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Abstract. Eric van Douwen produced in 1993 a maximal crowded extremally disconnected
regular space and showed that its Stone-Čech compactification is an at most two-to-one
image of βN. We prove that there are non-homeomorphic such images. We also develop
some related properties of spaces which are absolute retracts of βN expanding on earlier
work of Balcar and B laszczyk (1990) and Simon (1987).
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1. Introduction

In the paper [3], van Douwen proved the existence of a compact crowded separable

extremally disconnected (ED) space which is the at most 2-to-1 continuous image

of βN. We are interested in the question of whether such an image (henceforth a

vD-space) is unique. This is especially interesting now that we have another con-

struction of such a space by a result of Protasov [8, 3.9, p. 235] who constructed a

special idempotent of (βN, +) (see Proposition 10). As is the case with any compact

separable ED space, each vD-space can be embedded into βN as a retract. There

is an unresolved problem of A. Bella, A. B laszczyk, and A. Szymański, to charac-

terize the so-called absolute retracts of βN (namely a space which is embeddable

in βN, and every embedding is a retract). Simon [13] presented a very interest-

ing construction of a retract of βN which is not an absolute retract. This had

been done earlier by others with special set-theoretic hypotheses (see [14], [15]). Si-

mon’s construction and van Douwen’s each involve some form of irresolvability so

we explore Simon’s ideas further and see how they might provide information about

vD-spaces and/or absolute retracts. We use Kunen’s notion of independent matri-

ces to show there are non-homeomorphic vD-spaces (one of which is an absolute
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retract). Using the set-theoretic assumption, Martin’s Axiom for countable posets,

we are able to construct a compact vD-space which we can show is not an absolute

retract.

Definition 1. A compact space E is a vD-space if E is crowded (has no isolated

points), extremally disconnected, and if there is a 62-to-1 map from βN onto E.

Definition 2. A countable space S is a vD-space if S is crowded and there is

a 1-to-1 function from N onto S which extends to a 62-to-1 function from βN onto

βS.

In this same spirit, we introduce a new kind of retraction.

Definition 3. A retraction r from βN onto E will be called a 1-to-1 retraction

if r ↾ N is 1-to-1. A space E will be called an absolute 1-to-1 retract of βN if each

homeomorphic copy of E in βN is a 1-to-1 retract.

Proposition 4. Each countable vD-space S is extremally disconnected.

P r o o f. Let f denote the 1-to-1 function from N onto S such that fβ is 62-to-1

from βN onto βS. Since S is crowded, it follows that fβ maps N∗ = βN \N onto βS.

By Zorn’s Lemma, there is a closed subset K ⊂ N∗ such that f ↾ K is irreducible.

Let S′ be the preimage of S in K. Since fβ is 62-to-1, and f [N] = S, it follows that

fβ is 1-to-1 on S′. Since K and βS are compact, fβ is a homeomorphism on S′.

Now S is extremally disconnected since each countable subset of βN is extremally

disconnected. �

Therefore, of course, if S is a countable vD-space, then βS is a compact vD-space.

However, it is easily seen that not every countable dense subset of a compact vD-

space is itself a vD-space. If E is a compactification of a set S, then p ∈ E is a far

point of S (or far from S) if it is not in the closure of any countable discrete subset

D ⊂ S. We will say that a point p ∈ E is a near-point of S (or near to S) if it is the

limit of a discrete subset of S.

Proposition 5 [3]. If f : βN→→E is 62-to-1 and E is a compact vD-space, then

f ↾ N is 1-to-1, S = f [N] is a countable vD-space, and for each p ∈ E, f−1(p) \ N is
a singleton if and only if p is a far point of S \ {p}. In particular, each point of S is

a far point of S \ {p}.

Proposition 6 [3]. Let S be a countable regular space, then the following are

equivalent:

(1) S is a countable vD-space,
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(2) S is extremally disconnected, crowded and nodec (i.e. nowhere dense sets are

closed),

(3) for each A ⊂ S, A is open if and only if A is crowded.

Although, strictly speaking, the following result is presented in van Douwen’s

paper for the case X is the rationals, the more general statement follows from the

same proof.

Theorem 7 [3]. IfX is any countable crowded Tychonoff space, there is a stronger

topology on X which contains a dense subspace S which is a vD-space.

Another formulation for being a vD-space is useful in some constructions.

Proposition 8. A countable space S is a vD-space if it is regular, crowded, and

for each A ⊂ S, there is a partition of S, {Wn : n ∈ ω}, by clopen sets such that for

each n, one of {A ∩Wn, Wn \A} is finite.

P r o o f. It is easy to see that Proposition 6(2) implies that a vD-space S will

have this property by using the fact that the boundary of A will be closed discrete in

a countable zero-dimensional space. For the converse note simply that each crowded

A is open since each Wn will meet it in an open set. �

Definition 9. For p ∈ βN and k ∈ N, the ultrafilter k + p is defined as the set

{A ⊂ N : (N ∩ (A− k)) ∈ p}. Then, for q ∈ βN, q + p is defined as the image of q by

the mapping ̺p : βN → βN where ̺p(k) = k + p for each k ∈ N.

The following result is easily deduced (and known) from the comments immedi-

ately following Theorem 3.9 of [8].

Proposition 10 [Protasov]. There is an ultrafilter p ∈ N∗ such that ̺p(p) = p

and ̺p(q) 6= p for all q 6= p. It also follows that ̺p ↾ βN is 62-to-1, ̺p[βN] is a

compact vD-space, and ̺p[N] is a vD-space.

In fact, ̺p[N] = N+p is a vD-space which is a homogeneous topological semi-group.

2. Retracts

It has been shown (see [2]) that each minimal subset of βN of the form ̺p[βN],

where ̺p(p) = p, is homeomorphic to E(2c). Recall that the topology on E(2c) is

determined by the irreducible map ϕ : E(2c)→→2c, where for each open set U ⊂ 2c,

ϕ−1(U) has clopen closure. Each point p ∈ E(2c) can be thought of as the ultrafilter

of regular open sets U ⊂ 2c such that p is in the closure of ϕ−1(U).
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Proposition 11. E(2c) is an absolute retract, in fact, it is an absolute 1-to-1

retract.

P r o o f. Assume that K ⊂ βN is homeomorphic to E(2c) and let g denote an

irreducible map from K onto 2c. For each α ∈ c, let [〈α, 0〉] and [〈α, 1〉] denote the

canonical basic clopen subsets of 2c. There is subset Aα of N with the property

that Aα ∩ K is equal to g−1([〈α, 0〉]). For each integer n ∈ N, define the function

zn ∈ 2c by zn(α) = 0 if and only if n ∈ Aα. It is easily checked that {zn : n ∈ N}
is a dense subset of 2c. For each z ∈ 2c, it is also easily checked that g−1(p) has

cardinality 2c. For each n, let pn ∈ g−1(zn) be chosen, so that pn 6= pm for n 6= m.

Since g is irreducible, {pn : n ∈ N} is dense in K. We leave as an exercise that

f : N→→{pn : n ∈ N} where f(n) = pn, lifts to a retraction from βN onto K. �

Let X be any set and let F be any filter of subsets of X . A doubly-indexed family

{A(α, β) : (α, β) ∈ I × J} is called an I × J-independent matrix mod F , if

(1) for each finite function ̺ from I into J and each F ∈ F , the set A̺ = F ∩⋂
{A(α, ̺(α)) : α ∈ dom(̺)} is not empty,

(2) for each α ∈ I and β 6= γ ∈ J , A(α, β) ∩ A(α, γ) is disjoint from some member

of F .

If no filter F is mentioned, then it is assumed to be the co-finite filter.

A space X is (strongly) irresolvable if (each open subset of) it does not contain

disjoint dense subsets. Another interesting property of countable vD-spaces is, that

they are strongly irresolvable.

We expand this notion to more general families of dense subsets.

Definition 12. A space X is (ω, κ)-irresolvable if there is a set Y ⊂ X of

cardinality κ so that for any countable D ⊂ X \ Y , D is nowhere dense.

Definition 13. A space X is (κ× λ)-resolvable if there is an κ× λ-independent

matrix which consists of dense subsets of X . A space X is (ω, κ×λ)-resolvable, if it

has a countable dense subset which is (κ× λ)-resolvable.

Simon [13] constructs a retract of βN which is not an absolute retract and the no-

tions of independent matrix and some form of irresolvability were shrewdly exploited.

In particular, Simon produces an (ω, ω)-irresolvable retract of βN.

Proposition 14. There is a retract G of βN which is (ω, ω)-irresolvable and there

is an embedding of G into βN which is not a retract.
Simon constructs an embedding of G as a non-retract by using a c× c-independent

matrix to simultaneously construct G and the embedding of G. The space G is βGω

for a now well-known space Gω . The base set for Gω is ω<ω (the family of functions
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from an integer into ω). For each t ∈ Gω , an ultrafilter Ut on ω is selected, and

a set U ⊂ S is open if it satisfies that for each t ∈ U , the set {n : t⌢n ∈ U} is

in Ut (see also [4], [16]). The (ω, ω)-irresolvability of such spaces will hold if each

Ut is chosen to be a weak P-point (ensuring that βGω \ Gω is ℵ0-bounded). We

explore in more detail what it takes to “kill” all potential retracts. Simon, in effect,

shows that examples of Simon type (in which each Ut is a weak P-point), are not

(ω, 1 × ω1)-resolvable. Although Simon type spaces can be (ω, ω)-irresolvable, they

are not irresolvable since, for example,
⋃
n

{ωn : n ∈ J} is a dense for each infinite

subset J ⊂ ω. The following result is inspired by Simon’s construction.

Theorem 15. If E is an absolute 1-to-1 retract of βN, then either E is not

(ω, c)-irresolvable or E is (ω, c× c)-resolvable.

P r o o f. If E is not (ω, c)-irresolvable then there is nothing to prove, so we

fix a set S ⊂ E of cardinality c so that D is nowhere dense in E for all countable

D ⊂ E \ S. Let c + 1 denote the one-point compactification of c with the discrete

topology. It is shown, in [5], that there is a mapping f from N∗ onto E × (c + 1)c.

For each finite function ̺ from a subset of c into c, we let [̺] denote the clopen

subset of (c + 1)c consisting of all functions that extend ̺. The mapping f is a

mapping version of independent matrices as explored in [5]. For each (α, β) ∈ c× c,

we fix an infinite B(α, β) so that (B(α, β))∗ = f−1(E × [〈(α, β)〉]), then the family

{B(α, β) : (α, β) ∈ c×c} will be a c×c-independent matrix. For each function ̺ with

finite domain contained in c and range contained in c, let B̺ =
⋂

α∈dom(̺)

B(α, ̺(α)).

Similar to the constructions in §3 of [5] we construct a descending chain {Kα : α < c}

of closed subsets of K0 = N∗ , sets Iα ⊂ c and maintain the hypothesis that the

function fα, defined as f ↾ Kα composed with the projection map πIα
from E×(c+1)c

onto E×(c+1)Iα , maps Kα onto E×(c+1)Iα . This induction will result in a copy Kc

of E since the mapping fc will be made to be irreducible (see inductive condition 2).

Let {rα : α ∈ c} enumerate all the 1-to-1 functions from N into S. The plan is to

select Iα+1 and Kα+1 in such a way that rα will not correspond to a retract fromN into the copy of S sitting in Kc. If we are not able to do this it will because rα

induces an (Iα×c)-independent matrix of dense subsets of its range (this is inductive

condition 4). Let {Aα : α ∈ c} be an enumeration of the infinite subsets of N.

The inductive assumptions on β < α < c are:

(1) Kβ ⊃ Kα, Iβ ⊃ Iα, and fα = πIα
◦ f maps Kα onto E × (c + 1)Iα ,

(2) if π∅ ◦ fβ maps A∗
β ∩Kα onto E, then Kα ⊂ A∗

β ,

(3) the set c \ Iα has cardinality at most ω · |α|,

(4) either rβ [A] is not dense in E for some A ⊂ N with A∗ ⊃ Kα, or rβ [B̺] is dense

in E for each function ̺ into c with dom(̺) ∈ [Iα]<ω.
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If α is a limit, we may set Kα =
⋂
{Kβ : β < α} and Iα =

⋂
{Iβ : β < α}.

Compactness ensures that fα maps Kα onto E × (c + 1)Iα .

Now suppose we have Kα and Iα and we show how to construct Kα+1 and Iα+1.

If fα maps Kα ∩A∗
α onto E × (c + 1)Iα , then replace Kα by Kα ∩A∗

α. In this case,

for notational convenience, let ̺0 denote the empty function. Otherwise, there is a

function ̺0 into c with dom(̺0) ∈ [Iα]<ω and a clopen W0 ⊂ E, such that the image

of Kα ∩A∗
α is disjoint from W0 ∩ [̺0]. We will ensure that Kα+1 is contained in B∗

̺0

that will guarantee that π∅ ◦fα+1 will not be onto. Now we turn our attention to rα.

If there is some ̺ ⊃ ̺0 such that rα[B̺] is not dense in E, then choose such a ̺. If

no such ̺ exists, then let ̺ = ̺0. Define Kα+1 = Kα ∩B∗
̺ and Iα+1 = Iα \ dom(̺).

Condition 4 will hold since either rα[B̺] is not dense in E, or rα[Bσ] is dense in E

for all suitable σ with dom(σ) ⊂ Iα+1 since Bσ ⊃ B̺0∪σ and the latter is assumed

to have dense image.

Assume now that r : N → Kc is a 1-to-1 map that lifts to a retraction rβ from βN
onto Kc. Notice that fc ◦ r is a 1-to-1 map from N into E. Let A be the preimage of

S under this map and fix any γ ∈ c such that rγ ↾ A equal fc ◦ r ↾ A. We first check

that (N \A)∗ is disjoint from Kc, hence there is an α > γ such that Kα is contained

in A∗. Since r is a retraction, rβ maps the clopen subset Kc∩ (N \A)∗ to itself, and,

by continuity, into the closure of r[(N \ A)]. However, r[N \ A] is nowhere dense in

Kc since (fc ◦ r)[N \A] is a countable subset of E \ S. Similarly, it follows that r[Ã]

is a dense subset of Kc (hence rγ [Ã] is a dense subset of E) for all Ã ⊂ A such that

Kc ⊂ Ã∗. Therefore by inductive condition 4, E is (ω, c× c)-resolvable. �

The set-theoretic principle MActble is a very weak form of Martin’s Axiom. It is

simply the usual statement for Martin’s Axiom but restricted to countable posets.

Theorem 16. If MActble holds, then any absolute retract of βN, that is (ω, c)-

irresolvable, is also (ω, c× c)-resolvable.

Before proving the result we record the following (almost) folklore result.

Proposition 17. If MActble holds, then every crowded separable Hausdorff space

of π-weight less than c is c× c-resolvable.

P r o o f. Let S be a countable space, λ < c, and let {Uα : α < λ} be a π-base

for S. By a routine application of MActble, we may choose countably many pairwise

disjoint dense subsets, {Sn : n ∈ N}, of S. Reindex the family by T =
⋃
n

P(n)P(n),

i.e. {St : t ∈ T }. Recall Simon’s construction of a P(N)×P(N)-independent matrix,

where A(X, Y ) = {t ∈ T : t(X∩nt) = Y ∩nt, and dom(t) = nt}. Let {Xγ : γ < c} be

an indexing of P(N). Construct our new c×c-independent matrix {S(β, γ) : β, γ ∈ c}
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by induction on β + γ so that S(β, γ) ∩ St = ∅ for t /∈ A(Xβ , Xγ). What we have

gained is that S(β, γ) ∩ S(β, δ) is finite for γ 6= δ. We use MActble to ensure that

S(β, γ) is dense and meets all finite intersections of the, fewer than c, previously

chosen dense sets S(ζ, δ). In fact, the necessary inductive assumption is that for

ζ0 < ζ1 < . . . < ζk, and ξi such that S(ζi, ξi) have already been defined, there is an

infinite set of n such that
⋂

i<k

S(ζi, ξi) meets St for each t ∈ P(n)P(n)∩
⋂

i<k

A(Xζi
, Yξi

).

We leave the details to the reader. �

2.1. Proof of Theorem 16. Let S ⊂ E be the dense set of size c that witnesses

that E is (ω, c)-irresolvable, and let {sn : n ∈ N} be a countable dense subset. Let

{rα : α ∈ c} enumerate all the functions, r, from βN into E such that r[N] ⊂ S and

let {Aα : α ∈ c} enumerate all the infinite subsets of N. For notational convenience

assume that An = N and rn is constant for each n ∈ ω. We construct by induction

on α < c, closed sets Kα ⊂ N∗ that are G|α|-sets, and points {s(n, α) : n ∈ N} ⊂ 2α

dense in the compact set Eα ⊂ 2α, and mapping fα so that for β < α < c:

(1) Kα is a subset of Kβ and is equal to the intersection of a family of |α| many

clopen subsets of βN,

(2) the mapping fα maps Kα onto Eα and fα(x) ↾ β = fβ(x) for each x ∈ Kα,

(3) there is a continuous map from E onto Eα that sends sn to s(n, α) for each

n, and if the closure of {sn : n ∈ Aβ} in E is disjoint from the closure of

{sn : n ∈ N \Aβ} then so is their image by this map.

(4) either there is a clopen W ⊂ Eβ such that rβ [f−1
α (W )] is disjoint from {sn :

s(n, α) ∈ W}, or there is an A ⊂ N such that A∗ ⊃ Kα such that rβ ↾ A is

1-to-1 and rβ [A] is c× c-resolvable,

(5) if fα[A∗
β ∩Kα] = Eα, then Kα ⊂ A∗

β .

We check that if the induction succeeds, then Kc is homeomorphic to E and if a

retract, then E is c × c-resolvable. By inductive condition 3, there is a homeomor-

phism h from Ec to E, and by inductive condition 5, fc is an irreducible function

from Kc onto Ec. Since E is extremally disconnected, Kc is homeorphic to E. As-

sume r : βN→→Kc is a retraction. It follows that h ◦ fc ◦ r[N] ∩ S is a dense subset

of S, and let A = N ∩ (h ◦ fc ◦ r)−1(S). Since h ◦ fc ◦ r(N \A) is disjoint from S, it

follows that r[N \ A] is nowhere dense in Kc. Since r is a retraction, it follows that

(N \A)∗ ∩Kc ⊂ [N \A] is empty. It similarly follows that for each Ã ⊂ A such that

Kc ⊂ Ã∗, r[Ã] is dense in Kc. Fix any γ < c such that rγ ⊃ (h ◦ fc ◦ r) ↾ A, and let

α > γ be large enough so that (N \ A)∗ \Kα is empty. By condition 4 there is an

Ã ⊂ A such that rγ ↾ Ã is 1-to-1 and rγ [Ã] is dense in E and is c× c-resolvable.

Now we carry out the induction. Let hω be any map from E onto 2ω that is 1-to-1

on {sn : n ∈ N} and let s(n, ω) = hω(sn) for each n ∈ N}. Let fω be the map from
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Kω = βN onto Eω = 2ω such that fω(n) = s(n, ω) for each n. For limit α > ω,

let Kα =
⋂

β<α

Kβ and, for each n, s(n, α) =
⋃
{s(n, β) : β < α}. Similarly, for each

x ∈ Kα, let fα(x) =
⋃
{fβ(x) : β < α} ∈ 2α. Since the projection mapping will

send Eα onto Eβ+1 for β < α, the last condition is automatically satisfied for all

α > β + 1 if it holds for α = β + 1. The other induction conditions are routine

to verify. Now assume α = β + 1. For each clopen W ⊂ Eβ , fix YW ⊂ N such

that Y ∗
W ∩Kβ = f−1

β [W ]. Also choose {Yξ : ξ < β} ⊂ P(N) so that Kβ =
⋂

ξ<β

Y ∗
ξ .

Define a poset P by p ∈ P if p ⊂ N is finite, and rβ ↾ p is 1-to-1. For each clopen

W ⊂ Eβ and ξ < β, let DW,ξ = {p ∈ P : p ∩ YW ∩ Yξ 6= ∅}. Assume there is

some W, ξ such that DW,ξ is not dense (P is ordered by ⊃). Then there is some

p ∈ P such that q ∩ YW ∩ Yξ is empty for all q ⊃ p. This means Ap ⊃ YW ∩ Yξ

where Ap = r−1
β (rβ [p]), hence rβ [YW ∩ Yξ] is a finite subset of E. It follows then

that rβ [(YW ∩ Yξ)
∗ ∩ Kβ ] = rβ [f−1

β [W ]] is nowhere dense in E. In this case, let

B̃β = N (used below). Therefore to ensure condition 4, we need only worry about

the case where DW,ξ is dense for all such W, ξ. Let G ⊂ P be a filter which, by

MActble, can be assumed to meet DW,ξ for each clopen W ⊂ Eβ and ξ < β and

let Bβ =
⋃

G ⊂ N. It follows that rβ ↾ Bβ is 1-to-1 and fβ [B∗
β ∩ Kβ] = Eβ . If

there is any B̃β ⊂ Bβ such that fβ[B̃∗
β ∩Kβ] = Eβ and rβ [B̃β ∩ YW ∩ Yξ] ∩W = ∅,

then we will ensure that Kα ⊂ B̃∗
β. Since we will have (B̃β ∩ YW ∩ Yξ)

∗ ⊃ f−1
α [W ],

this also would ensure that condition 4 would hold. If there is no such B̃β , then

let B̃β = Bβ and proceed as follows. For each clopen W ⊂ Eβ and ξ < β, let

SW,ξ = {s(n, β) : n ∈ Bβ ∩ YW ∩ Yξ}, which by our current assumption will be

infinite. Use this family of subsets of Sβ = {s(n, β) : n ∈ Bβ} to generate a Hausdorff

topology of weight < c. Applying Proposition 17, there is a c× c-independent matrix

of dense subsets. For each D ⊂ Sβ that is dense in this topology, the set AD =

{n : s(n, β) ∈ D} will satisfy that fβ[A∗
D ∩ Kβ ] = Eβ . By our assumption on rβ ,

(i.e. AD can not be a B̃β) rβ [AD] will be dense in E. Since rβ is 1-to-1, E is

(ω, c× c)-resolvable.

Finally we define Kα and {s(n, α) : n ∈ N}. If Kβ ∩ B̃∗
β ∩ A∗

β maps onto Eβ ,

replace B̃β by B̃β ∩ Aβ . If the closures of {sn : n ∈ Aα} and {sn : n ∈ N \ Aβ} are

disjoint, then let these closure be denoted C0, C1 and define s(n, α) = s(n, β)⌢0 for

n ∈ Aβ and s(n, α) = s(n, β)⌢1 for n ∈ N \ Aβ ; otherwise C0 = Eβ , C1 = ∅, and

s(n, α) = s(n, β)⌢0 for all n. Using MActble (i.e. adding a “Cohen real”) there is

a set Y ⊂ B̃β such that each of Y ∗ ∩Kβ and Kβ ∩ (B̃β \ Y )∗ map onto Eβ by fβ.

Since C0 and C1 are equal to the intersection of |β| many clopen sets in 2β, each

of

Y ∗ ∩Kβ ∩ f−1
β [C0] and (B̃β \ Y )∗ ∩Kβ ∩ f−1

β [C1]
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are also equal to the intersection of at most |β| many clopen subsets of βN. We

define Kα to be the union of these two sets. The mapping fα is easy to define. �

It is a reasonable conjecture (see [1]) to expect that every absolute retract of βN
is of the form E(K) where K is some continuous image of 2c. There are structure

theorems for such spaces by Shapiro [12] and Koppelberg [9]. A map f : X→→Y is

semi-open if the image of each non-empty open set has non-empty interior. This is

a notion dual to the important notion of complete or regular embedding in Boolean

algebra theory and the language of forcing posets. Borrowing from the forcing no-

tation, let Y lf X abbreviate that f is a semi-open mapping from X onto Y . In

Boolean algebras one often represents an algebra B as a union of a chain of smaller

subalgebras. In addition, the system is usually assumed to be continuous in that at

limit levels of the chain, that subalgebra is the union of the earlier algebras. The dual

notion in topology is the inverse limit of a continuous system. That is, an inverse

system of spaces is an indexed family of spaces and mappings {Xα, fβ
α : α < β ∈ λ}

so that fβ
α is a continuous function from Xβ onto Xα and fγ

α = fγ
β ◦f

β
α for α < β < γ.

The inverse limit of the system, Xλ = lim←−αXα for short, is the unique (up to homeo-

morphism) space for which there is a family of maps fα = fλ
α extending the system.

The notion of a continuous system will mean that for each limit ordinal γ < λ, Xγ

will equal lim←−α<γXα.

The following result is taken from the book by Heindorf and Shapiro ([7, 5.3.1],

see also the remark [7, page 7]).

Proposition 18. If K is a continuous image of 2c and E = E(K) is expressed

as an inverse limit of a continuous system {Eα, fβ
α : α < β < c} of spaces of weight

less than c and if fα denotes the resulting mapping from E onto Eα, then the set of

λ < c such that Eλ lfλ
E contains a closed and unbounded (cub) subset of c.

Theorem 19. If an (ω, c)-irresolvable absolute retract E, of βN, is expressed as
an inverse limit of a continuous system {Eα, gβ

α : α < β < c} of spaces of weight

less than c and if gα denotes the resulting mapping from E onto Eα, then the set

{α : Eα lgα
E} is a stationary subset of c.

P r o o f. Let f be a mapping from N∗ onto the compact space 2c and inductively

construct Iα ⊂ c, closed sets Jα ⊂ 2c\Iα and Kα ⊂ N∗ so that fα = f ↾ Kα maps

Kα onto Jα × 2Iα . The plan is to ensure that Jc =
⋂

α<c

Jα × 2Iα = Jc × 2∅ will

be homeomorphic to E and fc : Kc→→Jc will be irreducible. Therefore, Kc will be

a copy of E. Assume that E can be expressed as an inverse limit of a continuous

system {Eα, gα
β : β < α < c} of spaces of weight less than c so that there is a cub

C ⊂ c such that Eλ 6lgλ
E for each λ ∈ C. We will ensure that Kc is not a retract.
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Fix S ⊂ E of cardinality c so that each countable D ⊂ E \S is nowhere dense and

let {rα : α < c} enumerate all continuous functions from βN into E so that r[N] ⊂ S.

A word of caution, c may be singular and the order-type of C may be less than c. In

fact, we may as well assume that the order type of C is the cofinality of c and that

c \ C has cardinality c. At stage λ ∈ C, we handle all rα with α < λ and for each

β < c, we ensure that Jβ is homeomorphic to Eβ . Fix an enumeration {Aα : α ∈ c}

of P(N), and for convenience, we may assume that Aλ = N and Eλ+1 = Eλ for each

λ ∈ C.

To start the induction, fix a countable dense {sn : n ∈ ω} ⊂ S and assume without

loss of generality that g0 : E→→E0 is 1-to-1 on {sn : n ∈ ω}. Let µ0 be the weight

of E0 and choose any embedding of E0 into 2µ0 , call it J0. Let I0 = c \ µ0, let

K0 = f−1(J0 × 2I0) and f0 = f ↾ K0. Let h0 denote the map from E onto J0

such that h0[g
−1
0 (e)] is a singleton for each e ∈ E0 (and, conversely, g0[h

−1
0 (y)] is

a singleton for each y ∈ J0). This condition, in compact spaces, is equivalent to

asserting that h0, g0 induce a homeomorphism, ϕ0, from E0 to J0.

Let {λζ : ζ ∈ κ} be an increasing enumeration of C. We make the following

inductive assumptions on Iα, Jα, Kα and hα : E→→Jα:

(1) fα is onto, and for β < α, Kβ ⊃ Kα, and the projection π
c\Iβ

maps Jα × 2Iα

onto Jβ ,

(2) for limit α, Iα =
⋂

β<α

Iβ , for α ∈ C, |Iα \ Iα+1| < c, and for α /∈ C, Iα \ Iα+1 is

finite,

(3) hα and gα induce a homeomorphism ϕα from Eα to Jα, and for β < α and

e ∈ E, hβ(e) = hα(e) ↾ (Iα \ Iβ)

(4) if λ < α and λ ∈ C, then for all β < λ, there is a clopen W ⊂ E and a clopen

U ⊂ Jα such that either

r−1
β [W ] ∩Kα = ∅ or rβ [f−1

α (U × 2Iα)] ∩ h−1
α (U) = ∅

(5) if β < α, then either Kα ⊂ A∗
β or there is a clopen W ⊂ Jα such that fα[A∗

β ∩

Kα] ∩ (W × 2Iα) = ∅

Item (4) is the condition that guarantees that Kc is not a retract of βN. By

condition (5), fc is irreducible, hence a homeomorphism from Kc onto Jc. By con-

dition (3), h−1
c

is a homeomorphism from Jc to E. Now assume that r is a re-

traction mapping onto Kc and observe that H = h−1
c
◦ fc ◦ r is a function from

βN onto E. Let A ⊂ N equal H−1(S) ∩ N. Since r is a retraction and r[N \ A]

is nowhere dense in Kc, it follows that Kc ⊂ A∗. There is a β < c such that

H ↾ A = rβ ↾ A and let α = β + 1. There can be no W as in (4) since H is

onto. So assume U ⊂ Jα is as in (4). Since Jc projects onto Jα, let p ∈ Kc be

such that fc(p) = fα(p) is in U × 2Iα . We obtain a contradiction by showing that
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hα(rβ(p)) ∈ U . Since r is a retraction, r(p) = p, hence rβ(p) = H(p) = h−1
c

(fc(p)).

Therefore, hα(rβ(p)) = hα(h−1
c

(fc(p))) = fc(p) ↾ (c \ Iα) ∈ U .

Assume α < c and the induction has succeeded for α′ < α. If α is a limit,

then Kα =
⋂

β<α

Kβ , Iα =
⋂

β<α

Iβ , and
⋂

β<α

Jβ × 2Iβ will be of the form Jα× 2Iα since

γ < β < α implies Jβ×Iβ projects onto Jγ . It is easily verified that fα[Kα] = Jα×2Iα .

The function hα, where for e ∈ E, hα(e) is the unique point y ∈ Jα such that

y ↾ β = hβ(e) for each β < α. It is a routine exercise to verify that hα : E→→Eα

is a continuous surjection and that hα, gα induces a homeomorphism from Eα to

Jα (because of the assumption at limits on lim←−β<αEβ). Conditions (4) and (5) are

immediate because α is a limit.

Now assume α = λ+ 1 for some λ ∈ C. Since Eλ 6lgλ
E, there is a clopen W ⊂ E

such that gλ[W ] is nowhere dense in Eλ. Let Kλ,0 = Kλ. By induction on β < λ,

we choose finite functions ̺β ⊂ Iλ × 2 (pairwise compatible) and Kλ,β ⊂
⋂

γ<β

Kλ,γ

so that Kλ,β maps onto Jλ × {
⋃

γ<β

̺γ} × 2Iλ,β (where Iλ,β = Iλ \
⋃

γ<β

dom(̺γ)).

At stage β, we consider r−1
β [W ]. If there is a non-empty clopen U ⊂ Jλ with

U ∩ hλ[W ] = ∅ and a finite function ̺β ⊂ Iλ,β × 2 such that fλ maps Kλ,β ∩ r−1
β [W ]

onto U × {
⋃

γ6β

̺γ} × 2Iλ,β+1 , then let

Kλ,β+1 = Kλ,β ∩ f−1
λ

[
(Jλ \ U)×

{ ⋃

γ6β

̺γ

}
× 2Iλ,β+1

]

∪ r−1
β [W ] ∩Kλ,β ∩ f−1

λ

[
U ×

{ ⋃

γ6β

̺γ

}
× 2Iλ,β+1

]

and notice that rβ [f−1
λ (U ×{

⋃
γ6β

̺γ}×2Iλ,β+1)] ⊂W and so is disjoint from h−1
λ [U ].

If there is no such ̺β, then fλ[Kλ,β \ r−1
β [W ]] maps onto Jλ × {

⋃
γ<β

̺γ} × 2Iλ,β ,

so set ̺β = ∅, Kλ,β+1 = Kλ,β \ r−1
β [W ]. In this case we have r−1

β [W ] ∩Kλ,β+1 = ∅

of course. Let Kα = Kλ+1 =
⋂

β<λ

Kλ,β, Iα =
⋂

β<λ

Iλ,β , Jα = Jλ × {
⋃

β<λ

̺β}. Since

Eλ+1 = Eλ and Aλ = N, the remaining inductive conditions are immediate by the

inductive assumptions.

Now assume α = β + 1 for β /∈ C. Let the weight of Eα be µα < c. By inductive

condition (2), c\Iβ has cardinality less than c. Let I ′α ⊂ c\Iβ have cardinality µα and

let J ′
α ⊂ 2I′

α be homeomorphic to Eα and let ϕ′
α : Eα→→J ′

α be a homeomorphism.

Define the homeomorphism ϕ0
α from Eα into Jβ×J ′

α by ϕ0
α(e) = (ϕβ(gβ+1

β (e)), ϕ′
α(e))

and let J0
α be the image of Eα. Define K0

α = Kβ∩f−1
β (J0

α×2Iβ\I′

α). In order to define

Kα ⊂ K0
α, and Jα ⊂ J ′

0 we must now consider Aα. If f [K0
α∩A∗

α] = J0
α×2Iβ\I′

α , then

Kα = K0
α ∩A∗

α and Jα = J0
α, Iα = Iβ \ I ′α. Otherwise, there is a clopen set W ⊂ J0

α
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and a finite function ̺α ⊂ (Iβ \ I ′α)× 2 such that

f [K0
α ∩A∗

α] ∩W × {̺α} × 2Iβ\(I
′

α∪dom(̺α)) = ∅.

Now define Kα = K0
α, Jα = J0

α × {̺α}, Iα = Iβ \ (I ′α ∪ dom(̺α)). In the first case,

set hα(e) = ϕ0
α(gα(e)) for e ∈ E, in the second, hα(e) = ϕ0

α(gα(e))⌢̺α. �

Corollary 20. If a Simon type space satisfies that the character of each Ut is c,

then it is not an absolute retract.

P r o o f. Let Gω be a Simon type space for which each Ut has character c.

Assume that f is a continuous function from βGω onto a space K and assume that

f ↾ Gω is 1-to-1 and that K has weight less than c. By Theorem 19, it suffices to

show that f is not semi-open. To see this, recall that Gω is a topology on the base

set
⋃
n

ωn. Let ∅ ∈ T ⊂ Gω and for each t ∈ Gω, whether in T or not, ensure that

Lt = {n ∈ ω : t⌢n ∈ T } is not in Ut while at the same time, f(t) is in the closure

of {f(t⌢n) : n ∈ Lt}. The reason we can do this is that f(t) is in the closure of

{f(t⌢n) : n ∈ ω} but the neighborhood trace in K will have character less than c.

It follows that T is nowhere dense in Gω (see [16]), while at the same time f [T ]

contains f [Gω] in its closure, and so is dense in K. Therefore βGω \T does not map

to a set with non-empty interior, showing that f is not semi-open. �

For a cardinal κ, let ♦∗
κ denote the following (consistent) strengthening of ♦κ: for

each λ < κ, there is a family Sλ ⊂ P(λ) such that |Sλ| 6 |λ| and for each X ⊂ κ,

the set {λ : X ∩ λ ∈ Sλ} contains a cub subset of κ.

If ♦∗
κ holds and P is a ccc poset of cardinality at most κ, then ♦∗

κ will continue

to hold. Therefore ♦∗
c

will hold in many models (independent of the continuum

hypothesis). The details of the next result are omitted because the proof is so

similar to the proof of Theorem 19.

Theorem 21. ♦∗
c
implies that if an absolute retract E, of βN, is expressed as an

inverse limit of a system {Eα, fβ
α : α < β < c} of spaces of weight less than c and if

fα denotes the resulting mapping from E onto Eα, then the set {α : Eα lfα
E} is a

stationary subset of c.
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3. Distinct vD-spaces

In this section we will produce distinct vD-spaces. One interesting fact we will

prove is that E(2c) is itself a compact vD-space (see also [6] for another approach).

Our extra effort will yield the additional information that it has quite distinct dense

countable vD-spaces. These results will use the technique of independent matrices.

We will also show that there is another compact vD-space that is not homeomorphic

to E(2c) by a proof which is suprisingly easy utilizing Simon type spaces, although

we can note that a Simon type space is not itself a countable vD-spaces because it is

not irresolvable. Before carrying out the constructions we will introduce some other

properties that can serve to distinguish these spaces.

3.1. Weak P-sets. A closed subset K of N∗ is a (discrete) weak P-set if the

closure of each countable (discrete) subset of N∗ \K is disjoint from K. Each 62-

to-1 map from βN onto a crowded ED space K gives rise to a canonical embedding

of K as a 1-to-1 retract of βN.

Proposition 22. If f : βN→→K is 62-to-1 and K is a crowded ED space, then

(f ↾ K̃)−1 ◦ f is a 1-to-1 retraction from βN to
K̃ = N∗ ∩ f−1[N]

and K̃ is homeomorphic to K.

If S is a countable vD-space, then any 1-to-1 function f from N onto S gives rise to

an embedding of βS as a 1-to-1 retract, KS, of βN that is unique up to a permutation

on N (hence a homeomorphism of βN). There are internal descriptions for S that

correspond to when KS is a weak P-set or discrete weak P-set of N∗ . Recall that a

set Y is ℵ0-bounded if the closure of each countable subset of Y is compact.

Proposition 23. Let S be a countable vD-space and let KS be the canonical

embedding of βS as a 1-to-1 retract of βN.
(1) KS is a weak P-set of N∗ if and only if the near points of S is ℵ0-bounded.

(2) KS is a discrete weak P-set of N∗ if and only if every countable vD-space con-

tained in the near points of S is nowhere dense in βS.

P r o o f. Both of the results use the fact that if A is a countable subset ofN∗ \KS, then A meets KS if and only if A meets S. Also, recall from Proposition 5

that f [N∗ \KS] is sent onto the near points of S (disjoint from S itself) and that for

A ⊂ N∗ \KS , f [A] will be contained in f [A]. Therefore if A is a countable subset

of N∗ \ KS, A will meet S if and only if f(A) meets S. For the second statement,

assume that D is a discrete subset of N∗ \KS, then f [D] is a vD-space in the near

points of S (since f ↾ D = βD is a 62-to-1 map onto f(D)). �
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It follows easily that each point of a countable vD-space S is a far-point of its

own near points, however it is not at all clear if it is necessarily far from its entire

remainder. We show that both situations can happen even with dense subsets of

E(2c).

Theorem 24. There is a countable vD-space S that is dense in E(2c) such that

there is a countable vD-space Γ dense in the near points of S. Furthermore we can

ensure at the same time that S is far from βS \S. Of course Γ is not far from βΓ\Γ.

Theorem 25. There is a countable vD-space S such that βS is not homeomorphic

to E(2c).

Theorem 26. MActble implies there is a countable vD-space S such that βS is

(ω, ω)-irresolvable and not (ω, 1× 2)-resolvable. In particular, βS \S is ℵ0-bounded.

Corollary 27. There are countable vD-spaces S1, S2, S3 such that in N∗ ,

(1) KS1
is not a discrete weak P-set,

(2) KS2
is a discrete weak P-set but not a weak P-set, and

(3) MActble implies KS3
is a weak P-set.

3.2. Proof of theorem 24. We are able to break the proof of Theorem 24 into a

series of Lemmas. Lemmas 28 and 30 combine to easily prove the first statement of

Theorem 24 using a straightforward induction which we omit. The rest of Theorem 24

is similarly a consequence of Lemmas 35 and 34.

For the next lemma, it might help to imagine starting out with the usual topology

(Q × Q) and then choosing a function from Q into the irrationals whose graph, Γ,

is dense. Now let Q denote the set of rational numbers and (Q × Q) ∪ Q denote

the same set, (Q × Q) ∪ Γ, where Q is also identified with Γ in the obvious way. In

Theorem 24, S will be Q×Q, while Q will be the vD-space that is dense in the near

points of S.

Lemma 28. Assume that X = (Q×Q) ∪ Q is a space such that X is zero-

dimensional, Q is dense and

(1) each q ∈ Q is a limit point of {q} × Q,

(2) for each A ⊂ Q, there is an A0 ⊂ A such that A0 is clopen in X , Q∩A \A0 is

closed discrete in Q, and A \ ((A0 ×Q) ∪ Q) is closed and discrete in Q×Q,

(3) if B ⊂ Q×Q is such that q /∈ B ∩ ({q} × Q) for each q ∈ Q, then B is closed

then Q is vD-space and is C∗-embedded in the extremally disconnected space X .

Furthermore Q×Q is a vD-space that contains Q densely in its near points.

358



P r o o f. The space X is crowded because it has disjoint dense sets Q and Q×Q.

It is immediate by condition 2 that if A ⊂ Q is crowded, then A0 is dense in A.

Furthermore, since Q ∩ A0 \ A0 is closed discrete in Q, A is open in Q because it

is equal to Q ∩A0 with a closed discrete set removed. Therefore, by Proposition 6,

Q is a vD-space. Condition 2 also implies that Q is extremally disconnected and

C∗-embedded in X . For each q ∈ Q, {q} × Q is discrete by applying 2 to the set

A = Q\ {q}. Therefore condition 1 implies that Q is contained in the near points of

Q×Q. To finish the proof we need only show that Q×Q is a vD-space. Consider

any crowded subset B of Q×Q. By Proposition 6, we must show that B is open in

Q×Q. For q ∈ Q, let Bq = {r ∈ Q : (q, r) ∈ B} and let A = {q ∈ Q : q ∈ {q} ×Bq}.

Let A0 ⊂ A be such that A0 is the interior in Q of A. Clearly B contains a dense

subset of the relatively clopen set U = (Q×Q) ∩A0 and U \B is closed because it

equals the union of the two closed sets U \(A0×Q) (by condition 2) and (A0×Q)\B

(by condition 3). Therefore B ∩ U is open.

To complete the proof that B is open, we show that B \ U is actually empty

because it is the union of two discrete sets. The first is simply B \ (A × Q) by the

last condition. Then (A \ A0) × Q is discrete by the second condition applied to

A0 ∪ (Q \A), that is crowded since (A \A0) is discrete. �

To prove Theorem 24 using Lemma 28 we will construct an embedding of the set

X = Q×Q∪Q into E(2c). For convenience we will instead use the homeomorphic

representation (ω + 1)c of 2c where ω + 1 is the compact ordinal space. Recall that

the points of E((ω + 1)c) are ultrafilters of regular open subsets of (ω + 1)c. The

basic structure of the embedding is captured in the next definition.

Definition 29. A collection X = {Wx : x ∈ X} satisfies Eα (or is an Eα struc-

ture) if for each x ∈ X , Wx ⊂ RO((ω + 1)α) is a filter base such that

(1) for each q ∈ Q and W ∈ Wq, {r ∈ Q : W ∈ W(q,r)} is infinite,

(2) for each non-empty compact open W ⊂ (ω +1)α, {q ∈ Q : W ∈ Wq} is infinite,

(3) for each W ∈ WX = {∅} ∪
⋃
{Wx : x ∈ X} and each x ∈ X , either W ∈ Wx or

W ∩W ′ = ∅ for some W ′ ∈ Wx.

We say that X ≺ X ′ if for some α 6 α′, X ′ satisfies Eα′ and W × (ω + 1)(α
′\α) ∈

W ′
x ∈ X

′ for each W ∈ Wx ∈ X .

Let {b(γ,n) : (γ, n) ∈ c × ω} be an c × ω-independent matrix of subsets of Q. As

above, for a finite function ̺ ⊂ c×ω, let b̺ denote the intersection
⋂
{bγ,n : (γ, n) ∈

̺}. We may assume that each b̺ is a dense subset of Q and that
⋃

n∈ω

b(γ,n) = Q for

each γ ∈ c. For a subset I of c, let BI denote the I × ω-independent submatrix. We

say that BI is independent mod X , for an Eα structure X , if for each finite function

̺ ⊂ I × ω and each W ∈ WX \ {∅}, B̺ ∩ {q ∈ Q : W ∈ Wq} is infinite. Clearly the
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topology mentioned above on (Q × Q) ∪ Γ can be embedded densely into (ω + 1)ω

and by choosing the filter of clopen neighborhoods of each point forWx, we have Xω

as an Eω structure.

If X is an Eα structure, then for each W ∈ WX , W̃ = {x ∈ X : W ∈ Wx} is going

to be a clopen subset of X . The independent matrix assumption is simply asserting

that each b̺ is a dense subset of X ∩ Q with this topology. When discussing or

constructing an Eα structure X we will implicitly assume that for W ⊂ W ′ ∈ WX

and x ∈ X , if W ∈ Wx, then W ′ is also in Wx.

Lemma 30. Assume that X is

(1) an Ec structure, and

(2) for each A ⊂ Q, there is a pairwise disjoint family {W (A, n) : n ∈ ω} ⊂ WX

such that for each x ∈ X , there is an n ∈ ω, W (A, n) ∈ Wx, and for each n ∈ ω

{q ∈ Q \A : W (A, 2n) ∈ Wq} and {q ∈ A : W (A, 2n + 1) ∈ Wq} are finite, and

(3) for each B ⊂ Q×Q, there is a pairwise disjoint family {W (B, n) : n ∈ ω} ⊂ WX

such that for each x ∈ X , there is an n ∈ ω, W (B, n) ∈ Wx, and for each n ∈ ω

B ⊃ {(q, r) ∈ Q×Q : W (B, 2n) ∈ W(q,r)} and {(q, r) ∈ Q×Q : W (B, 2n+1) ∈

W(q,r)} is finite, and

(4) RO((ω + 1)c) =WX ,

then X is an embedding ofX densely into E((ω+1)c) and with the inherited topology

satisfies Lemma 28.

P r o o f. Condition 28(1) follows from the fact that X satisfies Ec, and the

embedding of Q is dense because of the second condition of the definition of Ec. For

any A ⊂ Q, it is easily checked that A0 = {a ∈ A : (∃n ∈ ω)W (A, 2n) ∈ Wa} will

satisfy the requirements of condition 28(2) with A0 = {x ∈ X : (∃n ∈ ω)W (A, 2n) ∈

Wx}. For example, each W̃ (A, n) meets A \A0 in a finite set, hence A \A0 is closed

discrete. Similarly, condition 28(3), follows easily from hypothesis (3) of this Lemma.

�

The proof of Theorem 24 is achieved by a sequence of Lemmas. It is a routine

induction using alternatingly, Lemmas 31, 32, and 33 to produce a space satisfying

Lemma 30.

Lemma 31. Assume α < c, X is an Eα structure, I is an uncountable set such

that BI is independent mod X , and A ⊂ Q, then there is an Eα+1 structure X ′ and

I ′ ⊂ I and a pairwise disjoint family {W (A, n) : n ∈ ω} ⊂ WX ′ such that

(1) X ≺ X ′ and I \ I ′ is countable, and

(2) for each x ∈ X , there is an n ∈ ω, W (A, n) ∈ W ′
x, and for each n ∈ ω

{q ∈ Q \A : W (A, 2n) ∈ W ′
q} and {q ∈ A : W (A, 2n + 1) ∈ W ′

q} are finite.
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(3) BI′ is independent mod X ′.

P r o o f. Let A ⊂ Q. It follows easily that for each W ∈ WX \ {∅}, that there

is a W ∗ ⊂ W in WX \ {∅} and a finite function ̺W∗ ⊂ I × ω such that one of the

following holds:

(3.1) {a ∈ A : W ∗ ∈ Wa} ∩ b̺W∗
= ∅

or, for all finite functions τ such that

(3.2) ̺W∗ ⊂ τ ⊂ I × ω {a ∈ A : W ∗ ∈ Wa} ∩ bτ is infinite.

Therefore, there is a maximal disjoint family {W ∗
n : n ∈ ω} ⊂ WX and a family,

{̺∗n : n ∈ ω}, of finite functions from I into ω, such that for each n, either 3.1 or 3.2

holds for W ∗
n , ̺∗n.

By re-indexing the families, we may assume that for each n, W ∗
2n, ̺∗2n satisfy

condition 3.2, and W ∗
2n+1, ̺

∗
2n+1 satisfy 3.1. Therefore, in the space (ω + 1)α,

WA = int cl
⋃

n

W ∗
2n and W−A = int cl

⋃

n

W ∗
2n+1

are complementary members of RO((ω + 1)α). In defining our new Eα+1 structure,

X ′, we will define an intermediary Eα-structure which we will also denote as X ′. In

particular we will add {WA, W−A} to WX ′ and for each x ∈ X we will have to select

Wx from {WA, W−A} to add to Wx. The most important consideration in making

this selection will be the preservation of condition (1) of Eα-structure.

For each x = (q, r) ∈ Q × Q, if W ∩WA 6= ∅ for each W ∈ W(q,r), then we let

Wx = WA. Otherwise, we have that W ∩W−A 6= ∅ for each W ∈ W(q,r) and we set

Wx = W−A. For each q ∈ Q, we may put Wq = WA if for each W ∈ Wq, we have

that {r ∈ Q : W(q,r) = WA and W ∈ W(q,r)} is infinite. Otherwise, let Wq = W−A

and, in either case, let Bq be the infinite set {r ∈ Q : Wq = W(q,r)}. We have ensured

that for each W ∈ Wq, {r ∈ Bq : W ∈ W(q,r)} will be infinite. For each x ∈ X , let

W ′
x temporarily denote the filter Wx ∪ {Wx ∩W : W ∈ Wx}.

Let iα be any element of I \
⋃
{dom(̺∗n) : n ∈ ω} and I ′ = I \ ({iα}∪

⋃
{dom(̺∗n) :

n ∈ ω}.

As an intermediary step it is helpful to note that X ′ = {W ′
x : x ∈ X} is an Eα-

structure and we will check that BI′ is independent mod X ′. We actually prove a

stronger statement: for each k ∈ ω, finite function τ ⊂ I ′ × ω, and each W ∈ WX ′,

(3.3) W ∩W−A 6= ∅ ⇒ b(iα,k) ∩ bτ ∩ {q ∈ Q \A : W ∩W−A ∈ W
′
q} is infinite
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and

(3.4) W ∩WA 6= ∅ ⇒ b(iα,k) ∩ bτ ∩ {q ∈ A : W ∩WA ∈ W
′
q} is infinite.

To see this, notice that, for each n, if W ∩W ∗
2n 6= ∅ and/or W ∩W ∗

2n+1 6= ∅, then

b(iα,k) ∩ bτ ∩ b̺∗

2n
∩ {q ∈ A : W ∩WA ∈ W

′
q} is infinite

and/or

b(iα,k) ∩ bτ ∩ b̺∗

2n+1
∩ {q ∈ Q \A : W ∩W−A ∈ W

′
q} is infinite

For each integer k, we define

W (A, 2k) = WA × {(α, k)} ⊆ (ω + 1)α+1

and

W (A, 2k + 1) = W−A × {(α, k}.

Let A0 = {a ∈ A : WA ∈ W
′
α} = {a ∈ A : Wa = WA} and let A1 = {a ∈ A : WA /∈

W ′
a} = {a ∈ A : Wa = W−A}. Similarly, set Q0 = {q ∈ Q \ A : W−A ∈ W ′

q} and

Q1 = {q ∈ Q \ A : W−A /∈ W ′
q} = {q ∈ Q \ A : WA = Wq}. For each q ∈ Q recall

that we have defined Bq ⊂ Q above so that for each W ∈ W ′
q, {r ∈ Bq : W ∈ W(q,r)}

is infinite. Define a function fα : X → ω as follows:

(1) for each q ∈ A0 ∪ Q0, fα(q) = k where k is the unique integer such that

q ∈ b(iα,k),

(2) fα : A1 ∪ Q1 → ω is 1-to-1,

(3) for each q ∈ Q and r ∈ Bq, fα((q, r)) = fα(q), and

(4) fα : (Q×Q) \
⋃

q∈Q
Bq → ω is 1-to-1.

For each x ∈ X , we define

(3.5) W ′
x = {W ×{(α, fα(x))} : W ∈ Wx} ∪ {(Wx ∩W )×{(α, fα(x))} : W ∈ Wx}

that is a filter in RO((ω + 1)α+1).

Note that if Wx = WA and fα(x) = n, then W (A, 2n) ∈ W ′
x and similarly,

W (A, 2n + 1) ∈ W ′
x if Wx = W−A. Condition (2) in the statement of the Lemma

certainly holds since, for each n,

{q ∈ Q \A : W (A, 2n) ∈ W ′
q} ∪ {q ∈ A : W (A, 2n + 1) ∈ W ′

q}
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has at most one point in it because this union is contained in (A1 ∪ Q1) ∩ f−1
α (n).

Properties (1) and (3) of Eα+1-structure are immediate by the definition of X ′. To

see that property (2) holds, assume that W ⊂ (ω +1)α is clopen and k ∈ ω, we must

show that the clopen set W × {(α, k)} is in W ′
q for some q ∈ Q. Assume first that

W ∩WA 6= ∅ and recall that b(iα,k) ∩ b∅ ∩ {q ∈ A : W ∩WA ∈ Wq} is infinite, so let

q be any member of this set. Since WA ∈ W ′
q, we have q ∈ A0 and so fα(q) = k.

Therefore, W × {(α, k)} ∈ W ′
q. The argument for the case that W ∩W−A 6= ∅ is

similar.

The fact that BI′ is independent mod W ′
X ′ follows routinely from 3.3 and 3.4. �

The proofs of the Lemmas 32 and 33 are so similar to the previous proof that they

can be omitted.

Lemma 32. Assume α < c, X is an Eα structure, I is an uncountable set such

that BI is independent mod X , and B ⊂ Q×Q, then there is an Eα+1 structure X ′

and I ′ ⊂ I and a pairwise disjoint family {W (B, n) : n ∈ ω} ⊂ WX ′ such that

(1) X ≺ X ′ and I \ I ′ is countable, and

(2) for each x ∈ X , there is an n ∈ ω, W (B, n) ∈ W ′
x, and for each n ∈ ω

B ⊃ {(q, r) ∈ Q×Q : W (B, 2n) ∈ W ′
(q,r)} and {(q, r) ∈ Q×Q : W (B, 2n+1) ∈

W ′
(q,r)} is finite,

(3) BI′ is independent mod X ′.

Lemma 33. Assume α < c, X is an Eα structure, I is an uncountable set such

that BI is independent mod X , andW ∈ RO((ω+1)α), then there is an Eα structure

X ′ such that

(1) X ≺ X ′, and

(2) W ∈ WX ′ , and

(3) BI is independent mod X ′.

This next lemma introduces the trick to ensure that Q × Q will be far from

β(Q×Q) \ (Q×Q) (the final condition in Theorem 24), and then Lemma 35 incor-

porates the technique into the construction of Eα-structures.

Lemma 34. Suppose that S is a countable space with the property that for each

pairwise disjoint collection {Wn : n ∈ ω} of clopen sets, there is another pairwise

disjoint collection {W (n, m) : m 6 n ∈ ω} of clopen sets such that for each s ∈ S

either there is an n ∈ ω, such that s ∈ Wn or for each selection 0 6 mn 6 n (n ∈ ω),

there is a clopen W such that s ∈ W and W ∩
⋃

n∈ω

W (n, mn) is empty. Then S is

far from βS \ S.
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P r o o f. Assume that A is any countable discrete subset of βS \ S. Choose

any collection {W ∗
n : n ∈ ω} of clopen subsets of βS such that for each a ∈ A,

there is an n satisfying W ∗
n ∩ A = {a}. For each n, let Wn = S ∩ W ∗

n , and let

{W (n, m) : m 6 n ∈ ω} be as in the lemma. For each n, W ∗
n =

⋃
m6n

W (n, m), hence

there is an mn 6 n such that W (n, mn)∩A 6= ∅. For each n, clearly no point of Wn

is a limit point of A. In addition, it clearly follows that no other point of S is a limit

point of A since A is contained in the closure of
⋃
n

W (n, mn). �

Lemma 35. Assume α < c, X is an Eα structure, I is an uncountable set such

that BI is independent mod X , and {Wn : n ∈ ω} ⊂ WX , is a pairwise disjoint

family, then there is an Eα+1 structure X ′ and I ′ ⊂ I and a pairwise disjoint family

{W (n, m) : m 6 n ∈ ω} ⊂ WX ′ such that

(1) X ≺ X ′ and I \ I ′ is countable, and

(2) for each x ∈ Q × Q, either there is an n ∈ ω, such that Wn ∈ Wx, or for each

selection 0 6 mn 6 n (n ∈ ω), there is a W ∈ W ′
x such that W ∩W (n, mn) = ∅.

(3) BI′ is independent mod X ′.

P r o o f. Let {Wn : n ∈ ω} ⊂ WX be any pairwise disjoint family. We will

be defining an Eα+1 structure X ′. There is no loss of generality in assuming that

{Wn : n ∈ ω} is maximal since if we add some set W0 to the collection and W0 ∈ Wx

for some x, then it will be immediate that W0× (ω +1){α} will already be a set that

is disjoint from W (n, mn) for all n 6= 0. Choose any iα ∈ I and let I ′ = I \ {iα}. For

brevity, let bk denote b(iα,k) for each k.

For each 0 6 m < n, let W (n, m) = Wn × {(α, m)} and W (n, n) = Wn × (ω + 1 \

{0, . . . , n− 1}){α}. Clearly we have that Wn × (ω + 1){α} is equal to
⋃

m6n

W (n, m).

Now we are ready to define the family {W ′
x : x ∈ X}.

For each q ∈ Q such that there is an n with Wn ∈ Wq, let kq denote the integer

k such that q ∈ bk. Also, let Bq denote the infinite family of r ∈ Q such that

Wn ∈ W(q,r) (by condition (1) of Eα structure). For each x ∈ {q} ∪ ({q} × Bq)

(where there is an n such that Wn ∈ Wq), set

W ′
x = {W × {(α, kq)} : W ∈ Wx}.

Since the family {Wn : n ∈ ω} is maximal and BI is independent mod X , this

assignment will already ensure condition (2) of Eα+1 structure. It will also preserve

condition (1) for those q for which Wn ∈ Wq for some n, and it is immediate that

BI′ is going to be independent mod X ′.
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For each (q, r) ∈ Q × Q such that there is an n such that Wn ∈ W(q,r) and

Wn /∈ Wq, set

W ′
(q,r) = {W × {(α, 0)} : W ∈ W(q,r)}.

It remains to defineW ′
x for all those x such that Wn /∈ Wx for each n. If x ∈ Q×Q

is such an x, then set W ′
x to be the filter generated by including

intcl
⋃

(W ∩Wn)× (n \Hn){α}

for all W ∈ Wx and each sequence, 〈Hn : n ∈ ω〉, such that {|Hn| : n ∈ ω} ⊂ ω is

bounded.

For the remaining q ∈ Q there are two cases so as to preserve condition (1) of

Eα+1 structure.

If for each W ∈ Wq, there is an r such that W ∩Wn ∈ W(q,r), then set Bq = {r ∈

Q : (∃n)Wn ∈ W(q,r)} and define

W ′
q = {W × {(α, 0)} : W ∈ Wq},

otherwise, Bq = {r ∈ Q : (∀n)Wn /∈ W(q,r)}, and defineW ′
q to be the filter generated

by

intcl
⋃

(W ∩Wn)× (n \Hn){α}

for all W ∈ Wq and each sequence, 〈Hn : n ∈ ω〉, such that {|Hn| : n ∈ ω} ⊂ ω is

bounded. �

3.3. Proof of Theorem 25. Let X be a countable Simon type space with the

property that βX is (ω, ω)-irresolvable (use Proposition 14). Of course X can be

chosen so that βX \ X is ℵ0-bounded. By Theorem 7, there is a vD-space S that

maps continuously by a 1-to-1 function into a dense subset of X . Therefore there is a

continuous function f from βS onto βX with the property that f ↾ S is 1-to-1. Since

S is crowded, it also follows that each fiber, f−1(x) (x ∈ βX), is nowhere dense in

βS. The proof that βS is not homeomorphic to E(2c) follows from the next Lemma.

Lemma 36. If f is a mapping from E(2c) onto an (ω, ω)-irresolvable space K,

then there is a point x ∈ K such that f−1(x) has interior.

P r o o f. Assume that Y ⊂ K is a countable dense subset such that every

countable D ⊂ K \ Y is nowhere dense in K. Also assume that f maps E(2c) into

K so that f−1(x) is nowhere dense for each x ∈ K. We show that the range of f is

nowhere dense in K. Let ϕ denote the canonical irreducible map from E(2c) onto 2c.

It follows that for each y ∈ Y , there is a dense open subset Uy of 2c so that ϕ(f−1(y))
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is disjoint from Uy. It is routine to show that each Gδ subset of 2c is separable, so

let T be any countable dense subset of the dense set
⋂

y∈Y

Uy. Let D ⊂ E(2c) be any

countable set such that ϕ(D) = T . Since ϕ is irreducible and ϕ(D) is dense in 2c,

it follows that D is dense in E(2c). Since D is disjoint from f−1(Y ), it follows that

f(D), and f(D), is nowhere dense in K �

3.4. Proof of Theorem 26. Before constructing our vD-space, we prove the

following Lemma to provide a condition that will ensure we have an ℵ0-bounded

remainder.

Lemma 37. Assume that S is a Lindelöf zero-dimensional space and that for

each countable family {W (n, m) : n, m ∈ ω} of clopen sets such that for each n, the

family {W (n, m) : m ∈ ω} is a descending sequence with empty intersection, there

is a partition {Yn : n ∈ ω} of clopen sets such that for each n, k there is an m such

that Yn is disjoint from W (k, m). Then βS \ S is ℵ0-bounded.

P r o o f. Let {an : n ∈ ω} be a subset of βS \ S. Since S is zero-dimensional

Lindelöf, there is, for each n ∈ ω, a countable descending sequence {W (n, m) : m ∈

ω} of clopen subsets of S such that an ∈ W (n, m) for each n, and
⋂

m∈ω

W (n, m) is

empty. Let {Yn : n ∈ ω} be the partition of S as given. For each s ∈ S, there is

an n such that s ∈ Yn, hence it suffices to prove that ak /∈ Yn for each k, n. By

assumption, for each n, k there is an mn,k ∈ ω so that Yn∩W (k, mn,k) is empty. For

each k, ak ∈ W (k, mn,k), hence ak /∈ Yn. �

Now, assume that MActble holds. We start with B0, any countable base of clopen

sets for the usual topology on Q. By induction on α < c, we construct subalgebras

Bα ⊂ P(Q) so that |Bα| 6 |α+ω| and the 0-dimensional topology, Xα, on Q induced

by Bα is crowded (i.e. each member of Bα is infinite). For limit α we will simply let

Bα be the union of the Bγ for γ < α.

Let {Aγ : γ ∈ c} be an enumeration of P(Q) and let {{W (γ, n, m) : n, m ∈ ω} :

γ ∈ c} be an enumeration of all the doubly-indexed countable families of subsets ofQ so that each is listed cofinally often in c.

For each α ∈ c, we ensure there is a partition {Yn : n ∈ ω} ⊂ Bα+1 so that

(1) for each n, one of Yn ∩A or Yn \A is finite, and

(2) if, for each k ∈ ω, {W (α, k, m) : m ∈ ω} ⊂ Bα is descending and has empty

intersection, then for each n ∈ ω, there is a function fn ∈ ωω such that Yn ∩

W (k, fn(k)) is empty for each k.

Given Bα, once we show how to construct {Yn : n ∈ ω} we simply let Bα+1 be the

Boolean algebra generated by Bα ∪ {Yn : n ∈ ω}.
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Let {qi : i ∈ ω} enumerate Q. We construct the family {Yn : n ∈ ω} by induction

on n so that {qi : i 6 n} ⊂
⋃

i6n

Yi, Yn is crowded in Xα, and Q \ ⋃
i6n

Yi is dense (in

Xα).

Let A denote Aα, and for each n, m, W (n, m) = W (α, n, m). Let qln be the point

of Q \ ⋃
i6n

Yi with minimal index (thus ln > n). We will ensure that qln ∈ Yn and

that Yn \ {qln} is either contained in A or is disjoint from A.

If A \
⋃

i<n

Yi is dense in some Xα-neighborhood of qln , then let Bn ∈ Bα be

such a neighborhood. Otherwise, let Bn ∈ Bα be a neighborhood of qln with a

dense subset that is disjoint from A ∪
⋃

i<n

Yi. By Lemma 17, we can choose a dense

subset Zn of Bn such that Bn \ (Zn ∪
⋃

i<n

Yi) is also dense in Bn and so that,

again, either Zn ⊂ A or Zn is disjoint from A. Let I ⊂ ω be the indices so that

{qj : j ∈ I} = {qln} ∪ Zn \ {qi : i < ln}. We will choose Yn ∋ qln to be a subset

Zn∪{qln}, hence we will preserve that Q \ ⋃
i6n

Yi is dense and we will have that either

Yn ∩ A or Yn \ A is finite. We need only work to ensure that Yn is crowded and to

select our function fn.

By a simple re-enumeration (and possibly choosing subsequences) we may assume

that for each k ∈ ω and each l ∈ I, W (k, l) is disjoint from {q0, . . . , ql}. We define a

poset P that is a subposet of the strictly increasing functions from some integer into

I ordered by usual extension. A function p will be in P if p(0) = ln and for each

k ∈ dom(p), qp(k) is not in W (i, p(i)) for each i < k. It follows then that qp(k) is not

in W (i, p(i)) for all i ∈ dom(p) since p is an increasing function and qp(k) is not in

W (i, p(k)) for all i.

Once we have selected a filter G ⊂ P using MActble, we will have a function

fn =
⋃

p∈G

p and we will let Yn = {qfn(k) : k ∈ ω = dom(fn)}. It follows immediately

that Yn ∩W (k, fn(k)) is empty for each k. We need only to identify enough dense

subsets of P to ensure that dom(fn) = ω and that Yn is crowded.

To see that dom(fn) will be ω, we can note that each p ∈ P with i = dom(p) has an

extension p′ with i ∈ dom(p′). To see this, note that {qi : i ∈ I ′} = Zn\
⋃
j<i

W (j, p(j))

is crowded since it contains qln and each of the W (j, p(j)) are clopen. Therefore p′(i)

can be chosen to be any member of I ′ that is greater than p(i− 1).

Finally to see that Yn will be crowded, it suffices to show that for each k ∈ ω and

U ∈ Bα the set

D(k, U) = {p ∈ P : (k ∈ dom(p) and p(k) ∈ U)⇒ (∃j > k)p(j) ∈ U}
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is dense in P . Assume p ∈ P , k ∈ dom(p) and p(k) ∈ U ∈ Bα. Let j = dom(p) and

choose p′(j) ∈ I with p′(j) > p(j − 1) so that qp′(j) ∈ U \
⋃
i<j

W (i, p(i)), which we

may do since Zn is dense in Bn and qp(k) ∈ U \
⋃
i<j

W (i, p(i)).
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[4] A. Dow, A. V. Gubbi, A. Szymański: Rigid Stone spaces within ZFC. Proc. Amer. Math.

Soc. 102 (1988), 745–748. zbl
[5] Alan Dow: βN. The work of Mary Ellen Rudin (Madison, WI, 1991), Ann. New York

Acad. Sci., vol. 705, New York Acad. Sci., New York, 1993, pp. 47–66. zbl
[6] A. Dow, J. van Mill: On n-to-one continuous images of βN. Preprint 2005.
[7] Lutz Heindorf, Leonid B. Shapiro: Nearly projective Boolean algebras. Lecture Notes

Math., vol. 1596, Springer, Berlin, 1994. With an appendix by Sakaé Fuchino. zbl
[8] Neil Hindman, Dona Strauss: Recent progress in the topological theory of semigroups

and the algebra of βS. Recent progress in general topology, II, North-Holland, Amster-
dam, 2002, pp. 227–251. zbl

[9] S. Koppelberg: Characterizations of Cohen algebras. Papers on General Topology and
Applications (Madison, WI, 1991), Ann. New York Acad. Sci., vol. 704, New York Acad.
Sci., New York, 1993, pp. 222–237. zbl

[10] R. Levy: The weight of certain images of ω∗. Topology Appl. 153 (2006), 2272–2277. zbl
[11] Jan van Mill: An Introduction to βω. Handbook of Set-Theoretic Topology (K. Kunen,

J. E. Vaughan, eds.). Elsevier Science Publishers BV, North-Holland, Amsterdam, 1984,
pp. 503–567. zbl

[12] L. B. Shapiro: On spaces that are coabsolute with dyadic compacta. Dokl. Akad. Nauk
SSSR 293 (1987), 1077–1081. zbl

[13] P. Simon: A closed separable subspace of βN which is not a retract. Trans. Amer. Math.
Soc. 299 (1987), 641–655. zbl

[14] A. Szymański: Some applications of tiny sequences. Proceedings of the 11th Winter
School on Abstract Analysis (Železná Ruda, 1983), Suppl. 3, 1984, pp. 321–328. zbl
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