MATHEMATICA BOHEMICA, Vol. 131, No. 3, pp. 233-260 (2006)

The Henstock-Kurzweil approach to Young integrals with integrators in $\BV _\phi $

Boonpogkrong Varayu, Tuan Seng Chew

Boonpogkrong Varayu, Tuan Seng Chew, Department of Mathematics, National University of Singapore, 2, Science Drive 2, Singapore 117542, Republic of Singapore, e-mail: matcts@nus.edu.sg

Abstract: In 1938, L. C. Young proved that the Moore-Pollard-Stieltjes integral $\int _a^bf\dd g$ exists if $f\in \BV _\phi [a,b]$, $g\in \BV _\psi [a,b]$ and $\sum _{n=1}^\infty \phi ^{-1}({1}/{n})\psi ^{-1} ({1}/{n})<\infty $. In this note we use the Henstock-Kurzweil approach to handle the above integral defined by Young.

Keywords: Henstock integral, Stieltjes integral, Young integral, $\phi $-variation

Classification (MSC2000): 26A21, 28B15

Full text of the article:


[Previous Article] [Next Article] [Contents of this Number] [Journals Homepage]
© 2006–2010 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition