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A NOTE ON CONGRUENCE SYSTEMS OF MS-ALGEBRAS
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Abstract. Let L be an MS-algebra with congruence permutable skeleton. We prove that
solving a system of congruences (θ1, . . . , θn;x1, . . . , xn) in L can be reduced to solving the
restriction of the system to the skeleton of L, plus solving the restrictions of the system to
the intervals [x1, ¯̄x1], . . . , [xn, ¯̄xn].
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Let A be an algebra. We use Con(A) to denote the congruence lattice of A. We say

that θ, δ ∈ Con(A) permute if θ∨δ = {(x, y) ∈ A2: there is z ∈ A such that (x, z) ∈ θ

and (z, y) ∈ δ}. The algebra A is congruence permutable (permutable for short) if

every pair of congruences in Con(A) permutes. By a system on A we understand

a 2n-tuple (θ1, . . . , θn; x1, . . . , xn), where θ1, . . . , θn ∈ Con(A), x1, . . . , xn ∈ A and

(xi, xj) ∈ θi∨θj for every 1 6 i, j 6 n. A solution of a system (θ1, . . . , θn; x1, . . . , xn)

is an element x ∈ A such that (x, xi) ∈ θi for every i = 1, . . . , n. We note that if A

is congruence permutable and Con(A) is distributive, then every system on A has a

solution (folklore).

An algebra 〈L,∧,∨, , 0, 1〉 of type (2, 2, 1, 0, 0) is an MS-algebra if it satisfies the

following conditions:

〈L,∧,∨, 0, 1〉 is a bounded distributive lattice

(x ∧ y) = x̄ ∨ y,

(x ∨ y) = x̄ ∧ y,

x 6 ¯̄x,

1̄ = 0.
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We refer the reader to [2] for the basic properties of MS-algebras. ByMS we denote

the class of all MS-algebras. A de Morgan algebra is an algebra L ∈ MS satisfying

the identity ¯̄x = x. We writeM to denote the class of de Morgan algebras.

Let L ∈ M. An element z ∈ L is central if z ∨ z = 1. The central elements of

L are naturally identified with the factor congruences of L. For x, y ∈ L, let x ⇔ y

denote the greatest central u such that u ∧ x = u ∧ y if such an u exists. Two basic

properties of ⇔ will be used without explicit mention:

x ⇔ x = 1,

x ⇔ y = x̄ ⇔ y

(the latter one can be checked easily). We remark that for every simple de Morgan

algebra the only central elements are 0 and 1 [1], so for these algebras ⇔ is the

equality test. In [3] it is proved that the existence of x ⇔ y is guaranteed for every

x, y ∈ L provided L is permutable.

Lemma 1 (Gramaglia and Vaggione [3]). Let L ∈ M. Then following conditions

are equivalent:

(1) L is congruence permutable.

(2) x ⇔ y exists for every x, y ∈ L, and (x ⇔ 0) ∨ (x ⇔ 1) ∨ (x ⇔ x̄) = 1, ∀x ∈ L.

Lemma 2. Let L ∈ M be congruence permutable. Let θ ∈ Con(L) and

x1, x2, y1, y2 ∈ L be such that (x1, y1), (x2, y2) ∈ θ. Then (x1 ⇔ x2, y1 ⇔ y2) ∈ θ.

P r o o f. Let θ be a maximal element of Con(L). We will prove that for x, y ∈ L

(x ⇔ y)/θ =

{

1/θ if (x, y) ∈ θ

0/θ if (x, y) /∈ θ

}

= x/θ ⇔ y/θ.

Since L/θ is simple, we have x/θ ∈ {0/θ, 1/θ} or x/θ = x̄/θ for all x ∈ L (see [1] for

a description of the simple algebras in M). Also, as (x ⇔ y)/θ is central, we have

(x ⇔ y)/θ ∈ {0/θ, 1/θ} for all x, y ∈ L. Now, the equality x∧ (x ⇔ y) = y∧ (x ⇔ y)

yields that if (x, y) /∈ θ then (x ⇔ y)/θ has to be 0/θ. This fact in combination with

(2) of Lemma 1 says that for every x ∈ L

(x ⇔ 0)/θ = 1 ⇔ x/θ = 0/θ,

(x ⇔ 1)/θ = 1 ⇔ x/θ = 1/θ,

(x ⇔ x̄)/θ = 1 ⇔ x/θ = x̄/θ.

Let (a, b) ∈ θ; there are three cases:
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C a s e a/θ = 0/θ. Here we have (a ⇔ 0)/θ = 1/θ = (b ⇔ 0)/θ, and it is easy to

check that (a ⇔ 0) ∧ (b ⇔ 0) 6 (a ⇔ b). Thus (a ⇔ b)/θ = 1/θ.

C a s e a/θ = 1/θ. This case is analogous to the previous one.

C a s e a/θ = ā/θ. Since (a ⇔ b) = (a ∧ b ⇔ a ∨ b) and a ∧ b/θ = a ∨ b/θ we can

assume without loss of generality that a 6 b. Also, as a/θ = ā/θ and b/θ = b̄/θ, we

know that (a ⇔ ā)/θ = 1/θ = (b ⇔ b̄)/θ. Now,

a ∧ (a ⇔ ā) ∧ (b ⇔ b̄) = b ∧ a ∧ (a ⇔ ā) ∧ (b ⇔ b̄)

= b̄ ∧ ā ∧ (a ⇔ ā) ∧ (b ⇔ b̄)

= b̄ ∧ (a ⇔ ā) ∧ (b ⇔ b̄)

= b ∧ (a ⇔ ā) ∧ (b ⇔ b̄).

Hence (a ⇔ ā) ∧ (b ⇔ b̄) 6 (a ⇔ b) and (a ⇔ b)/θ = 1/θ.

Finally, since every congruence in a de Morgan algebra is an intersection of maxi-

mal congruences, the lemma follows. �

For an MS-algebra L we will write Sk(L) to denote the skeleton of L, that is

Sk(L) = {x̄ : x ∈ L}. It is a well known fact that for L ∈ MS, Sk(L) is the greatest

subalgebra of L which is a de Morgan algebra. If L ∈ MS has a permutable skeleton,

then the operation⇔ is defined for the elements in Sk(L). Furthermore, by Lemma 2,

the congruences of L are compatible with this operation. We summarize this in

Corollary 3. Let L be an MS-algebra with congruence permutable skeleton. Let

θ ∈ Con(L) and let x1, x2, y1, y2 ∈ Sk(L) be such that (x1, y1), (x2, y2) ∈ θ. Then

(x1 ⇔ x2, y1 ⇔ y2) ∈ θ.

In the next lemma we state a Boolean algebra identity we will need in the proof

of our main theorem.

Lemma 4. Let B be a Boolean algebra, and let a1, . . . , an ∈ B. Then

∨

U⊆{1,...,n}

(

∧

k∈U

ak ∧
∧

k∈{1,...,n}−U

āk

)

= 1.

Let (θ1, . . . , θn; x1, . . . , xn) be a system on L, and suppose s is a solution for it.

Then the systems (θ1, . . . , θn; (x1 ∨ xk)∧¯̄xk, . . . , (xn ∨ xk)∧¯̄xk), k = 1, . . . , n, all have

a solution (namely sk = (s ∨ xk)∧¯̄xk). Also, s̄ is a solution for (θ1, . . . , θn; x̄1, . . . , x̄n).

We prove in the next theorem that, when Sk(L) is permutable, the existence of

solutions to these new systems is sufficient to find a solution for the original system.
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Theorem 5. Let L be an MS-algebra with congruence permutable skeleton. Take

(θ1, . . . , θn; x1, . . . , xn) to be a system on L, and let z ∈ Sk(L) be a solution for

(θ1, . . . , θn; x̄1, . . . , x̄n). Suppose there are s1, . . . , sn ∈ L such that sk is a solution

for (θ1, . . . , θn; (x1 ∨ xk) ∧ ¯̄xk, . . . , (xn ∨ xk) ∧ ¯̄xk), k = 1, . . . , n. Then

s =
∨

U⊆{1,...,n}

((

∧

k∈U

x̄k ⇔ z

)

∧

(

∧

k∈{1,...,n}−U

x̄k ⇔ z

)

∧

(

∧

k∈U

sk

))

is a solution for (θ1, . . . , θn; x1, . . . , xn).

P r o o f. In order to make this proof easier to read we will use the notation

x ≡θ y for equality modulo θ. Let 1 6 l 6 n; we will prove that (s, xl) ∈ θl. For

U ⊆ {1, . . . , n} define

tU =

(

∧

k∈U

x̄k ⇔ z

)

∧

(

∧

k∈{1,...,n}−U

x̄k ⇔ z

)

∧

(

∧

k∈U

sk

)

.

Note that if l /∈ U then

tU 6

(

∧

k∈{1,...,n}−U

x̄k ⇔ z

)

≡θl

(

∧

k∈{1,...,n}−U

x̄k ⇔ x̄l

)

6 x̄l ⇔ x̄l = 0.

Now if l ∈ U we have
(

∧

k∈U

x̄k ⇔ z

)

∧

(

∧

k∈U

sk

)

≡θl

(

∧

k∈U

x̄k ⇔ x̄l

)

∧

(

∧

k∈U

(xl ∨ xk) ∧ ¯̄xk

)

= xl ∧

(

∧

k∈U−{l}

(x̄k ⇔ x̄l) ∧ (xl ∨ xk) ∧ ¯̄xk

)

= xl ∧

(

∧

k∈U−{l}

(x̄k ⇔ x̄l) ∧ ¯̄xk

)

= xl ∧

(

∧

k∈U−{l}

(¯̄xk ⇔ ¯̄xl) ∧ ¯̄xk

)

= xl ∧

(

∧

k∈U−{l}

(¯̄xk ⇔ ¯̄xl) ∧ ¯̄xl

)

= xl ∧

(

∧

k∈U−{l}

¯̄xk ⇔ ¯̄xl

)

= xl ∧

(

∧

k∈U−{l}

x̄k ⇔ x̄l

)

.
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Hence







tU ≡θl
0 for l /∈ U

tU ≡θl
xl ∧

(

∧

k∈U−{l}

(x̄k ⇔ x̄l)

)

∧

(

∧

k∈{1,...,n}−U

x̄k ⇔ x̄l

)

for l ∈ U.

Thus,

s ≡θl

∨

U⊆{1,...,n}
l∈U

xl ∧

(

∧

k∈U−{l}

(x̄k ⇔ x̄l)

)

∧

(

∧

k∈{1,...,n}−U

x̄k ⇔ x̄l

)

= xl ∧

(

∨

U⊆{1,...,n}
l∈U

(

∧

k∈U−{l}

(x̄k ⇔ x̄l)

)

∧

(

∧

k∈{1,...,n}−U

x̄k ⇔ x̄l

))

= xl ∧ 1

(use Lemma 4 to obtain the last equality). �

For θ ∈ Con(L) and S a subalgebra (or sublattice of L) we will write θS to

denote the restriction of θ to S, that is θS = θ ∩ (S × S). Obviously θS ∈ Con(S).

Let a, b ∈ L be such that a 6 b, and let [a, b] = {z ∈ L : a 6 z 6 b}. Note

that if (θ1, . . . , θn; x1, . . . , xn) is a system on L, then (θ
[a,b]
1 , . . . , θ

[a,b]
n ; (x1 ∨ a) ∧

b, . . . , (xn ∨ a)∧b) is a system on the lattice [a, b]. Also, (θ
Sk(L)
1 , . . . , θ

Sk(L)
n ; x̄1, . . . , x̄n)

is a system on the de Morgan algebra Sk(L). Further, note that (θ1, . . . , θn; (x1 ∨ a)∧

b, . . . , (xn ∨ a)∧ b) has a solution in L iff (θ
[a,b]
1 , . . . , θ

[a,b]
n ; (x1 ∨ a)∧ b, . . . , (xn ∨ a)∧

b) has a solution in [a, b]. Also, (θ1, . . . , θn; x̄1, . . . , x̄n) has a solution in L iff

(θ
Sk(L)
1 , . . . , θ

Sk(L)
n ; x̄1, . . . , x̄n) has a solution in Sk(L). In the light of these observa-

tions we can restate Theorem 5 in the following manner:

Theorem 6. Let L be an MS-algebra with congruence permutable skeleton.

Take (θ1, . . . , θn; x1, . . . , xn) to be a system on L, and let z be a solution for

(θ
Sk(L)
1 , . . . , θ

Sk(L)
n ; x̄1, . . . , x̄n). Suppose there are s1, . . . , sn such that sk is a so-

lution for (θ
[xk,¯̄xk]
1 , . . . , θ

[xk,¯̄xk]
n ; (x1 ∨ xk) ∧ ¯̄xk, . . . , (xn ∨ xk) ∧ ¯̄xk), k = 1, . . . , n.

Then

s =
∨

U⊆{1,...,n}

((

∧

k∈U

x̄k ⇔ z

)

∧

(

∧

k∈{1,...,n}−U

x̄k ⇔ z

)

∧

(

∧

k∈U

sk

))

is a solution for (θ1, . . . , θn; x1, . . . , xn).
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Corollary 7. Let L be an MS-algebra with congruence permutable skeleton. A

system (θ1, . . . , θn; x1, . . . , xn) on L has a solution iff each of the systems

(θ
[xk,¯̄xk]
1 , . . . , θ[xk,¯̄xk]

n ; (x1 ∨ xk) ∧ ¯̄xk, . . . , (xn ∨ xk) ∧ ¯̄xk), k = 1, . . . , n

has a solution.

We conclude our work with an example that shows that the hypothesis of per-

mutability of the skeleton cannot be dropped in Theorems 5 and 6.

E x am p l e. Let L be the MS-algebra described in Figure 1. Let (θ, δ; 1, y)

be the system where θ, δ and y are shown in Figure 2. It is easy to check that

(θSk(L), δSk(L); 1̄, y) has a solution. Also, the intervals [1, ¯̄1] and [y, ȳ] have 1 and 2

elements respectively, thus the restrictions of the system to these intervals clearly

have solutions. Finally, note that the system has no solution in L.

1

y

Figure 1. L

1

y

θ

1

y

δ

Figure 2.
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