
131 (2006) MATHEMATICA BOHEMICA No. 1, 95–104

NON-SINGULAR COVERS OVER ORDERED MONOID RINGS
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Abstract. Let G be a multiplicative monoid. If RG is a non-singular ring such that the
class of all non-singular RG-modules is a cover class, then the class of all non-singular R-
modules is a cover class. These two conditions are equivalent whenever G is a well-ordered
cancellative monoid such that for all elements g, h ∈ G with g < h there is l ∈ G such
that lg = h. For a totally ordered cancellative monoid the equalities Z(RG) = Z(R)G and
σ(RG) = σ(R)G hold, σ being Goldie’s torsion theory.
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In what follows, R stands for an associative ring with the identity element and

R-mod denotes the category of all unitary left R-modules. If G is a multiplicative

monoid with the unit e, then RG will denote the monoid ring over R consisting

of all elements of the form
n
∑

i=1

rigi with ri ∈ R, gi ∈ G, i = 1, . . . , n, where the

addition is given naturally and the multiplication is given by
( n

∑

i=1

rigi

)( m
∑

j=1

sjhj

)

=

n
∑

i=1

m
∑

j=1

risjgihj . Recall, that a monoid G is called left cancellative if for any three

elements h, g1, g2 ∈ G the equality hg1 = hg2 implies that g1 = g2. The right

cancellative monoid is defined similarly and G is called cancellative if it is both left

and right cancellative. The basic properties of rings and modules can be found in [1].

A class G of modules is called abstract, if it is closed under isomorphic copies.

Recall that a hereditary torsion theory τR = (Tτ , Fτ ), or simply τ = (T , F ), for
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the category R-mod consists of two abstract classes T and F , the τ -torsion class

and the τ -torsionfree class, respectively, such that Hom (T, F ) = 0 whenever T ∈ T

and F ∈ F , the class T is closed under submodules, factor-modules, extensions

and arbitrary direct sums, the class F is closed under submodules, extensions and

arbitrary direct products and for each module M there exists a short exact sequence

0 → T → M → F → 0 such that T ∈ T and F ∈ F . It is easy to see that every

moduleM contains the unique largest τ -torsion submodule (isomorphic to T ), which

is called the τ -torsion part of the module M and it is usually denoted by τ(M). A

submodule K of a moduleM is τ -dense inM if the factor-moduleM/K is τ -torsion.

Associated to each hereditary torsion theory τ is the Gabriel filter Lτ (or simply L )

of left ideals of R consisting of all the left ideals I 6 R such that R/I ∈ T . Recall

that τ is said to be of finite type, if L contains a cofinal subset of finitely generated

left ideals, i.e. if every element of L contains a finitely generated left ideal of R lying

in L .

For a module M , a submodule K is called essential in M , K 6′ M in short, if

K ∩ L 6= 0 for each non-zero submodule L of M and the singular submodule Z(M)

consists of all elements a ∈ M , the annihilator left ideal (0 : a)R = {r ∈ R ; ra =

0}, or simply (0 : a), of which is essential in R. Goldie’s torsion theory for the

category R-mod is the hereditary torsion theory σ = (T , F ), where T = {M ∈

R-mod ; Z(M/Z(M)) = M/Z(M)} and F = {M ∈ R-mod ; Z(M) = 0}. Note,

that throughout this paper the letter σ will always denote Goldie’s torsion theory

and that the modules from the class Fσ are usually called non-singular modules. A

ring R is said to be (left) non-singular if it is non-singular as a left R-module. For

more details on torsion theories we refer to [10] or [9].

If G is an abstract class of modules, then a homomorphism ϕ : G → M with G ∈ G

is called a G -precover of the module M , if for each homomorphism f : F → M with

F ∈ G there exists a homomorphism g : F → G such that ϕg = f . A G -precover

ϕ of M is said to be a G -cover, if every endomorphism f of G with ϕf = ϕ is an

automorphism of the module G. An abstract class G of modules is called a precover

(cover) class, if every module has a G -precover (G -cover). A more detailed study of

precovers and covers can be found in [14].

Recently, in [4; Corollary 3], it has been proved that for each hereditary tor-

sion theory τ with τ > σ in the usual sense that Tσ ⊆ Tτ the class of all

τ -torsionfree modules is a precover class if and only if it is a cover class and

these conditions are satisfied exactly when the torsion theory τ is of finite type.

Moreover, one of the main results in [5] states that these conditions are equiv-

alent for Goldie’s torsion theory for all members of the countable set M =

{R, R/σ(R), R[x1, . . . , xn], R[x1, . . . , xn]/σ(R[x1, . . . , xn]), n < ω} of rings whenever

they are equivalent for an arbitrary member of this set.
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The purpose of this note is to study some relations between the class of non-

singular modules in the category R-mod and that in the category RG-mod, G being

a multiplicative monoid. Especially, in Corollary 15 we shall obtain a direct general-

ization of [5; Theorem 16] dealing with the polynomial rings. The main result may

be concentrate in the following Theorem.

Theorem. Let G be a monoid and let R be an arbitrary ring. Then

(i) if RG is a non-singular ring and the class of all non-singular RG-modules is a

cover class, then the class of all non-singular R-modules is a cover class;

(ii) if G is a totally ordered and cancellative monoid, then the equalities Z(RG) =

Z(R)G and σ(RG) = σ(R)G hold;

(iii) if G is a well-ordered cancellative monoid such that for all elements g, h ∈ G

with g < h there is l ∈ G such that lg = h, then the class of all non-singular

R-modules is a cover class if and only if the class of all non-singular RG-modules

is a cover class.

���������
. With respect to [4; Corollary 3] it suffices to apply the following Theo-

rems 8, 11 and 14, respectively. �

Now we are ready to start our investigations.

Lemma 1. If every essential left ideal of the ring R contains a σ-dense finitely

generated left ideal, then every left ideal of R contains a σ-dense finitely generated

left ideal.

���������
. Let 0 6= I 6 R be an arbitrary non-essential left ideal of the ring R

and let J 6 R be a left ideal of R maximal with respect to I ∩ J = 0. Then I ⊕ J

is essential in R and consequently the hypothesis yields the existence of a finitely

generated left ideal K =
n
∑

i=1

Rai which is σ-dense in I ⊕ J and hence in R. Now

ai = bi + ci, bi ∈ I , ci ∈ J , i = 1, . . . , n, and it remains to show that the left

ideal L =
n
∑

i=1

Rbi is σ-dense in I . If s ∈ I and r ∈ (K : s) are arbitrary elements

then rs =
n
∑

i=1

ribi +
n
∑

i=1

rici for suitable elements r1, . . . , rn, r ∈ R and consequently

rs =
n
∑

i=1

ribi ∈ L. Thus (K : s) ⊆ (L : s) and so (L : s) ∈ L , showing that L is

σ-dense in I . �

Lemma 2. The following conditions are equivalent for Goldie’s torsion theory

σ for the category R-mod:

(i) σ is of finite type;
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(ii) every left ideal of R contains a σ-dense finitely generated left ideal;

(iii) every essential left ideal of R contains a σ-dense finitely generated left ideal;

(iv) every non-singular left ideal of R essentially contains a finitely generated left

ideal.

���������
. Obviously, (iii) follows from (ii) trivially, while the converse follows

from Lemma 1. Further, if (i) holds then especially (iii) holds and (i) follows from

(ii) trivially.

(ii) implies (iv). Let I 6 R be a non-singular left ideal of R. By the hypothesis

there is a finitely generated left ideal K of R which is σ-dense in I . Let J 6 I be a

left ideal maximal with respect to K ∩ J = 0. Then J ∼= (J ⊕ K)/K ∈ T ∩ F = 0

and so K is essential in I .

(iv) implies (iii). Let I be an essential left ideal of R and let J 6 I be maximal

with respect to (I ∩ σ(R)) ∩ J = 0. For J = 0 we see that I ∩ σ(R) and hence σ(R)

is essential in R and the assertion is trivial. In the opposite case J is a non-singular

left ideal of R and consequently there is a finitely generated left ideal K of R which

is essential in J . Summarizing we have K ⊆ J ⊆ J ⊕ (I ∩ σ(R)) ⊆ I where all the

inclusions are obviously σ-dense and we are through. �

Lemma 3. Let G be a monoid and let 0 6= a ∈ R be an arbitrary element. Then

(0 : a)RG = RG(0 : a)R = (0 : a)RG.

���������
. For the sake of simplicity we shall denote by I the left annihilator ideal

(0 : a)R of a in R and by J the left annihilator ideal (0 : a)RG of a in RG. For

any element u =
n
∑

i=1

rigi ∈ RG and any r ∈ I we have ra = 0, hence 0 = ura =

n
∑

i=1

(rira)gi, which proves the inclusion RGI ⊆ J . Conversely, let u =
n
∑

i=1

rigi ∈ J

be an arbitrary element. Then 0 = ua =
n
∑

i=1

(ria)gi yields ria = 0 and consequently

ri ∈ I for each i = 1, . . . , n. But this means that u =
n
∑

i=1

rigi ∈ RGI and the proof

is complete, the rest being obvious. �

Lemma 4. Let G be a monoid and let I 6 R be an essential left ideal of the

ring R. Then J = IG = RGI is an essential left ideal of the ring RG. Especially, if

the left annihilator ideal (0 : a)R of an element 0 6= a ∈ R is essential in R, then the

left annihilator ideal (0 : a)RG of a is essential in RG.

���������
. Let u =

n
∑

i=1

rigi be an arbitrary element of the ring RG with ri 6= 0,

i = 1, . . . , n, which does not belong to J . If r1 ∈ I then we put s1 = 1, while in
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the opposite case there is an element s1 ∈ R such that 0 6= s1r1 ∈ I . Continuing by

the induction let us assume that the elements s1, . . . , sm ∈ R, 1 6 m < n, such that

sm . . . s1ri ∈ I for all i = 1, . . . , m, and such that at least one of these elements is

non-zero, have been already constructed. If sm . . . s1rm+1 ∈ I then we put sm+1 = 1

and we shall find sm+1 ∈ R such that 0 6= sm+1sm . . . s1rm+1 ∈ I in the opposite

case. It is clear now, that after n steps we obtain a non-zero multiple ru which lies

in J . The special statement now immediately follows from Lemma 3. �

Lemma 5. Let G be a monoid. If I is a left ideal of the ring R such that the

left ideal J = RGI is essential in RG, then I is essential in R.

���������
. Let 0 6= r ∈ R be an arbitrary element. Then r = re ∈ RG and

consequently there is an element u =
n
∑

i=1

rigi ∈ RG such that 0 6= ur ∈ J . Thus

there is a non-zero coefficient rir of ur, which obviously lies in I and the proof is

complete. �

Proposition 6. If G is a monoid, then the inclusions Z(R)G ⊆ Z(RG) and

σ(R)G ⊆ σ(RG) hold. Especially, if the ring RG is non-singular, then so is R.

���������
. If u =

n
∑

i=1

rigi is an element of Z(R)G, then (0 : ri) is essential

in R for each i = 1, . . . , n and consequently the intersection I =
n
⋂

i=1

(0 : ri) is

essential in R. By Lemma 4 the left ideal IG is essential in RG and the obvious

inclusion IG ⊆ (0 : u) yields that u ∈ Z(RG), as we wished to show. So, let

u =
n
∑

i=1

rigi ∈ σ(R)G be arbitrary. Then (Z(R) : ri) 6′ R for each i = 1, . . . , n and

consequently I =
n
⋂

i=1

(Z(R) : ri) is essential in R. By Lemma 4 the left ideal IG is

essential in RG. For an arbitrary element v =
m
∑

j=1

sjhj ∈ IG we have sj ∈ I and

consequently sjri ∈ Z(R) for all relevant indices i and j. Thus vu ∈ Z(R)G and so

v ∈ (Z(R)G : u). This means that IG ⊆ (Z(R)G : u) ⊆ (Z(RG) : u), consequently

u ∈ σ(RG) and the inclusion σ(R)G ⊆ σ(RG) is verified. The rest is now clear. �

Lemma 7. Let G be a monoid. If I is a left ideal of the ring R such that the

left ideal J = RGI essentially contains a finitely generated left ideal of RG, then I

essentially contains a finitely generated left ideal of the ring R.

���������
. By the hypothesis the left ideal J contains a finitely generated left

ideal K =
n
∑

i=1

RGui, which is essential in J . So, we can write ui =
m
∑

j=1

rijgj for each

99



i = 1, . . . , n, where some coefficients may be zero. Now we put L =
n
∑

i=1

m
∑

j=1

Rrij and

we are going to verify that L is essential in I . If r ∈ I\L is an arbitrary element, then

especially r ∈ J = RGI and consequently 0 6= ur ∈ K for some element u ∈ RG.

Thus ur =
n
∑

i=1

viui for suitable elements vi ∈ RG, i = 1, . . . , n. Now it is clear that

any non-zero coefficient of ur is a left multiple of r and it lies in L. �

Theorem 8. Let G be a monoid and let RG be a non-singular ring. If Goldie’s

torsion theory for the category RG-mod is of finite type, then Goldie’s torsion theory

for the category R-mod is of finite type, too.

���������
. Since R is non-singular by Proposition 6, the Gabriel filter of Goldie’s

torsion theory for the category R-mod consists of essential left ideals, only. So, let

I be an arbitrary essential left ideal of the ring R. Then the left ideal J = RGI

is essential in RG by Lemma 4 and consequently it essentially contains a finitely

generated left ideal of the ring RG by the hypothesis. An application of Lemma 7

yields the existence of a finitely generated left ideal of R, which is essential in I and

the proof is therefore complete. �

�	��
��
������
. Let G be a totally ordered monoid. If J is a left ideal of the ring RG

then we denote by J [g] the set of all coefficients at the element g ∈ G of all elements

u ∈ J of the form u =
n
∑

i=1

rigi, where g = g1 > . . . > gn. Note, that this notation is

the same as that in [5] which works with “leading” coefficients of the polynomials.

Lemma 9. Let G be a totally ordered monoid, let J be a left ideal of the ring

RG and let g, h ∈ G be arbitrary elements. Then J [g] is a left ideal of R and if G

satisfies the left cancellation law, then J [g] ⊆ J [hg].

���������
. If a, b ∈ J [g] and r ∈ R are arbitrary elements, then there are elements

u = ag +
n
∑

i=1

aigi and v = bg +
m
∑

j=1

bjhj from J such that g > g1 > . . . > gn

and g > h1 > . . . > hm. So, u − v = (a − b)g +
n
∑

i=1

aigi −
m
∑

j=1

bjhj ∈ J , ru =

rag +
n
∑

i=1

raigi ∈ J and consequently a− b, ra ∈ J [g], showing that J [g] is a left ideal

of R. Further, hu = ahg +
n
∑

i=1

aihgi, which yields that a ∈ J [hg] in view of the fact

that hg > hg1 > . . . > hgn by the left cancellation law for the monoid G. �
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Lemma 10. Let G be a totally ordered cancellative monoid and let u =
n
∑

k=1

rkgk

be a non-zero element of the ring RG such that g1 > . . . > gn and rk 6= 0 for each

k = 1, . . . , n. If K is a left ideal of the ring R such that the left ideal J = (RGK : u)

is essential in RG, then the left ideal I = (K : r1) is essential in R.

���������
. Proving indirectly let us suppose that there exists a non-zero left ideal

L of R such that L∩I = 0. Now RGL is a non-zero left ideal of RG and we are going

to show that RGL∩ J = 0. Assume, on the contrary, that v =
m
∑

l=1

slhl is a non-zero

element of RGL∩ J such that h1 > . . . > hm and sl 6= 0 for each l = 1, . . . , m. Note

that hjg1 > hjgi by the left cancellation law and h1gi > hjgi by the right cancellation

law. Thus h1g1 > hjgi for all j = 1, . . . , m and i = 1, . . . , n, where at least one of the

indices i, j is different from 1. Now v ∈ J yields vu =
n
∑

k=1

m
∑

l=1

slrkhlgk ∈ RGK and

consequently s1r1 ∈ K. On the other hand, 0 6= s1 ∈ L means that s1 /∈ I , hence

s1r1 /∈ K, which is a contradiction finishing the proof. �

Theorem 11. If G is a totally ordered cancellative monoid, then the equalities

Z(RG) = Z(R)G and σ(RG) = σ(R)G hold. Especially, a ring R is non-singular if

and only if the ring RG is so.

���������
. We start with the equality Z(RG) = Z(R)G. The inclusion Z(R)G ⊆

Z(RG) holds by Proposition 6. In order to prove the converse let u =
n
∑

k=1

rkgk ∈

Z(RG) be an arbitrary non-zero element such that g1 > . . . > gn and rk 6= 0 for

each k = 1, . . . , n. Then (0 : u) 6′ RG and so (0 : r1) 6′ R by Lemma 10. Hence

r1 ∈ Z(R) yields that r1g1 ∈ Z(R)G ⊆ Z(RG). Thus u − r1g1 ∈ Z(RG) and

continuing by the induction we finally obtain that u =
n
∑

k=1

rkgk ∈ Z(R)G, as we

wished to show.

Now we are going to prove the second equality in the similar way. By Proposition 6

we know that σ(R)G ⊆ σ(RG). Thus, let 0 6= u =
n
∑

k=1

rkgk be an arbitrary element of

σ(RG) such that g1 > . . . > gn and rk 6= 0 for each k = 1, . . . , n. Then (Z(RG) : u)

is essential in RG and so the left annihilator ideal (Z(R) : r1) is essential in R by

Lemma 10 in view of the equality Z(RG) = Z(R)G proved in the first part of the

proof. Thus r1 ∈ σ(R) gives that r1g1 ∈ σ(R)G ⊆ σ(RG). From this we infer that

u − r1g1 ∈ σ(RG) and we can proceed by the induction. Finally we obtain that

u =
n
∑

k=1

rkgk ∈ σ(R)G, as required. The rest is now obvious. �
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Corollary 12. Let G be a totally ordered cancellative monoid and let u =
n
∑

k=1

rkgk be a non-zero element of the ring RG. If the left annihilator ideal (0 : u) is

essential in RG then the intersection
n
⋂

k=1

(0 : rk) is essential in R.

���������
. Without loss of generality we may assume that g1 > . . . > gn. In the

proof of Theorem 11 we have shown that (0 : r1) 6′ R and that u − r1g1 ∈ Z(RG).

Continuing by the induction we shall obtain that (0 : rk) 6′ R for each k = 1, . . . , n,

from which the assertion follows immediately. �

Lemma 13. Let G be a well-ordered cancellative monoid such that for all

g, h ∈ G with g < h there is l ∈ G such that lg = h. If every essential left ideal of

a non-singular ring R essentially contains a finitely generated left ideal, then every

essential left ideal of the ring RG essentially contains a finitely generated left ideal.

���������
. Let J be an essential left ideal of the ring RG. It follows immediately

from Lemma 9 that the set {J [g] ; g ∈ G} is ordered by the inclusion. Note, that

G has not the largest element. Clearly, if h ∈ G is such that g 6 h for each g ∈ G,

then for g < h there is l ∈ G with lg = h. But then the left cancellation law

gives h = lg < lh 6 h, which is impossible. Let g0 ∈ G be the smallest element

in the well-order on G. If J [g0] is not essential in J [h] for each h ∈ G, then let

g1 ∈ G be the first element of G such that J [g0] is not essential in J [g1]. Continuing

by the induction, after a finite number of steps we shall come to J [gk] which is

essential in J [h] for each h > gk. Clearly, in the opposite case we shall construct an

infinite sequence g0 < g1 < . . . of elements of G such that J [gi] is not essential in

J [gi+1] for each i < ω. Thus there is a non-zero left ideal Li 6 J [gi+1] such that

J [gi] ∩ Li = 0 and so we obtain an infinite direct sum
⊕

i<ω

Li of σ-torsionfree left

ideals of the ring R. Since Goldie’s torsion theory σ for the category R-mod is of

finite type by the hypothesis and Lemma 2, we shall come to a contradiction with

[13; Theorem 2.1] stating that σ is of finite type if and only if R contains no infinite

direct sum of σ-torsionfree left ideals. We have proved the existence of an element

g ∈ G such that the left ideal J [g] is essential in R and consequently it essentially

contains a finitely generated left ideal K =
r
∑

i=1

Rai. Now for each ai there is an

element ui = aig +
s

∑

j=1

bijgj ∈ J such that g > g1 > . . . > gs and some coefficients

may be zero. Now we put L =
r
∑

i=1

RGui and we are going to show that L is essential

in J . So, let u =
s

∑

i=1

bihi be an element of J such that h1 < . . . < hs. If hs < g

and if l′ ∈ G is such that g = l′hs then we can take l′u instead of u and so we may
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assume that hs > g. Then there is l ∈ G such that hs = lg and taking an element

t ∈ (K : bs) \ (0 : bs) we have 0 6= tbs =
r
∑

i=1

tiai and consequently the coefficient of

the element tu − l
r

∑

i=1

tiui at hs is equal to tbs −
r

∑

i=1

tiai = 0. Thus we have shown

that tu + us =
m
∑

j=1

cjkj , where k1 < . . . < km < hs, us ∈ L and tu is non-zero. Now

we can proceed by the induction. Since G is well-ordered, after a finite number of

steps we have to come to zero, from which it immediately follows the existence of a

non-zero multiple of u belonging to L and the proof is complete. �

Theorem 14. Let G be a well-ordered cancellative monoid such that for all

elements g, h ∈ G with g < h there is l ∈ G such that lg = h. Then Goldie’s torsion

theory for the category R-mod is of finite type if and only if Goldie’s torsion theory

for the category RG-mod is of finite type.

���������
. By [5; Theorem 5] Goldie’s torsion theory σ for the category R-mod is

of finite type if and only if Goldie’s torsion theory for the category R/σ(R)-mod is of

finite type. By Theorem 11 we have σ(RG) = σ(R)G from which we easily obtain the

ring isomorphism (R/σ(R))G ∼= RG/σ(RG). So, if Goldie’s torsion theory for the

category RG-mod is of finite type, then so is that for the category RG/σ(RG)-mod

and consequently that for the category R/σ(R)-mod by Theorem 8. Conversely, if

Goldie’s torsion theory for the category R-mod is of finite type then so is that for the

category R/σ(R)-mod by [5; Theorem 5] and so that for the category RG/σ(RG)-

mod by Lemma 13. Now it remains to use [5; Theorem 5] again. �

Corollary 15. If G is an infinite cyclic monoid then Goldie’s torsion theory for

the category R-mod is of finite type if and only if Goldie’s torsion theory for the

category RG-mod is of finite type.

���������
. Obvious. �

�	��
��
. It is clear that Theorem 14 holds once we replace the well-order on G into

an inverse well-order on G, i.e. into a total order satisfying the maximum condition.

Moreover, Corollary 15 says that Goldie’s torsion theory for the category R-mod is

of finite type if and only if Goldie’s torsion theory for the category R[x]-mod is of

finite type and consequently Theorem 14 generalizes [5; Theorem 16].
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