CHOVER-TYPE LAWS OF THE ITERATED LOGARITHM FOR WEIGHTED SUMS OF NA SEQUENCES

Guang-hui Cai, Hangzhou

(Received August 17, 2005)

Abstract

To derive a Baum-Katz type result, a Chover-type law of the iterated logarithm is established for weighted sums of negatively associated (NA) and identically distributed random variables with a distribution in the domain of a stable law in this paper.

Keywords: negatively associated sequence, laws of the iterated logarithm, weighted sum, stable law, Rosental type maximal inequality
MSC 2000: 60F15, 62G50

1. Introduction

Let $\left\{X_{j}, j \geqslant 1\right\}$ are independently identically distributed (i.i.d.) with symmetric stable distributions. And let these distributions belong to the domain of normal attraction and non-degeneration. So, their characteristic functions are of the forms:

$$
\mathrm{E} \exp \left(\mathrm{i} t X_{j}\right)=\exp \left(-|t|^{\alpha}\right), t \in \mathbb{R}, j \geqslant 1 .
$$

Chover (1966) has obtained that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left(n^{-1 / \alpha}\left|\sum_{j=1}^{n} X_{j}\right|\right)^{1 / \log \log n}=\mathrm{e}^{1 / \alpha} \text { a.s. } \tag{1.1}
\end{equation*}
$$

We call it Chover-type LIL (Laws of the iterated logarithm). This type of LIL has been shown by Vasudeva and Divanji [11], Zinchenko [13] for delayed sums, by Chen and Huang [2] for geometric weighted sums, and by Chen [1] for weighted sums. Note that Qi and Cheng [9] extended the Chover-type law of the iterated logarithm for the partial sums to the case when the underlying distribution is in the domain of attraction of a non-symmetric stable distribution (see below for details).

Let L_{α} denote a stable distribution with exponent $\alpha \in(0,2)$. Recall that the distribution of X is said to be in the domain of attraction of L_{α} if there exist constants $A_{n} \in \mathbb{R}$ and $B_{n}>0$ such that

$$
\begin{equation*}
\frac{\sum_{j=1}^{n} X_{j}-A_{n}}{B_{n}} \xrightarrow{d} L_{\alpha} . \tag{1.2}
\end{equation*}
$$

Assuming (1.2), Qi and Cheng (1996) and Peng and Qi (2003) showed that

$$
\limsup _{n \rightarrow \infty}\left(B_{n}^{-1}\left|\sum_{j=1}^{n} X_{j}-A_{n}\right|\right)^{1 / \log \log n}=\mathrm{e}^{1 / \alpha} \text { a.s. }
$$

It is well known that (1.2) holds if and only if

$$
\begin{equation*}
1-F(x)=\frac{C_{1}(x) l(x)}{x^{\alpha}}, F(-x)=\frac{C_{2}(x) l(x)}{x^{\alpha}}, x>0 \tag{1.3}
\end{equation*}
$$

where $F(x)$ denotes a stable distribution with exponent $\alpha \in(0,2)$ for $x>0$, $C_{i}(x) \geqslant 0, \lim _{x \rightarrow \infty} C_{i}(x)=C_{i}, i=1,2, C_{1}+C_{2}>0$, and $l(x) \geqslant 0$ is a slowly varying in the sense of Karamata function, i.e.,

$$
\lim _{t \rightarrow \infty} \frac{l(t x)}{l(t)}=1 \text { for } x>0
$$

According to Lin (1999, page 76, Exercise 21), we have $B_{n}=(n l(n))^{1 / \alpha}$.
As for negatively associated (NA) random variables, Joag (1983) gave the following definition.

Definition (Joag, 1983). A finite family of random variables $\left\{X_{i}, 1 \leqslant i \leqslant n\right\}$ is said to be negatively associated (NA) if for every pair of disjoint subsets T_{1} and T_{2} of $\{1,2, \ldots, n\}$, we have

$$
\operatorname{Cov}\left(f_{1}\left(X_{i}, i \in T_{1}\right), f_{2}\left(X_{j}, j \in T_{2}\right)\right) \leqslant 0
$$

whenever f_{1} and f_{2} are coordinatewise increasing and the covariance exists. An infinite family is negatively associated if every finite subfamily is negatively associated.

To derive a Baum-Katz type result, the main purpose of this paper is to establish a Chover-type law of the iterated logarithm for weighted sums of NA and indentically distributed random variables with a distribution in the domain of a stable law.

Throughout this paper, let $h \in B[0,1]$ denote that a function h is bounded on $[0,1]$. Further, C will represent a positive constant though its value may change from one appearance to another, and $a_{n}=O\left(b_{n}\right)$ will mean $a_{n} \leqslant C b_{n}$.

2. Main results

In order to prove our results, we need the following lemma and definition.
Lemma 2.1 (Shao, 2000). Let $\left\{X_{i}, i \geqslant 1\right\}$ be a sequence of NA random variables, $E X_{i}=0, E\left|X_{i}\right|^{p}<\infty$ for some $p \geqslant 2$ and for every $i \geqslant 1$. Then there exists $C=C(p)$, such that

$$
\mathrm{E} \max _{1 \leqslant k \leqslant n}\left|\sum_{i=1}^{k} X_{i}\right|^{p} \leqslant C\left\{\sum_{i=1}^{n} \mathrm{E}\left|X_{i}\right|^{p}+\left(\sum_{i=1}^{n} \mathrm{E} X_{i}^{2}\right)^{p / 2}\right\} .
$$

Definition (Lin and Lu, 1997). A function $f(x)>0(x>0)$ is said to be quasimonotone non-decreasing, if

$$
\limsup _{x \rightarrow \infty} \sup _{0 \leqslant t \leqslant x} \frac{f(t)}{f(x)}<\infty .
$$

Now we state the main results and their proofs.
Theorem 1. Let $\left\{X, X_{i}, i \geqslant 1\right\}$ be an NA sequence of identically distributed random variables with distribution $F(x)$, where $F(x)$ denotes a stable distribution with exponent $\alpha \in(0,2)$. Let h be a bounded function on $[0,1], S_{n}=\sum_{i=1}^{n} h(i / n) X_{i}$. We have $\mathrm{E} X=0, \alpha>1$. Let $f(x)>0$ be quasi-monotone non-decreasing and $\int_{1}^{\infty} 1 /(x f(x)) \mathrm{d} x<\infty . \quad l(x) \geqslant 0$ is a slowly varying in the sense of Karamata function, $\sup _{n \geqslant 1} l\left(a_{n}\right) / l(n)<\infty$, where $a_{n}=(n f(n) l(n))^{1 / \alpha}$. Then under condition (1.2), for any $\varepsilon>0$, we have

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{-1} P\left(\max _{1 \leqslant j \leqslant n}\left|S_{j}\right|>\varepsilon(n f(n) l(n))^{1 / \alpha}\right)<\infty \tag{2.1}
\end{equation*}
$$

Proof of Theorem 1 . For any $i \geqslant 1$, define $X_{i}^{(n)}=X_{i} I\left(\left|X_{i}\right| \leqslant a_{n}\right)$, $S_{j}^{(n)}=\sum_{i=1}^{j}\left(h(i / n) X_{i}^{(n)}-\mathrm{E} h(i / n) X_{i}^{(n)}\right)$, where $a_{n}=(n f(n) l(n))^{1 / \alpha}$. Then for any $\varepsilon>0$, we have

$$
\begin{align*}
P\left(\max _{1 \leqslant j \leqslant n}\left|S_{j}\right|>\varepsilon a_{n}\right) \leqslant & P\left(\max _{1 \leqslant j \leqslant n}\left|X_{j}\right|>a_{n}\right) \tag{2.2}\\
& +P\left(\max _{1 \leqslant j \leqslant n}\left|S_{j}^{(n)}\right|>\varepsilon a_{n}-\max _{1 \leqslant j \leqslant n}\left|\sum_{i=1}^{j} \mathrm{E} h(i / n) X_{i}^{(n)}\right|\right) .
\end{align*}
$$

First we show that

$$
\begin{equation*}
\frac{1}{a_{n}} \max _{1 \leqslant j \leqslant n}\left|\sum_{i=1}^{j} \mathrm{E} h(i / n) X_{i}^{(n)}\right| \rightarrow 0, \text { as } n \rightarrow \infty \tag{2.3}
\end{equation*}
$$

Let us consider two cases, (i) when $0<\alpha \leqslant 1$, notice that $h \in B[0,1]$. Then for any positive integers n, N,

$$
\begin{aligned}
& \frac{1}{a_{n}} \max _{1 \leqslant j \leqslant n}\left|\sum_{i=1}^{j} \mathrm{E} h(i / n) X_{i}^{(n)}\right| \leqslant \frac{1}{a_{n}} \sum_{i=1}^{n} \mathrm{E}\left|h(i / n) X_{i}^{(n)}\right| \\
& \quad \leqslant \frac{C n}{a_{n}} \int_{|x| \leqslant a_{n}}|x| \mathrm{d} F(x) \leqslant \frac{C n}{a_{n}} a_{N}+\frac{C n}{a_{n}} \int_{a_{N}<|x| \leqslant a_{n}}|x| \mathrm{d} F(x) \\
& \quad=: C(A+B) .
\end{aligned}
$$

Notice that $f(x)>0$ is quasi-monotone non-decreasing and (1.3) holds. We have for $n \geqslant N, N$ large enough,

$$
\begin{aligned}
B & =\frac{n}{a_{n}} \sum_{k=N+1}^{n} \int_{a_{k-1}<|x| \leqslant a_{k}}|x| \mathrm{d} F(x) \leqslant \frac{n}{a_{n}} \sum_{k=N+1}^{n} a_{k} P\left(a_{k-1}<|X| \leqslant a_{k}\right) \\
& \leqslant C \sum_{k=N+1}^{n} k P\left(a_{k-1}<|X| \leqslant a_{k}\right) \leqslant C N P\left(|X| \geqslant a_{N}\right)+C \sum_{k=N}^{\infty} P\left(|X| \geqslant a_{k}\right) \\
& \leqslant C \frac{1}{f(N)}+C \sum_{k=N}^{\infty} \frac{1}{k f(k)} \leqslant C \frac{1}{f(N)}+C \int_{N}^{\infty} \frac{\mathrm{d} x}{k f(k)}<\frac{\varepsilon}{4} .
\end{aligned}
$$

It is obvious that for each given N,

$$
A \leqslant C \frac{a_{N}}{(f(n))^{1 / \alpha}} \rightarrow 0, n \rightarrow \infty
$$

So, for $0<\alpha \leqslant 1$, we have (2.3).
(ii) When $1<\alpha<2$, using $E X_{i}=0, h \in B[0,1]$ and (1.3), when $n \rightarrow \infty$, then

$$
\begin{aligned}
\frac{1}{a_{n}} & \max _{1 \leqslant j \leqslant n}\left|\sum_{i=1}^{j} \mathrm{E} h(i / n) X_{i}^{(n)}\right|=\frac{1}{a_{n}} \max _{1 \leqslant j \leqslant n}\left|\sum_{i=1}^{j} \mathrm{E} h(i / n) X_{i} I\left(\left|X_{i}\right|>a_{n}\right)\right| \\
& \leqslant \frac{1}{a_{n}} \sum_{i=1}^{n} \mathrm{E}\left|h(i / n) X_{i}\right| I\left(\left|X_{i}\right|>a_{n}\right) \leqslant \frac{C n}{a_{n}} \mathrm{E}|X| I\left(|X|>a_{n}\right) \\
& =\frac{C n}{a_{n}} \int_{a_{n}}^{\infty} P(|X| \geqslant x) \mathrm{d} x=\frac{C n}{a_{n}} \int_{a_{n}}^{\infty} \frac{C l(x)}{x^{\alpha}} \mathrm{d} x \\
& =\frac{n}{a_{n}} C a_{n}^{1-\alpha} l\left(a_{n}\right) \leqslant \frac{C}{f(n)}<\frac{\varepsilon}{2} .
\end{aligned}
$$

So, for $1<\alpha<2$, we also have (2.3). Further, (i) and (ii) imply (2.3).
By (2.2) and (2.3), we have that

$$
P\left(\max _{1 \leqslant j \leqslant n}\left|S_{j}\right|>\varepsilon a_{n}\right) \leqslant \sum_{j=1}^{n} P\left(\left|X_{j}\right|>a_{n}\right)+P\left(\max _{1 \leqslant j \leqslant n}\left|S_{j}^{(n)}\right|>\frac{\varepsilon}{2} a_{n}\right)
$$

for n large enough. Hence we need only to prove

$$
\begin{align*}
I & =: \sum_{n=1}^{\infty} n^{-1} \sum_{j=1}^{n} P\left(\left|X_{j}\right|>a_{n}\right)<\infty, \tag{2.4}\\
I I & =: \sum_{n=1}^{\infty} n^{-1} P\left(\max _{1 \leqslant j \leqslant n}\left|S_{j}^{(n)}\right|>\frac{\varepsilon}{2} a_{n}\right)<\infty . \tag{2.5}
\end{align*}
$$

From (1.3), it is easily seen that

$$
\begin{equation*}
I=\sum_{n=1}^{\infty} P\left(|X|>a_{n}\right) \leqslant \sum_{n=1}^{\infty} \frac{C}{n f(n)} \leqslant C \int_{1}^{\infty} \frac{\mathrm{d} x}{x f(x)}<\infty . \tag{2.6}
\end{equation*}
$$

Lemma 2.1 and the fact that $h \in B[0,1]$ imply that

$$
\begin{align*}
I I & \leqslant C \sum_{n=1}^{\infty} n^{-1} \mathrm{E} \max _{1 \leqslant j \leqslant n}\left|S_{j}^{(n)}\right|^{2} \frac{1}{a_{n}^{2}} \leqslant C \sum_{n=1}^{\infty} n^{-1} \frac{1}{a_{n}^{2}}\left(\sum_{i=1}^{n} \mathrm{E}\left|h(i / n) X_{i}^{(n)}\right|^{2}\right) \tag{2.7}\\
& \leqslant C \sum_{n=1}^{\infty} \frac{1}{a_{n}^{2}} \mathrm{E}|X|^{2} I\left(|X| \leqslant a_{n}\right)=C \sum_{n=1}^{\infty} \frac{1}{a_{n}^{2}} \int_{|x| \leqslant a_{n}} x^{2} \mathrm{~d} F(x) \\
& =C \sum_{n=1}^{\infty} \frac{1}{a_{n}^{2}} \sum_{k=1}^{n} \int_{a_{k-1}<|x| \leqslant a_{k}} x^{2} \mathrm{~d} F(x) \leqslant C \sum_{k=1}^{\infty} a_{k}^{2} P\left(a_{k-1}<|X| \leqslant a_{k}\right) \sum_{n=k}^{\infty} \frac{1}{a_{n}^{2}} \\
& \leqslant C \sum_{k=1}^{\infty} k P\left(a_{k-1}<|X| \leqslant a_{k}\right) \leqslant C \int_{1}^{\infty} \frac{\mathrm{d} x}{x f(x)}<\infty .
\end{align*}
$$

Now we complete the proof of Theorem 1.
Corollary 1. Under the conditions of Theorem 1, we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left(\frac{\left|S_{n}\right|}{B_{n}}\right)^{1 / \log \log n} \leqslant \mathrm{e}^{1 / \alpha} \text { a.s. } \tag{2.8}
\end{equation*}
$$

Proof of Corollary 1. Notice that for any positive integer n there exists a non-negative integer k, such that $2^{k} \leqslant n<2^{k+1}$. And there exists a $t \in[0,1)$, such
that $n=2^{k+t}$. Using (2.1), we obtain

$$
\sum_{k=0}^{\infty} \sum_{n=2^{k}}^{2^{k+1}-1}\left(2^{k+1}-1\right)^{-1} P\left(\max _{1 \leqslant j \leqslant 2^{k+t}}\left|S_{j}\right|>\varepsilon\left(2^{k+1} f\left(2^{k+t}\right) l\left(2^{k+t}\right)\right)^{1 / \alpha}\right)<\infty .
$$

Then

$$
\sum_{k=0}^{\infty} P\left(\max _{1 \leqslant j \leqslant 2^{k+t}}\left|S_{j}\right|>\varepsilon\left(2^{k+1} f\left(2^{k+t}\right) l\left(2^{k+t}\right)\right)^{1 / \alpha}\right)<\infty
$$

and consequently

$$
\frac{\max _{1 \leqslant j \leqslant 2^{k+t}}\left|S_{j}\right|}{\left(2^{k+1} f\left(2^{k+t}\right) l\left(2^{k+t}\right)\right)^{1 / \alpha}} \rightarrow 0 \text { a.s. }
$$

So

$$
\begin{aligned}
\frac{\left|S_{n}\right|}{(n f(n) l(n))^{1 / \alpha}} & \leqslant \frac{\max _{1 \leqslant j \leqslant 2^{k+t}}\left|S_{j}\right|}{\left(2^{k+1} f\left(2^{k+t}\right) l\left(2^{k+t}\right)\right)^{1 / \alpha}} \frac{\left(2^{k+1} f\left(2^{k+t}\right) l\left(2^{k+t}\right)\right)^{1 / \alpha}}{(n f(n))^{1 / \alpha}} \\
& \leqslant 2^{1 / \alpha} \frac{\max _{1 \leqslant j \leqslant 2^{k+t}}\left|S_{j}\right|}{\left(2^{k+1} f\left(2^{k+t}\right)\right)^{1 / \alpha}} \rightarrow 0 \text { a.s. }
\end{aligned}
$$

Then

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\left|S_{n}\right|}{(n f(n) l(n))^{1 / \alpha}}=0 \text { a.s. } \tag{2.9}
\end{equation*}
$$

Given $\varepsilon>0$, let $f(x)=\log ^{1+\varepsilon} x$. It is obvious that $\int_{1}^{\infty} 1 /(x f(x)) \mathrm{d} x<\infty$. By (2.9), we have

$$
\limsup _{n \rightarrow \infty} \frac{\left|S_{n}\right|}{\left(n l(n) \log ^{1+\varepsilon} n\right)^{1 / \alpha}}=0 \text { a.s. }
$$

Then

$$
\limsup _{n \rightarrow \infty}\left(\frac{\left|S_{n}\right|}{B(n)}\right)^{1 / \log \log n} \leqslant \mathrm{e}^{(1+\varepsilon) / \alpha} \text { a.s. }
$$

Therefore

$$
\limsup _{n \rightarrow \infty}\left(\frac{\left|S_{n}\right|}{B(n)}\right)^{1 / \log \log n} \leqslant \mathrm{e}^{1 / \alpha} \text { a.s. }
$$

Now we complete the proof of (2.8).
Acknowledgments. The author would like to thank the anonymous referee for his/her valuable comments.

References

[1] Chen, P. Y.: Limiting behavior of weighted sums with stable distributions. Statist. Probab. Lett. 60 (2002), 367-375.

Zbl 1014.60010
[2] Chen, P. Y., Huang, L. H.: The Chover law of the iterated logarithm for random geometric series of stable distribution. Acta Math. Sin. 46 (2000), 1063-1070. (In Chinese.)

Zbl 1009.60010
[3] A law of the iterated logarithm for stable summands. Proc. Amer. Math. Soc. 17 (1966), 441-443.

Zbl 0144.40503
[4] Joag, D. K., Proschan, F.: Negative associated random variables with application. Ann. Statist. 11 (1983), 286-295

Zbl 0508.62041
[5] Ledoux, M., Talagrand, M.: Probability in Banach Spaces. Springer, Berlin, 1991.
Zbl 0748.60004
[6] Lin, Z. Y., Lu, C. R.: Limit Theorems on Mixing Random Variables. Kluwer Academic Publishers and Science Press, Dordrecht-Beijing, 1997.
[7] Lin, Z. Y., Lu, C. R., Su, Z. G.: Foundation of Probability Limit Theory. Beijing, Higher Education Press, 1999.
[8] Peng, L., Qi, Y. C.: Chover-type laws of the iterated logarithm for weighted sums. Statist. Probab. Lett. 65 (2003), 401-410. Zbl pre02041538
[9] Qi, Y. C., Cheng, P.: On the law of the iterated logarithm for the partial sum in the domain of attraction of stable distribution. Chin. Ann. Math., Ser. A 17 (1996), 195-206. (In Chinese.)

Zbl 0861.60043
[10] Shao, Q. M.: A comparison theorem on moment inequalities between negatively associated and independent random variables. J. Theor. Probab. 13 (2000), 343-356.

Zbl 0971.60015
[11] Vasudeva, K., Divanji, G.: LIL for delayed sums under a non-indentically distributed setup. Theory Prob. Appl. 37 (1992), 534-562.
[12] Zhang, L. X., Wen, J. W.: Strong laws for sums of B-valued mixing random fields. Chinese Ann. Math. 22A (2001), 205-216.
[13] Zinchenko, N. M.: A modified law of iterated logarithm for stable random variable. Theory Prob. Math. Stat. 49 (1994), 69-76.

Zbl 0863.60046

Author's address: Guang-hui Cai, Department of Mathematics and Statistics, Zhejiang
Gongshang University, Hangzhou 310035, P. R. China, e-mail: cghzju@163.com.

