, x] \leqslant \alpha$, whenever $x \in L$.

Let α be a fixed infinite cardinal. From the definition of C_{α} we immediately obtain
5.3. Lemma. C_{α} satisfies the conditions (i) and (ii) from 2.1.
5.4. Lemma. Let $L \in \mathcal{D}_{0}$ and $a, b \in L$. Suppose that $\operatorname{card}[0, a] \leqslant \alpha$ and $\operatorname{card}[0, b] \leqslant \alpha$. Then $\operatorname{card}[0, a \vee b] \leqslant \alpha$.

Proof. For each $x \in[0, a \vee b]$ we put $\varphi(x)=(a \wedge x, b \wedge x)$. In view of the distributivity of L we obtain $x=x \wedge(a \vee b)=(x \wedge a) \vee(x \wedge b)$. Hence if $y \in[0, a \vee b]$ and $\varphi(x)=\varphi(y)$, then $x=y$. Thus φ is an injective mapping of the interval $[0, a \vee b]$ into the Cartesian product $[0, a] \times[0, b]$. Therefore

$$
\operatorname{card}[0, a \vee b] \leqslant \operatorname{card}([0, a] \times[0, b]) \leqslant \alpha \cdot \alpha=\alpha
$$

From 5.4 we obtain by induction
5.5. Lemma. Let $L \in \mathcal{D}_{0}$ and $a_{1}, a_{2}, \ldots, a_{n} \in L$. Suppose that $\operatorname{card}\left[0, a_{i}\right] \leqslant \alpha$ for $i=1,2, \ldots, n$. Put $v=a_{1} \vee a_{2} \vee \ldots \vee a_{n}$. Then $\operatorname{card}[0, v] \leqslant \alpha$.
5.6. Lemma. Let $L \in \mathcal{D}_{0}$ and $\emptyset \neq\left\{L_{i}\right\}_{i \in I} \subseteq c_{0}(L) \cap C_{\alpha}$. Put $L=\bigvee_{i \in I}^{0} L_{i}$. Then $L^{0} \in C_{\alpha}$.

Proof. This is a consequence of 5.5 and 2.3.
Now we apply 5.3 and 5.5 ; since $L_{\alpha} \in C_{\alpha} \backslash \mathcal{B}_{0}$ we conclude
5.7. Lemma. C_{α} belongs to the collection $R\left(\mathcal{D}_{0}\right) \backslash R\left(\mathcal{B}_{0}\right)$.

Proof of 5.1. For each infinite cardinal α we put $f(\alpha)=C_{\alpha}$. If $\alpha(1), \alpha(2)$ are infinite cardinals with $\alpha(1)<\alpha(2)$, then $L_{\alpha(2)} \in C_{\alpha(2)} \backslash C_{\alpha(1)}$, whence $C_{\alpha(2)} \neq C_{\alpha(1)}$. Now it suffices to apply 5.7.

Consider the following condition for a lattice L :
(a) Whenever X is a nonempty upper bounded subset of L with card $X \leqslant \alpha$, then $\sup X$ exists in L.

Further, let (b) be the condition dual to (a). We denote by C_{α}^{a} the class of all lattices which belong to \mathcal{D}_{0} and satisfy the condition (a). Let C_{α}^{b} be defined analogously.
5.8. Lemma. Let $L \in \mathcal{D}_{0}$ and let $a, b \in L, a \vee b=v$. Assume that both $[0, a]$ and $[0, b]$ satisfy the condition (a). Then the interval $[0, v]$ satisfies this condition as well.

Proof. Let $\emptyset \neq X \subseteq[0, v]$, card $X \leqslant \alpha$. For each $x \in X$ we put $x_{1}=x \wedge a$, $x_{2}=x \wedge b$ 。

Further, we set

$$
X_{1}=\left\{x_{1} ; x \in X\right\}, \quad X_{2}=\left\{x_{2} ; x \in X\right\}
$$

Then we have $X_{1} \subseteq[0, a]$, card $X_{1} \leqslant \alpha, X_{2} \subseteq[0, b], \operatorname{card} X_{2} \leqslant \alpha$. Thus, in view of the assumption, there exist $x^{1}=\sup X_{1}, x^{2}=\sup X_{2}$ in L; clearly $x^{1} \in[0, a]$, $x^{2} \in[0, b]$. Put $x^{0}=x^{1} \vee x^{2}$. For each $x \in X$ we have $x=x_{1} \vee x_{2}$, whence $x^{0} \geqslant x$ for each $x \in X$.

Assume that t is an upper bound of the set X. Put $t^{\prime}=t \vee v$ and $t_{1}^{\prime}=t^{\prime} \wedge a$, $t_{2}^{\prime}=t^{\prime} \wedge b$. Then we have $t_{1}^{\prime} \geqslant x_{1}, t_{2}^{\prime} \geqslant x_{2}$ for each $x \in X$, whence $t_{1}^{\prime} \geqslant x^{1}$ and $t_{2}^{\prime} \geqslant x^{2}$. We obtain $t \geqslant t^{\prime}=t_{1}^{\prime} \vee t_{2}^{\prime} \geqslant x^{1} \vee x^{2}=x^{0}$. Therefore $x^{0}=\sup X$ in L.

For the class C_{α}^{a} we can now apply analogous steps as we did for C_{α} above (cf. 5.3, 5.5 and 5.6) with the distinction that instead of 5.4 we use now 5.8 . We obtain
5.9. Proposition. C_{α}^{a} is a radical class in \mathcal{D}_{0}.

Similarly we can verify that C_{α}^{b} is a radical class in \mathcal{D}_{0}.
A lattice L is said to be conditionally α-complete if it satisfies both conditions (a) and (b). We denote by C_{α}^{1} the class of all lattices which belong to \mathcal{D}_{0} and are conditionally α-complete.

From 5.9 and from the analogous result concerning C_{α}^{b} we conclude
5.10. Theorem. For each infinite cardinal α, C_{α}^{1} belongs to $R\left(\mathcal{D}_{0}\right)$.

6. Infinite distributivity

We recall that a lattice L is called infinitely distributive if, whenever $x, y \in L$ and $\emptyset \neq\left\{x_{i}\right\}_{i \in I} \subseteq L$, then
(i) $x=\bigvee_{i \in I} x_{i} \Longrightarrow x \wedge y=\bigvee_{i \in I}\left(x_{i} \wedge y\right)$,
(ii) $x=\bigwedge_{i \in I}^{i \in I} x_{i} \Longrightarrow x \vee y=\bigwedge_{i \in I}^{i \in I}\left(x_{i} \vee y\right)$.

We denote by \mathcal{D}_{1} the class of all lattices L such that L is infinitely distributive and has the least element. Hence \mathcal{D}_{1} is a subclass of \mathcal{D}_{0}.

The question whether the relation $\mathcal{D}_{1} \in R\left(\mathcal{D}_{0}\right)$ is valid remains open.
We define the radical class in \mathcal{D}_{1} analogously as in Definition 2.4 with the distinction that we take \mathcal{D}_{1} instead of \mathcal{D}_{0}. Let $R\left(\mathcal{D}_{1}\right)$ be the collection of all radical classes in \mathcal{D}_{1}.

We start by mentioning the following facts.
A) The results of Section 3 remain valid if \mathcal{D}_{0} is replaced by \mathcal{D}_{1}.
B) It is well-known that every Boolean algebra is infinitely distributive. From this we conclude that the same is valid for generalized Boolean algebras and that $\mathcal{B}_{0} \in R\left(\mathcal{D}_{1}\right), R\left(\mathcal{B}_{0}\right) \subseteq R\left(\mathcal{D}_{1}\right)$.
C) Each linearly ordered set is infinitely distributive. Therefore the results of Section 5 remain valid if we replace \mathcal{D}_{0} by \mathcal{D}_{1}.
Let L be a lattice and let α, β be nonzero cardinals. We say that L satisfies the condition $c_{1}(\alpha, \beta)$ if, whenever $u, v \in L,\left\{x_{i j}\right\}_{i \in I, j \in J} \subseteq L$ such that card $I \leqslant \alpha$, $\operatorname{card} J \leqslant \beta$,

$$
\begin{align*}
v & =\bigwedge_{i \in I} \bigvee_{j \in J} x_{i j} \tag{1}\\
u & =\bigvee_{\varphi \in J^{I}} \bigwedge_{i \in I} x_{i, \varphi(i)} \tag{2}
\end{align*}
$$

then $u=v$.
Further, let $c_{2}(\alpha, \beta)$ be the conditions dual to $c_{1}(\alpha, \beta)$.
The lattice L is called (α, β)-distributive if it satisfies both conditions $c_{1}(\alpha, \beta)$ and $c_{2}(\alpha, \beta)$.

If a lattice L is (α, β)-distributive for all nonzero cardinals α and β, then it is said to be completely distributive.

Let us remark that if (1) and (2) are valid then $u \leqslant v$.
Let $u, v \in L, u<v$. If there exist elements $x_{i j}(i \in I, j \in J)$ such that card $I \leqslant \alpha$, card $J \leqslant \beta$ and the relations (1), (2) are valid, then we say that the pair (u, v) violates the condition $c_{1}(\alpha, \beta)$.
6.1. Lemma. Suppose that L is an infinitely distributive lattice. Let $u, v, u_{1}, v_{1} \in L, u \leqslant u_{1}<v_{1} \leqslant v$. Assume that the pair (u, v) violates the condition $c_{1}(\alpha, \beta)$. Then the pair $\left(u_{1}, v_{1}\right)$ violates this condition as well.

Proof. In view of the assumption we can suppose that the conditions (1), (2) are satisfied and that card $I \leqslant \alpha$, card $J \leqslant \beta$.

Denote $\left(x_{i j} \wedge v_{1}\right) \vee u_{1}=x_{i j}^{\prime}$. We have

$$
\left(v \wedge v_{1}\right) \vee u_{1}=v_{1}, \quad\left(u \wedge v_{1}\right) \vee u_{1}=u_{1}
$$

Hence by applying the infinite distributivity we obtain from (1) and (2) the relations

$$
\begin{align*}
& v_{1}=\bigwedge_{i \in I} \bigvee_{j \in J} x_{i j}^{\prime} \\
& u_{1}=\bigvee_{\varphi \in J^{I}} \bigwedge_{i \in I} x_{i, \varphi(i)}^{\prime}
\end{align*}
$$

Since $u_{1}<v_{1}$, the pair $\left(u_{1}, v_{1}\right)$ violates the condition $c_{1}(\alpha, \beta)$.
If the elements $x_{i j}^{\prime}$ are as above, then we obviously have

$$
x_{i j}^{\prime} \in\left[u_{1}, v_{1}\right] \quad \text { for each } i \in I, j \in J
$$

Hence from (1^{\prime}) and (2^{\prime}) we conclude
6.2. Corollary. Let the assumptions as in 6.1 be valid. Then the lattice $\left[u_{1}, v_{1}\right]$ fails to satisfy the condition $c_{1}(\alpha, \beta)$.
6.3. Lemma. Let $L \in \mathcal{D}_{1}$ and $a, b \in L$. Assume that the intervals $[0, a]$ and $[0, b]$ both satisfy the condition $c_{1}(\alpha, \beta)$. Then the interval $[0, a \vee b]$ satisfies this condition as well.

Proof. By way of contradiction, assume that the interval $[0, a \vee b]$ does not satisfy the condition $c_{1}(\alpha, \beta)$. Then there are elements $u, v \in[0, a \vee b]$ such that $u<v$ and the pair (u, v) violates the condition $c_{1}(\alpha, \beta)$. Put $u_{1}=u \wedge a, u_{2}=u \wedge b$, $v_{1}=v \wedge a, v_{2}=v \wedge b$. Then we have $u_{1} \leqslant v_{1}, u_{2} \leqslant v_{2},\left[u_{1}, v_{1}\right] \subseteq[0, a],\left[u_{2}, v_{2}\right] \subseteq[0, b]$. Further, $u=u_{1} \vee u_{2}, v=v_{1} \vee v_{2}$. If $u_{1}=v_{1}$ and $u_{2}=v_{2}$, then $u=v$, which is a contradiction. Hence without loss of generality we can suppose that $u_{1}<v_{1}$. In view of the distributivity of L, the interval $\left[u_{1}, v_{1}\right]$ is projective to the interval $\left[u, u \vee v_{1}\right.$] and $\left[u, u \vee v_{1}\right] \subseteq[u, v]$. Hence the intervals $\left[u_{1}, v_{1}\right]$ and $\left[u, u \vee v_{1}\right]$ are isomorphic. Thus $u<u \vee v_{1}$. Then in view of 6.2 , the interval $\left[u, u \vee v_{1}\right]$ fails to satisfy the condition $c_{1}(\alpha, \beta)$. This yields that the interval $\left[u, v_{1}\right]$ also fails to satisfy this condition.

On the other hand, $[0, a]$ satisfies the condition $c_{1}(\alpha, \beta)$ and $\left[u_{1}, v_{1}\right]$ is a subinterval of $[0, a]$, thus $\left[u_{1}, v_{1}\right]$ satisfies $c_{1}(\alpha, \beta)$; we have arrived at a contradiction.

Let us denote by $X_{(1, \alpha, \beta)}$ the class of all lattices $L \in \mathcal{D}_{1}$ such that L satisfies the condition $c_{1}(\alpha, \beta)$.
6.4. Theorem. $X_{(1, \alpha, \beta)}$ belongs to the collection $R\left(\mathcal{D}_{1}\right)$.

Proof. It is obvious that $X_{(1, \alpha, \beta)}$ is closed with respect to isomorphisms and with respect to convex subalgebras. Now it suffices to apply $6.3,2.3$ and to use analogous steps as in the proof of 5.7.

Similarly we can deal with the condition $c_{2}(\alpha, \beta)$; we obtain the radical class $X_{(2, \alpha, \beta)}$ in \mathcal{D}_{1}.

Summarizing the results concerning $X_{(1, \alpha, \beta)}$ and $X_{(2, \alpha, \beta)}$ we conclude.
6.5. Theorem. The class $X_{\alpha, \beta}$ of all lattices which belong to \mathcal{D}_{1} and are (α, β)-distributive is a radical class in \mathcal{D}_{1}.
6.6. Corollary. The class of all lattices which are completely distributive and have the least element is a radical class in \mathcal{D}_{1}.

Since each generalized Boolean algebra belongs to $\mathcal{D}_{1}, 6.5$ is a generalization of Proposition 3.9 in [15].

7. Atoms in $R\left(\mathcal{D}_{1}\right)$

The class X_{0} of all one-element lattices is the least element in $R\left(\mathcal{D}_{1}\right)$. Let $X \in$ $R\left(\mathcal{D}_{1}\right)$. Assume that $X \neq X_{0}$ and that, whenever $Y \in R\left(\mathcal{D}_{1}\right)$ and $X_{0}<Y \leqslant X$, then $Y=X$. A radical class X in $R\left(\mathcal{D}_{1}\right)$ having this property will be called an atom in $R\left(\mathcal{D}_{1}\right)$.

Analogously we define an atom in $R\left(\mathcal{D}_{0}\right)$. It is easy to see that each atom in $R\left(\mathcal{D}_{1}\right)$ is, at the same time, an atom in $R\left(\mathcal{D}_{0}\right)$.

In this section we show that there exists a large collection of atoms in $R\left(\mathcal{D}_{1}\right)$.
Let us introduce the following notation. For each infinite cardinal α we denote by $\beta(\alpha)$ the first ordinal whose cardinality is equal to α. We put $\beta^{\prime}(\alpha)=\beta(\alpha) \cup\{0\}$ and we consider 0 to be the greatest element of $\beta^{\prime}(\alpha)$.

Further, let X_{α} be the class of all linearly ordered sets L such that L is dually isomorphic to $\beta^{\prime}(\alpha)$.

From the definition of X_{α} we immediately obtain
7.1. Lemma. Let α be an infinite cardinal. Let $L \in X_{\alpha}$. Then
(i) L is infinitely distributive;
(ii) if $L_{1} \in c_{0}(L)$ and card $L_{1}>1$, then L_{1} is isomorphic to L.

We slightly modify the construction from Section 2 ; instead of \mathcal{D}_{0} we deal with the class \mathcal{D}_{1}.

Let T be a nonempty subclass of \mathcal{D}_{1} which is closed with respect to isomorphisms. We define $c_{0} T$ in the same way as in Section 2; then we have $c_{0} T \subseteq \mathcal{D}_{1}$.

Further, we define $j_{0}^{\prime} T$ to be the class of all lattices $L \in \mathcal{D}_{1}$ which can be expressed in the form $L=\bigvee_{i \in I}^{0} L_{i}$, where $L_{i} \in c_{0}(L) \cap T$ for each $i \in I$.

Similarly as in Section 2 we have (cf. 2.7)
7.2. Lemma. Let $\emptyset \neq T \subseteq \mathcal{D}_{1}$. Assume that T is closed with respect to isomorphisms. Then we have
(i) $j_{0}^{\prime} c_{0} T$ is a radical class in \mathcal{D}_{1}.
(ii) If X is a radical class in \mathcal{D}_{1} and $T \subseteq X$, then $j_{0}^{\prime} c_{0} T \subseteq X$.

Let X_{α} be as above. It is clear that X_{α} is closed with respect to isomorphisms. We put $Y_{\alpha}=j_{0}^{\prime} c_{0} X_{\alpha}$. Then in view of 7.2 we have
7.3. Lemma. Let α be an infinite cardinal. Then $Y_{\alpha} \in R\left(\mathcal{D}_{1}\right)$.
7.4. Lemma. For each infinite cardinal α, Y_{α} is an atom in $R\left(\mathcal{D}_{1}\right)$.

Proof. Since the lattice dual to $\beta^{\prime}(\alpha)$ belongs to Y_{α} we infer that $Y_{\alpha} \neq X_{0}$.
Let $Y \in R\left(\mathcal{D}_{1}\right), X_{0}<Y \leqslant Y_{\alpha}$. Hence there exists $L \in Y$ with card $Y>1$. Then $L \in j_{0}^{\prime} c_{0} X_{\alpha}$. Thus there exists a system $\emptyset \neq\left\{L_{i}\right\}_{i \in I} \subseteq\left(c_{0} X_{\alpha}\right) \cap c_{0}(L)$ such that $L=\bigvee_{i \in I}^{0} L_{i}$. Without loss of generality we can suppose that $\operatorname{card} L_{i}>1$ for each $i \in I$. Then according to $7.1, L_{i}$ is dually isomorphic to $\beta^{\prime}(\alpha)$ for each $i \in I$. Thus $X_{\alpha} \subseteq Y$, whence $Y_{\alpha}=j_{0}^{\prime} c_{0} X_{\alpha} \subseteq j_{0}^{\prime} c_{0} Y=T$. Therefore $Y=Y_{\alpha}$.

Put $f(\alpha)=Y_{\alpha}$. If $\alpha(1)$ and $\alpha(2)$ are distinct infinite cardinals, then clearly $Y_{\alpha(1)} \neq Y_{\alpha(2)}$. Hence from 7.4 we conclude
7.5. Theorem. f is an injective mapping of the class of all infinite cardinals into the collection of all atoms of $R\left(\mathcal{D}_{1}\right)$.
[1] P. Conrad: K-radical classes of lattice ordered groups. Algebra, Proc. Conf. Carbondale (1980), Lecture Notes Math. vol. 848, 1981, pp. 186-207.
[2] P.F. Conrad, M. R. Darnel: Generalized Boolean algebras in lattice ordered groups. Order 14 (1998), 295-319.
[3] Dao-Rong Ton: Product radical classes of ℓ-groups. Czechoslovak Math. J. 42 (1992), 129-142.
[4] M. Darnel: Closure operations on radicals of lattice ordered groups. Czechoslovak Math. J. 37 (1987), 51-64.
[5] J. Jakubik: Radical mappings and radical classes of lattice ordered groups. Symposia Math. vol. 21, Academic Press, New York, 1977, pp. 451-477.
[6] J. Jakubik: Products of radical classes of lattice ordered groups. Acta Math. Univ. Comen. 39 (1980), 31-41.
[7] J. Jakubik: On K-radicals of lattice ordered groups. Czechoslovak Math. J. 33 (1983), 149-163.
[8] J. Jakubik: On radical classes of abelian linearly ordered groups. Math. Slovaca 35 (1985), 141-154.
[9] J. Jakubik: Radical subgroups of lattice ordered groups. Czechoslovak Math. J. 36 (1986), 285-297.
[10] J. Jakubik: Closure operators on the lattice of radical classes of lattice ordered groups. Czechoslovak Math. J. 38 (1988), 71-77.
[11] J. Jakubik: K-radical classes of abelian linearly ordered groups. Math. Slovaca (1988), 33-44.
[12] J. Jakubik: On a radical class of lattice ordered groups. Czechoslovak Math. J. 39 (1989), 641-643.
[13] J. Jakubik: On torsion classes generated by radical classes of lattice ordered groups. Archivum Math. 26 (1990), 115-119.
[14] J. Jakubik: Closed convex ℓ-subgroups and radical classes of convergence ℓ-groups. Math. Bohem. 122 (1997), 301-315.
[15] J. Jakubik: Radical classes of generalized Boolean algebras. Czechoslovak Math. J. 48 (1998), 253-268.
[16] J. Jakubik: Radical classes of $M V$-algebras. Czechoslovak Math. J. 49 (1999), 191-211.
[17] J. Jakubik: Radical classes of complete lattice ordered groups. Czechoslovak Math. J. 49 (1999), 417-424.
[18] J. Jakubik, G. Pringerová: Radical classes of cyclically ordered groups. Math. Slovaca 38 (1998), 255-268.
[19] V. M. Kopytov, N. Ya. Medvedev: The Theory of Lattice-Ordered Groups. Kluwer Academic Publishers, Dordrecht, 1994.
[20] J. Martinez: Torsion theory for lattice-ordered groups. Czechoslovak Math. J. 25, 284-299.
[21] N. Ya. Medvedev: On the lattice of radicals of a finitely generated ℓ-group. Math. Slovaca 33 (1983), 185-188. (In Russian.)

Author's address: Ján Jakubik, Matematický ústav SAV, Grešákova 6, 0401 Košice, Slovakia, e-mail: musavke@saske.sk.

