E. M. Elabbasy, H. El-Metwally, E. M. Elsayed, Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt, e-mail: emelabbasy@mans.edu.eg, helmetwally@mans.edu.eg, emelsayed@mans.edu.eg
Abstract: In this paper we investigate the global convergence result, boundedness and periodicity of solutions of the recursive sequence \begin {equation*} x_{n+1}=\frac {a_{0}x_{n}+a_{1}x_{n-1}+\dots +a_{k}x_{n-k}}{b_{0}x_{n}+b_{1}x_{n-1}+\dots +b_{k}x_{n-k}}, n=0,1,\dots \^^M\end {equation*} where the parameters $ a_{i}$ and $b_{i}$ for $i=0,1,\dots ,k$ are positive real numbers and the initial conditions $x_{-k},x_{-k+1},\dots ,x_{0}$ are arbitrary positive numbers.
Keywords: stability, periodic solution, difference equation
Classification (MSC2000): 39A10
Full text of the article: