A NOTE ON CONGRUENCE SYSTEMS OF MS-ALGEBRAS

M. Campercholi, D. Vaggione, Córdoba

(Received February 21, 2006)

Abstract

Let L be an MS-algebra with congruence permutable skeleton. We prove that solving a system of congruences $\left(\theta_{1}, \ldots, \theta_{n} ; x_{1}, \ldots, x_{n}\right)$ in L can be reduced to solving the restriction of the system to the skeleton of L, plus solving the restrictions of the system to the intervals $\left[x_{1}, \overline{\bar{x}}_{1}\right], \ldots,\left[x_{n}, \overline{\bar{x}}_{n}\right]$.

Keywords: MS-algebra, permutable congruence, congruence system
MSC 2000: 06D30, 06-02

Let A be an algebra. We use $\operatorname{Con}(A)$ to denote the congruence lattice of A. We say that $\theta, \delta \in \operatorname{Con}(A)$ permute if $\theta \vee \delta=\left\{(x, y) \in A^{2}\right.$: there is $z \in A$ such that $(x, z) \in \theta$ and $(z, y) \in \delta\}$. The algebra A is congruence permutable (permutable for short) if every pair of congruences in $\operatorname{Con}(A)$ permutes. By a system on A we understand a $2 n$-tuple $\left(\theta_{1}, \ldots, \theta_{n} ; x_{1}, \ldots, x_{n}\right)$, where $\theta_{1}, \ldots, \theta_{n} \in \operatorname{Con}(A), x_{1}, \ldots, x_{n} \in A$ and $\left(x_{i}, x_{j}\right) \in \theta_{i} \vee \theta_{j}$ for every $1 \leqslant i, j \leqslant n$. A solution of a system $\left(\theta_{1}, \ldots, \theta_{n} ; x_{1}, \ldots, x_{n}\right)$ is an element $x \in A$ such that $\left(x, x_{i}\right) \in \theta_{i}$ for every $i=1, \ldots, n$. We note that if A is congruence permutable and $\operatorname{Con}(A)$ is distributive, then every system on A has a solution (folklore).

An algebra $\langle L, \wedge, \vee,-, 0,1\rangle$ of type $(2,2,1,0,0)$ is an $M S$-algebra if it satisfies the following conditions:
$\langle L, \wedge, \vee, 0,1\rangle$ is a bounded distributive lattice

$$
\begin{aligned}
\overline{(x \wedge y)} & =\bar{x} \vee \bar{y}, \\
\overline{(x \vee y)} & =\bar{x} \wedge \bar{y}, \\
x & \leqslant \bar{x}, \\
\overline{1} & =0 .
\end{aligned}
$$

We refer the reader to [2] for the basic properties of MS-algebras. By $\mathcal{M S}$ we denote the class of all MS-algebras. A de Morgan algebra is an algebra $L \in \mathcal{M S}$ satisfying the identity $\overline{\bar{x}}=x$. We write \mathcal{M} to denote the class of de Morgan algebras.

Let $L \in \mathcal{M}$. An element $z \in L$ is central if $z \vee \bar{z}=1$. The central elements of L are naturally identified with the factor congruences of L. For $x, y \in L$, let $x \Leftrightarrow y$ denote the greatest central u such that $u \wedge x=u \wedge y$ if such an u exists. Two basic properties of \Leftrightarrow will be used without explicit mention:

$$
\begin{aligned}
& x \Leftrightarrow x=1, \\
& x \Leftrightarrow y=\bar{x} \Leftrightarrow \bar{y}
\end{aligned}
$$

(the latter one can be checked easily). We remark that for every simple de Morgan algebra the only central elements are 0 and 1 [1], so for these algebras \Leftrightarrow is the equality test. In [3] it is proved that the existence of $x \Leftrightarrow y$ is guaranteed for every $x, y \in L$ provided L is permutable.

Lemma 1 (Gramaglia and Vaggione [3]). Let $L \in \mathcal{M}$. Then following conditions are equivalent:
(1) L is congruence permutable.
(2) $x \Leftrightarrow y$ exists for every $x, y \in L$, and $(x \Leftrightarrow 0) \vee(x \Leftrightarrow 1) \vee(x \Leftrightarrow \bar{x})=1, \forall x \in L$.

Lemma 2. Let $L \in \mathcal{M}$ be congruence permutable. Let $\theta \in \operatorname{Con}(L)$ and $x_{1}, x_{2}, y_{1}, y_{2} \in L$ be such that $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \theta$. Then $\left(x_{1} \Leftrightarrow x_{2}, y_{1} \Leftrightarrow y_{2}\right) \in \theta$.

Proof. Let θ be a maximal element of $\operatorname{Con}(L)$. We will prove that for $x, y \in L$

$$
(x \Leftrightarrow y) / \theta=\left\{\begin{array}{lll}
1 / \theta & \text { if } & (x, y) \in \theta \\
0 / \theta & \text { if } & (x, y) \notin \theta
\end{array}\right\}=x / \theta \Leftrightarrow y / \theta
$$

Since L / θ is simple, we have $x / \theta \in\{0 / \theta, 1 / \theta\}$ or $x / \theta=\bar{x} / \theta$ for all $x \in L$ (see [1] for a description of the simple algebras in $\mathcal{M})$. Also, as $(x \Leftrightarrow y) / \theta$ is central, we have $(x \Leftrightarrow y) / \theta \in\{0 / \theta, 1 / \theta\}$ for all $x, y \in L$. Now, the equality $x \wedge(x \Leftrightarrow y)=y \wedge(x \Leftrightarrow y)$ yields that if $(x, y) \notin \theta$ then $(x \Leftrightarrow y) / \theta$ has to be $0 / \theta$. This fact in combination with (2) of Lemma 1 says that for every $x \in L$

$$
\begin{aligned}
(x \Leftrightarrow 0) / \theta & =1 \Leftrightarrow x / \theta=0 / \theta, \\
(x \Leftrightarrow 1) / \theta & =1 \Leftrightarrow x / \theta=1 / \theta, \\
(x \Leftrightarrow \bar{x}) / \theta & =1 \Leftrightarrow x / \theta=\bar{x} / \theta .
\end{aligned}
$$

Let $(a, b) \in \theta$; there are three cases:

Case $a / \theta=0 / \theta$. Here we have $(a \Leftrightarrow 0) / \theta=1 / \theta=(b \Leftrightarrow 0) / \theta$, and it is easy to check that $(a \Leftrightarrow 0) \wedge(b \Leftrightarrow 0) \leqslant(a \Leftrightarrow b)$. Thus $(a \Leftrightarrow b) / \theta=1 / \theta$.

Case $a / \theta=1 / \theta$. This case is analogous to the previous one.
Case $a / \theta=\bar{a} / \theta$. Since $(a \Leftrightarrow b)=(a \wedge b \Leftrightarrow a \vee b)$ and $\overline{a \wedge b} / \theta=\overline{a \vee b} / \theta$ we can assume without loss of generality that $a \leqslant b$. Also, as $a / \theta=\bar{a} / \theta$ and $b / \theta=\bar{b} / \theta$, we know that $(a \Leftrightarrow \bar{a}) / \theta=1 / \theta=(b \Leftrightarrow \bar{b}) / \theta$. Now,

$$
\begin{aligned}
a \wedge(a \Leftrightarrow \bar{a}) \wedge(b \Leftrightarrow \bar{b}) & =b \wedge a \wedge(a \Leftrightarrow \bar{a}) \wedge(b \Leftrightarrow \bar{b}) \\
& =\bar{b} \wedge \bar{a} \wedge(a \Leftrightarrow \bar{a}) \wedge(b \Leftrightarrow \bar{b}) \\
& =\bar{b} \wedge(a \Leftrightarrow \bar{a}) \wedge(b \Leftrightarrow \bar{b}) \\
& =b \wedge(a \Leftrightarrow \bar{a}) \wedge(b \Leftrightarrow \bar{b}) .
\end{aligned}
$$

Hence $(a \Leftrightarrow \bar{a}) \wedge(b \Leftrightarrow \bar{b}) \leqslant(a \Leftrightarrow b)$ and $(a \Leftrightarrow b) / \theta=1 / \theta$.
Finally, since every congruence in a de Morgan algebra is an intersection of maximal congruences, the lemma follows.

For an MS-algebra L we will write $\operatorname{Sk}(L)$ to denote the skeleton of L, that is $\operatorname{Sk}(L)=\{\bar{x}: x \in L\}$. It is a well known fact that for $L \in \mathcal{M S}, \operatorname{Sk}(L)$ is the greatest subalgebra of L which is a de Morgan algebra. If $L \in \mathcal{M S}$ has a permutable skeleton, then the operation \Leftrightarrow is defined for the elements in $\operatorname{Sk}(L)$. Furthermore, by Lemma 2, the congruences of L are compatible with this operation. We summarize this in

Corollary 3. Let L be an MS-algebra with congruence permutable skeleton. Let $\theta \in \operatorname{Con}(L)$ and let $x_{1}, x_{2}, y_{1}, y_{2} \in \operatorname{Sk}(L)$ be such that $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \theta$. Then $\left(x_{1} \Leftrightarrow x_{2}, y_{1} \Leftrightarrow y_{2}\right) \in \theta$.

In the next lemma we state a Boolean algebra identity we will need in the proof of our main theorem.

Lemma 4. Let B be a Boolean algebra, and let $a_{1}, \ldots, a_{n} \in B$. Then

$$
\bigvee_{U \subseteq\{1, \ldots, n\}}\left(\bigwedge_{k \in U} a_{k} \wedge \bigwedge_{k \in\{1, \ldots, n\}-U} \bar{a}_{k}\right)=1
$$

Let $\left(\theta_{1}, \ldots, \theta_{n} ; x_{1}, \ldots, x_{n}\right)$ be a system on L, and suppose s is a solution for it. Then the systems $\left(\theta_{1}, \ldots, \theta_{n} ;\left(x_{1} \vee x_{k}\right) \wedge \overline{\bar{x}}_{k}, \ldots,\left(x_{n} \vee x_{k}\right) \wedge \overline{\bar{x}}_{k}\right), k=1, \ldots, n$, all have a solution (namely $\left.s_{k}=\left(s \vee x_{k}\right) \wedge \overline{\bar{x}}_{k}\right)$. Also, \bar{s} is a solution for $\left(\theta_{1}, \ldots, \theta_{n} ; \bar{x}_{1}, \ldots, \bar{x}_{n}\right)$. We prove in the next theorem that, when $\operatorname{Sk}(L)$ is permutable, the existence of solutions to these new systems is sufficient to find a solution for the original system.

Theorem 5. Let L be an MS-algebra with congruence permutable skeleton. Take $\left(\theta_{1}, \ldots, \theta_{n} ; x_{1}, \ldots, x_{n}\right)$ to be a system on L, and let $z \in \operatorname{Sk}(L)$ be a solution for $\left(\theta_{1}, \ldots, \theta_{n} ; \bar{x}_{1}, \ldots, \bar{x}_{n}\right)$. Suppose there are $s_{1}, \ldots, s_{n} \in L$ such that s_{k} is a solution for $\left(\theta_{1}, \ldots, \theta_{n} ;\left(x_{1} \vee x_{k}\right) \wedge \overline{\bar{x}}_{k}, \ldots,\left(x_{n} \vee x_{k}\right) \wedge \overline{\bar{x}}_{k}\right), k=1, \ldots, n$. Then

$$
s=\bigvee_{U \subseteq\{1, \ldots, n\}}\left(\left(\bigwedge_{k \in U} \bar{x}_{k} \Leftrightarrow z\right) \wedge\left(\bigwedge_{k \in\{1, \ldots, n\}-U} \overline{\bar{x}_{k} \Leftrightarrow z}\right) \wedge\left(\bigwedge_{k \in U} s_{k}\right)\right)
$$

is a solution for $\left(\theta_{1}, \ldots, \theta_{n} ; x_{1}, \ldots, x_{n}\right)$.
Proof. In order to make this proof easier to read we will use the notation $x \equiv_{\theta} y$ for equality modulo θ. Let $1 \leqslant l \leqslant n$; we will prove that $\left(s, x_{l}\right) \in \theta_{l}$. For $U \subseteq\{1, \ldots, n\}$ define

$$
t_{U}=\left(\bigwedge_{k \in U} \bar{x}_{k} \Leftrightarrow z\right) \wedge\left(\bigwedge_{k \in\{1, \ldots, n\}-U} \overline{\bar{x}_{k} \Leftrightarrow z}\right) \wedge\left(\bigwedge_{k \in U} s_{k}\right)
$$

Note that if $l \notin U$ then

$$
t_{U} \leqslant\left(\bigwedge_{k \in\{1, \ldots, n\}-U} \overline{\bar{x}_{k} \Leftrightarrow z}\right) \equiv_{\theta_{l}}\left(\bigwedge_{k \in\{1, \ldots, n\}-U} \bar{x}_{k} \Leftrightarrow \bar{x}_{l}\right) \leqslant \overline{\bar{x}_{l} \Leftrightarrow \bar{x}_{l}}=0
$$

Now if $l \in U$ we have

$$
\begin{aligned}
\left(\bigwedge_{k \in U} \bar{x}_{k} \Leftrightarrow z\right) & \wedge\left(\bigwedge_{k \in U} s_{k}\right) \\
& \equiv \theta_{l}\left(\bigwedge_{k \in U} \bar{x}_{k} \Leftrightarrow \bar{x}_{l}\right) \wedge\left(\bigwedge_{k \in U}\left(x_{l} \vee x_{k}\right) \wedge \overline{\bar{x}}_{k}\right) \\
& =x_{l} \wedge\left(\bigwedge_{k \in U-\{l\}}\left(\bar{x}_{k} \Leftrightarrow \bar{x}_{l}\right) \wedge\left(x_{l} \vee x_{k}\right) \wedge \overline{\bar{x}}_{k}\right) \\
& =x_{l} \wedge\left(\bigwedge_{k \in U-\{l\}}\left(\bar{x}_{k} \Leftrightarrow \bar{x}_{l}\right) \wedge \overline{\bar{x}}_{k}\right) \\
& =x_{l} \wedge\left(\bigwedge_{k \in U-\{l\}}\left(\overline{\bar{x}}_{k} \Leftrightarrow \overline{\bar{x}}_{l}\right) \wedge \overline{\bar{x}}_{k}\right) \\
& =x_{l} \wedge\left(\bigwedge_{k \in U-\{l\}}\left(\overline{\bar{x}}_{k} \Leftrightarrow \overline{\bar{x}}_{l}\right) \wedge \overline{\bar{x}}_{l}\right) \\
& =x_{l} \wedge\left(\bigwedge_{k \in U-\{l\}} \overline{\bar{x}}_{k} \Leftrightarrow \overline{\bar{x}}_{l}\right) \\
& =x_{l} \wedge\left(\bigwedge_{k \in U-\{l\}} \bar{x}_{k} \Leftrightarrow \bar{x}_{l}\right)
\end{aligned}
$$

Hence

$$
\left\{\begin{array}{l}
t_{U} \equiv_{\theta_{l}} 0 \text { for } l \notin U \\
t_{U} \equiv_{\theta_{l}} x_{l} \wedge\left(\bigwedge_{k \in U-\{l\}}\left(\bar{x}_{k} \Leftrightarrow \bar{x}_{l}\right)\right) \wedge\left(\bigwedge_{k \in\{1, \ldots, n\}-U} \overline{\bar{x}}_{k} \Leftrightarrow \bar{x}_{l}\right) \text { for } l \in U
\end{array}\right.
$$

Thus,

$$
\left.\begin{array}{rl}
s & \left.\equiv \varliminf_{l} \bigvee_{U \subseteq\{1, \ldots, n\}}^{l \in U}\right\} \\
& x_{l} \wedge\left(\bigwedge_{k \in U-\{l\}}\left(\bar{x}_{k} \Leftrightarrow \bar{x}_{l}\right)\right) \wedge\left(\bigwedge_{k \in\{1, \ldots, n\}-U} \overline{\bar{x}}_{k} \Leftrightarrow \bar{x}_{l}\right.
\end{array}\right)
$$

(use Lemma 4 to obtain the last equality).
For $\theta \in \operatorname{Con}(L)$ and S a subalgebra (or sublattice of L) we will write θ^{S} to denote the restriction of θ to S, that is $\theta^{S}=\theta \cap(S \times S)$. Obviously $\theta^{S} \in \operatorname{Con}(S)$. Let $a, b \in L$ be such that $a \leqslant b$, and let $[a, b]=\{z \in L: a \leqslant z \leqslant b\}$. Note that if $\left(\theta_{1}, \ldots, \theta_{n} ; x_{1}, \ldots, x_{n}\right)$ is a system on L, then $\left(\theta_{1}^{[a, b]}, \ldots, \theta_{n}^{[a, b]} ;\left(x_{1} \vee a\right) \wedge\right.$ $\left.b, \ldots,\left(x_{n} \vee a\right) \wedge b\right)$ is a system on the lattice $[a, b]$. Also, $\left(\theta_{1}^{\operatorname{Sk}(L)}, \ldots, \theta_{n}^{\operatorname{Sk}(L)} ; \bar{x}_{1}, \ldots, \bar{x}_{n}\right)$ is a system on the de Morgan algebra $\operatorname{Sk}(L)$. Further, note that $\left(\theta_{1}, \ldots, \theta_{n} ;\left(x_{1} \vee a\right) \wedge\right.$ $\left.b, \ldots,\left(x_{n} \vee a\right) \wedge b\right)$ has a solution in L iff $\left(\theta_{1}^{[a, b]}, \ldots, \theta_{n}^{[a, b]} ;\left(x_{1} \vee a\right) \wedge b, \ldots,\left(x_{n} \vee a\right) \wedge\right.$ $b)$ has a solution in $[a, b]$. Also, $\left(\theta_{1}, \ldots, \theta_{n} ; \bar{x}_{1}, \ldots, \bar{x}_{n}\right)$ has a solution in L iff $\left(\theta_{1}^{\mathrm{Sk}(L)}, \ldots, \theta_{n}^{\mathrm{Sk}(L)} ; \bar{x}_{1}, \ldots, \bar{x}_{n}\right)$ has a solution in $\operatorname{Sk}(L)$. In the light of these observations we can restate Theorem 5 in the following manner:

Theorem 6. Let L be an MS-algebra with congruence permutable skeleton. Take $\left(\theta_{1}, \ldots, \theta_{n} ; x_{1}, \ldots, x_{n}\right)$ to be a system on L, and let z be a solution for $\left(\theta_{1}^{\mathrm{Sk}(L)}, \ldots, \theta_{n}^{\mathrm{Sk}(L)} ; \bar{x}_{1}, \ldots, \bar{x}_{n}\right)$. Suppose there are s_{1}, \ldots, s_{n} such that s_{k} is a solution for $\left(\theta_{1}^{\left[x_{k}, \overline{\bar{x}}_{k}\right]}, \ldots, \theta_{n}^{\left[x_{k}, \overline{\bar{x}}_{k}\right]} ;\left(x_{1} \vee x_{k}\right) \wedge \overline{\bar{x}}_{k}, \ldots,\left(x_{n} \vee x_{k}\right) \wedge \overline{\bar{x}}_{k}\right), \quad k=1, \ldots, n$. Then

$$
s=\bigvee_{U \subseteq\{1, \ldots, n\}}\left(\left(\bigwedge_{k \in U} \bar{x}_{k} \Leftrightarrow z\right) \wedge\left(\bigwedge_{k \in\{1, \ldots, n\}-U} \overline{\bar{x}_{k} \Leftrightarrow z}\right) \wedge\left(\bigwedge_{k \in U} s_{k}\right)\right)
$$

is a solution for $\left(\theta_{1}, \ldots, \theta_{n} ; x_{1}, \ldots, x_{n}\right)$.

Corollary 7. Let L be an MS-algebra with congruence permutable skeleton. A system $\left(\theta_{1}, \ldots, \theta_{n} ; x_{1}, \ldots, x_{n}\right)$ on L has a solution iff each of the systems

$$
\left(\theta_{1}^{\left[x_{k}, \bar{x}_{k}\right]}, \ldots, \theta_{n}^{\left[x_{k}, \overline{\bar{x}}_{k}\right]} ;\left(x_{1} \vee x_{k}\right) \wedge \overline{\bar{x}}_{k}, \ldots,\left(x_{n} \vee x_{k}\right) \wedge \overline{\bar{x}}_{k}\right), k=1, \ldots, n
$$

has a solution.
We conclude our work with an example that shows that the hypothesis of permutability of the skeleton cannot be dropped in Theorems 5 and 6 .

Example. Let L be the MS-algebra described in Figure 1. Let $(\theta, \delta ; 1, y)$ be the system where θ, δ and y are shown in Figure 2. It is easy to check that $\left(\theta^{\mathrm{Sk}(L)}, \delta^{\mathrm{Sk}(L)} ; \overline{1}, \bar{y}\right)$ has a solution. Also, the intervals $[1, \overline{\overline{1}}]$ and $[y, \overline{\bar{y}}]$ have 1 and 2 elements respectively, thus the restrictions of the system to these intervals clearly have solutions. Finally, note that the system has no solution in L.

Figure 1. L

Figure 2.

References

[1] R. Balbes, P. Dwinger: Distributive Lattices. University of Missouri Press, Columbia, Missouri, 1974.
[2] T. S. Blyth, J. C. Varlet: Ockham Algebras. Oxford University Press, 1994.

zbl

[3] H. Gramaglia, D. Vaggione: Birkhoff-like sheaf representation for varieties of lattice expansions. Studia Logica 56 (1996), 111-131.

Author's address: M. Campercholi, D. Vaggione, Facultad de Matemática, Astronomía y Física (Fa.M.A.F.), Universidad Nacional de Córdoba-Ciudad Universitaria, Córdoba 5000, Argentina, e-mail: vaggione@mate.uncor.edu.

