Memoirs on Differential Equations and Mathematical Physics

$$
\text { Volume } 87,2022,17-24
$$

Irina Astashova

ON ASYMPTOTIC EQUIVALENCE OF n-TH ORDER NONLINEAR DIFFERENTIAL EQUATIONS

Abstract

This paper is devoted to the problem of asymptotic equivalence of n-th order differential equations with exponentially equivalent right-hand sides. With the help of the obtained result asymptotic behavior of solutions to perturbed differential equations is described.

2010 Mathematics Subject Classification. 34C41.

Key words and phrases. Higher-order nonlinear equation, asymptotic equivalence.

1 Introduction

We study the problem of asymptotic equivalence of the equations

$$
\begin{equation*}
y^{(n)}(x)+\sum_{j=0}^{n-1} a_{j}(x) y^{(j)}(x)+p(x)|y(x)|^{k} \operatorname{sgn} y(x)=f(x) \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
z^{(n)}(x)+\sum_{j=0}^{n-1} a_{j}(x) y^{(j)}(x)+p(x)|z(x)|^{k} \operatorname{sgn} z(x)=0 \tag{1.2}
\end{equation*}
$$

with $n \geq 2, k>1$, and continuous functions $p(x), f(x)$ and $a_{j}(x)$. Equation (1.2) is a so-called EmdenFowler type differential equation. It was considered from different points of view (see, e.g., [3,12] and the references there). In particular, the asymptotic behavior of its solutions vanishing at infinity is described (see also $[2,4,13]$). So, if an asymptotic equivalence of equations (1.1) and (1.2) exists, it is possible to describe the asymptotic behavior of vanishing at infinity solutions to equation (1.1), too. Previous results are formulated in $[1,5-7,11]$. The asymptotic equivalence of ordinary differential equations and their systems can be useful to investigate some problems for partial differential equations (see, e.g., [10]). Note that the notion of asymptotic equivalence can be used in different senses (cf. [8, 9, 14-19]).

Hereafter we denote $|y|^{k} \operatorname{sgn} y$ by $[y]_{ \pm}^{k}$.

2 Asymptotic equivalence of nonlinear perturbed differential equations

Theorem 2.1. Let $a_{0}, \ldots, a_{n-1}, p, f$, and g be continuous functions defined in a neighborhood of ∞. Suppose $p(x), f(x)$ and $g(x)$ are bounded while a_{0}, \ldots, a_{n-1} satisfy the inequalities

$$
\begin{equation*}
\int_{x_{0}}^{\infty} x^{n-j-1}\left|a_{j}(x)\right| d x<\infty, \quad j \in\{0, \ldots, n-1\} \tag{2.1}
\end{equation*}
$$

If y is a solution to the equation

$$
\begin{equation*}
y^{(n)}(x)+\sum_{j=0}^{n-1} a_{j}(x) y^{(j)}(x)+p(x)[y(x)]_{ \pm}^{k}=f(x) e^{-\gamma x} \tag{2.2}
\end{equation*}
$$

with $n \geq 2, k>1, \gamma>0$ and $y(x) \rightarrow 0$ as $x \rightarrow+\infty$, then there exists a unique solution z to the equation

$$
\begin{equation*}
z^{(n)}(x)+\sum_{j=0}^{n-1} a_{j}(x) z^{(j)}(x)+p(x)[z(x)]_{ \pm}^{k}=g(x) e^{-\gamma x} \tag{2.3}
\end{equation*}
$$

such that $|z(x)-y(x)|=O\left(e^{-\gamma x}\right)$ as $x \rightarrow+\infty$.
Lemma 2.1. Any linear differential operator

$$
\begin{equation*}
L: y \mapsto y^{(n)}+\sum_{j=0}^{n-1} a_{j} y^{(j)} \tag{2.4}
\end{equation*}
$$

with all continuous functions $a_{j}(x)$ satisfying (2.1) can be represented in a neighbourhood of $+\infty$ as the composition operator

$$
L=D_{b}=b_{0} B_{1} \circ \cdots \circ B_{n},
$$

where $b=\left(b_{0}, b_{1}, \ldots, b_{n}\right)$, all $B_{j}, j=1, \ldots, n$, are the first-order operators $u \mapsto\left(b_{j} u\right)^{\prime}$ and each b_{j}, $j=0, \ldots, n$, is $a \mathcal{C}^{j}$ function satisfying at infinity the following conditions:
(i) $b_{j}(x) \rightarrow 1$,
(ii) $\quad x^{i} b_{j}^{(i)}(x) \rightarrow 0$ for all $i \in\{1, \ldots, j-1\}$,
(iii) $\int_{x_{0}}^{\infty} x^{i-1}\left|b_{j}^{(i)}(x)\right| d x<\infty$ for all $i \in\{1, \ldots, j\}$ and some $x_{0} \in \mathbb{R}$.

Now, for $b=\left(b_{0}, b_{1}, \ldots, b_{n}\right)$ and $j \in\{0, \ldots, n\}$, put

$$
b-j=\left(b_{j}, \ldots, b_{n}\right)
$$

Note that if a tuple b satisfies the conditions from Lemma 2.1, then so does the tuple $b-j$.
Lemma 2.2. Let $b=\left(b_{0}, b_{1}, \ldots, b_{n}\right)$ satisfy the conditions from Lemma 2.1. If a function y satisfies at infinity both $y \rightarrow 0$ and $D_{b}(y) \rightarrow 0$, then the same is true for all functions $D_{b-j}(y), 0<j<n$.
Proof. Suppose the contrary, i.e., that for some $j \in\{1, \ldots, n-1\}$, the function $D_{b-j}(y)$ does not tend to zero. Consider the greatest of those j.

Since $b_{j} \rightarrow 1$ as $x \rightarrow \infty$ for all $j \in\{0, \ldots, n\}$, we can assume the inequality $\beta<b_{j}<\beta^{-1}$ to hold for all those j and for some common $\beta \in(0 ; 1)$. Without loss of generality, we can also assume that for some $\varepsilon>0$ there exists a sequence of points $x_{i} \rightarrow \infty$ such that $D_{b-j}(y)\left(x_{i}\right)>\varepsilon$. Let x_{i}^{\prime} be the closest point to the right of x_{i} such that $D_{b-j}(y)\left(x_{i}^{\prime}\right)=\beta \varepsilon$. Such a point exists. Indeed, otherwise $D_{b-j}(y)=b_{j}\left(D_{b-(j+1)}(y)\right)^{\prime}>\beta \varepsilon$ on $\left[x_{i} ; \infty\right)$, whence

$$
\begin{aligned}
& D_{b-(j+1)}(y)(x)=D_{b-(j+1)}(y)\left(x_{i}\right)+\int_{x_{i}}^{x} \frac{D_{b-j}(y)(s) d s}{b_{j}(s)} \\
& \quad>D_{b-(j+1)}(y)\left(x_{i}\right)+\beta^{2} \varepsilon\left(x-x_{i}\right) \rightarrow \infty \text { as } x \rightarrow \infty, \\
& D_{b-(j+2)}(y)(x)=D_{b-(j+2)}(y)\left(x_{i}\right)+\int_{x_{i}}^{x} \frac{D_{b-(j+1)}(y)(s) d s}{b_{j+1}(s)} \rightarrow \infty,
\end{aligned}
$$

$$
b_{n}(x) y(x)=D_{b-n}(y)(x)=D_{b-n}(y)\left(x_{i}\right)+\int_{x_{i}}^{x} \frac{D_{b-(n-1)}(y)(s) d s}{b_{n-1}(s)} \rightarrow \infty
$$

which contradicts the assumption of Lemma 2.2 that $y \rightarrow 0$. So, $D_{b-j}(y) \geq \beta \varepsilon$ on $\left[x_{i} ; x_{i}^{\prime}\right]$. To complete the proof we need the following

Lemma 2.3. Suppose a tuple $b=\left(b_{0}, b_{1}, \ldots, b_{n}\right)$ satisfies the conditions from Lemma 2.1 and a function y satisfies, on a segment I of length Δ, the inequality $\left|D_{b-j}(y)\right| \geq W$ with some $j \in$ $\{1, \ldots, n\}$ and a constant $W>0$. Then there exists a segment $I^{\prime} \subset I$ of length $4^{j-n} \Delta$ such that $|y| \geq\left(2^{j-n} \beta\right)^{n+1-j} W \Delta^{n-j}$ on I^{\prime}.
Proof. Still assuming $\beta<b_{j}<\beta^{-1}$ to hold for all $j \in\{0, \ldots, n\}$ and for some common $\beta \in(0 ; 1)$, we prove the lemma by reverse induction on j. For $j=n$, the statement is trivial since if $\left|D_{b-n}(y)\right|=$ $\left|b_{n} y\right| \geq W$, then $|y| \geq \beta W$.

Suppose it is proved for some $j>1$ and on a segment I of length Δ the inequality $\left|D_{b-(j-1)}(y)\right| \geq$ $W>0$ holds.

Since the derivative of the function $D_{b-j}(y)$ equals $D_{b-(j-1)}(y) / b_{j-1}$ and hence does not vanish on I, the function itself is monotone there and therefore can vanish at most at a single point.

If both $D_{b-j}(y)$ and $D_{b-(j-1)}(y)$ are non-negative at the middle point c of the segment I, then on the last quarter of I we have

$$
D_{b-j}(y)(x) \geq D_{b-j}(y)(c)+\beta W \cdot(x-c) \geq \frac{\beta W \Delta}{4}>0
$$

For other sign combinations of $D_{b-j}(y)(c)$ and $D_{b-(j-1)}(y)(c)$ we can prove by the same way the inequality

$$
\left|D_{b-j}(y)\right| \geq W^{\prime}=\frac{\beta W \Delta}{4}>0
$$

to hold on either the first or last quarter $I^{\prime} \subset I$ of length $\Delta^{\prime}=\Delta / 4$.
Now, according to the induction hypothesis, there exists a segment $I^{\prime \prime} \subset I^{\prime}$ of length $4^{j-n} \Delta^{\prime}=$ $4^{(j-1)-n} \Delta$, where the function y satisfies

$$
\begin{aligned}
|y| & \geq\left(2^{j-n} \beta\right)^{n+1-j} W^{\prime}\left(\Delta^{\prime}\right)^{n-j}=\left(2^{j-n} \beta\right)^{n+1-j} \cdot \frac{\beta W \Delta^{1+n-j}}{4^{1+n-j}} \\
& =\beta\left(2^{j-n-2} \beta\right)^{n+1-j} \cdot W \Delta^{n-(j-1)}=\left(2^{(j-1)-n} \beta\right)^{n+1-(j-1)} W \Delta^{n-(j-1)}
\end{aligned}
$$

So, the statement for $(j-1)$ and Lemma 2.3 are proved.
Now we continue proving Lemma 2.2.
We have a sequence of segments $\left[x_{i} ; x_{i}^{\prime}\right]$ such that $D_{b-j}(y) \geq \beta \varepsilon$ on each of them as well as $D_{b-j}(y)\left(x_{i}\right) \geq \varepsilon$ and $D_{b-j}(y)\left(x_{i}^{\prime}\right)=\beta \varepsilon$ on their ends.

By Lemma 2.3, there exist the segments $\left[x_{i}^{\prime \prime} ; x_{i}^{\prime \prime \prime}\right] \subset\left[x_{i} ; x_{i}^{\prime}\right]$ with the inequality

$$
|y| \geq\left(2^{j-n} \beta\right)^{n+1-j} \beta \varepsilon\left(x_{i}^{\prime}-x_{i}\right)^{n-j}
$$

holding on each of them.
Since by assumption $y \rightarrow 0$, the length of the segments $\left[x_{i} ; x_{i}^{\prime}\right]$ must also tend to zero. Now we can choose a sequence of points $c_{i} \in\left[x_{i} ; x_{i}^{\prime}\right]$ with

$$
\left|D_{b-(j-1)}(y)\left(c_{i}\right)\right|=b_{j-1}\left(c_{i}\right)\left|\frac{D_{b-j}(y)\left(x_{i}^{\prime}\right)-D_{b-j}(y)\left(x_{i}\right)}{x_{i}^{\prime}-x_{i}}\right| \geq \frac{\varepsilon-\beta \varepsilon}{x_{i}^{\prime}-x_{i}} \rightarrow \infty
$$

This contradicts the choice of j as the smallest of those with $D_{b-j}(y)$ non-tending to zero. So, Lemma 2.2 is proved.

Corollary 2.1. Under the conditions of Theorem 2.1, a function y is a solution to equation (2.2) tending to zero as $x \rightarrow+\infty$ if and only if

$$
\begin{equation*}
b_{n} y=\left(J_{n-1} \circ \cdots \circ J_{0}\right)\left[e^{-\gamma x} f(x)-p(x)[y(x)]_{ \pm}^{k}\right] \tag{2.5}
\end{equation*}
$$

where the operators J_{j} take each sufficiently rapidly decreasing continuous function φ to the vanishing at infinity primitive function of φ / b_{j} :

$$
J_{j}[\varphi](x)=-\int_{x}^{\infty} \frac{\varphi(\xi)}{b_{j}(\xi)} d \xi
$$

Proof. Under the conditions of Theorem 2.1, equation (2.2) can be written, in a neighborhood of $+\infty$, as

$$
\begin{equation*}
D_{b}(y)(x)=e^{-\gamma x} f(x)-p(x)[y(x)]_{ \pm}^{k} \tag{2.6}
\end{equation*}
$$

So, if a solution y to (2.6) tends to 0 as $x \rightarrow \infty$, then so does $D_{b}(y)$. By Lemma 2.2, the same is true for all functions $D_{b-j}(y), 0<j<n$, which ensures that we can obtain (2.5) from (2.6) by successively (for $j=0, \ldots, n-1$) applying the formula

$$
\begin{equation*}
D_{b-(j+1)}(y)=J_{j}\left[D_{b-j}(y)\right] \tag{2.7}
\end{equation*}
$$

which is true whenever its left-hand side tends to zero at infinity.
For the converse statement, first, note that any function satisfying (2.5) tends to 0 due to the definition of the operators J_{j}. To prove that such a function satisfies (2.6), we also successively (for $j=n-1, \ldots, 0$) apply the same formula (2.7) to equation (2.5) with its left-hand side treated as $D_{b-n}(y)$, whereafter take into account that functions having equal images under J_{j} must be equal to each other.

Proof of Theorem 2.1. Suppose that y is a vanishing at infinity solution to equation (2.2). Let $M>0$ be a common upper bound for $|f|,|g|$, and $|p|$ on their domains and

$$
\begin{equation*}
H=\frac{3 M}{\beta^{n+1} \gamma^{n}} \tag{2.8}
\end{equation*}
$$

Consider the space \mathcal{H} of all continuous functions $\eta:\left[x_{*},+\infty\right) \rightarrow[-H ; H]$, where x_{*} is a sufficiently large positive constant such that all the functions $y(x), f(x), g(x)$, and $p(x)$ are defined on $\left[x_{*},+\infty\right)$ and, moreover, the values $e^{-\gamma x_{*}}$ and $Y=\sup \left\{|y(x)|: x \geq x_{*}\right\}$ are sufficiently small to ensure

$$
\begin{equation*}
k\left(Y+H e^{-\gamma x_{*}}\right)^{k-1} \leq H^{-1} \tag{2.9}
\end{equation*}
$$

Now we define an operator $R: \mathcal{H} \rightarrow C\left[x_{*} ; \infty\right)$ by the formula

$$
R(\eta)(x)=p(x)\left([y(x)]_{ \pm}^{k}-\left[y(x)+\eta(x) e^{-\gamma x}\right]_{ \pm}^{k}\right)+e^{-\gamma x}(g(x)-f(x))
$$

Taking into account the inequality

$$
\left|[a]_{ \pm}^{k}-[b]_{ \pm}^{k}\right| \leq k \max \{|a|,|b|\}^{k-1}|a-b|
$$

as well as (2.8) and (2.9), we obtain, for $\eta \in \mathcal{H}$, that

$$
|R(\eta)(x)| \leq M k\left(Y+H e^{-\gamma x_{*}}\right)^{k-1} H e^{-\gamma x}+2 M e^{-\gamma x} \leq M H^{-1} H e^{-\gamma x}+2 M e^{-\gamma x}=3 M e^{-\gamma x}
$$

This allows us to define an operator $F: \mathcal{H} \rightarrow C\left[x_{*} ; \infty\right)$ by

$$
\begin{equation*}
F(\eta)(x)=\frac{e^{\gamma x}\left(J_{n-1} \circ \cdots \circ J_{0} \circ R\right)[\eta](x)}{b_{n}(x)} \tag{2.10}
\end{equation*}
$$

and to note that $|F(\eta)(x)| \leq e^{\gamma x} \gamma^{-n} \beta^{-n-1} 3 M e^{-\gamma x}=H$ for all $\eta \in \mathcal{H}$, i.e., $F(\mathcal{H}) \subset \mathcal{H}$. Similar estimates show that F is a contraction. Indeed, suppose $\eta_{1}, \eta_{2} \in \mathcal{H}$ and

$$
\delta=\sup \left\{\left|\eta_{1}(x)-\eta_{2}(x)\right|: x \geq x_{*}\right\}
$$

Then

$$
\left|R\left(\eta_{1}\right)(x)-R\left(\eta_{2}\right)(x)\right| \leq M k\left(Y+H e^{-\gamma x}\right)^{k-1} \delta e^{-\gamma x_{*}} \leq \frac{M \delta e^{-\gamma x}}{H}
$$

for all $x \geq x_{*}$, and therefore

$$
\left|F\left(\eta_{1}\right)(x)-F\left(\eta_{2}\right)(x)\right| \leq \frac{e^{\gamma x} M \delta e^{-\gamma x}}{H \beta^{n+1} \gamma^{n}}=\frac{\delta}{3}
$$

So, F is a contraction and there exists a unique $\eta \in \mathcal{H}$ such that $F(\eta)=\eta$. Taking into account (2.10), this can be written as

$$
e^{\gamma x}\left(J_{n-1} \circ \cdots \circ J_{0} \circ R\right)[\eta](x)=b_{n}(x) \eta(x)
$$

or, taking into account the definition of R and putting $z=y+\eta e^{-\gamma x}$, as

$$
\left(J_{n-1} \circ \cdots \circ J_{0}\right)\left[p \cdot\left([y]_{ \pm}^{k}-[z]_{ \pm}^{k}\right)+e^{-\gamma x}(g-f)\right]=b_{n} \cdot(z-y)
$$

Since y is a vanishing at infinity solution to equation (2.2), we can use Corollary 2.1 to remove in the last equality all terms with y and f :

$$
\left(J_{n-1} \circ \cdots \circ J_{0}\right)\left[e^{-\gamma x} g-p[z]_{ \pm}^{k}\right]=b_{n} z
$$

Now the same Corollary 2.1 ensures z to be a solution to equation (2.3). By definition, z also satisfies $|z(x)-y(x)|=O\left(e^{-\gamma x}\right)$ as $x \rightarrow \infty$. Suppose there exist two functions $z_{1}(x)$ and $z_{2}(x)$ defined on some half-line $[c ; \infty), c \geq x_{*}$, and satisfying the statement of Theorem 2.1.

Then $D=\sup \left\{e^{\gamma x}\left|z_{1}(x)-z_{2}(x)\right|: x \geq c\right\}<\infty$. Moreover, both $z_{1}(x)$ and $z_{2}(x)$ tend to zero as $x \rightarrow+\infty$ and therefore satisfy

$$
b_{n} z_{j}=\left(J_{n-1} \circ \cdots \circ J_{0}\right)\left[e^{-\gamma x} g-p\left[z_{j}\right]_{ \pm}^{k}\right], \quad j=1,2
$$

So, putting

$$
Z_{c}=\sup \left\{\max \left\{\left|z_{1}(x)\right|,\left|z_{2}(x)\right|\right\}: x \geq c\right\}
$$

we obtain

$$
e^{\gamma x}\left|z_{1}(x)-z_{2}(x)\right| \leq e^{\gamma x} \cdot \frac{M k Z_{c}^{k-1} D e^{-\gamma x}}{\beta^{n+1} \gamma^{n}}, \text { whence } D \leq \frac{M k Z_{c}^{k-1}}{\beta^{n+1} \gamma^{n}} \cdot D
$$

Now, choosing c large enough, we can make Z_{c} to become sufficiently small so that the last inequality holds only if $D=0$. So, the uniqueness is proved.

Corollary 2.2. Suppose that the function $f(x)$ in equation (1.1) is continuous and satisfies the condition

$$
\begin{equation*}
|f(x)| \leq C e^{-\gamma x}, \quad C>0, \quad \gamma>0 \tag{2.11}
\end{equation*}
$$

$p(x)$ is a bounded continuous function, and a_{0}, \ldots, a_{n-1} are continuous functions satisfying (2.1).
Then for any solution $y(x)$ to equation (1.1) tending to zero as $x \rightarrow \infty$, there exists a solution $z(x)$ to equation (1.2) such that

$$
\begin{equation*}
|y(x)-z(x)|=O\left(e^{-\gamma x}\right), \quad x \rightarrow \infty . \tag{2.12}
\end{equation*}
$$

Similarly, for any solution $z(x)$ to equation (1.2) tending to zero as $x \rightarrow \infty$, there exists a solution $y(x)$ to equation (1.1) satisfying (2.12).

Acknowledgments

The research was partially supported by Russian Science Foundation (scientific project \# 20-11-20272).

References

[1] I. V. Astashova, On asymptotic equivalence of differential equations. (Russian) Differ. Uravn 32 (1996), 851-859.
[2] I. V. Astashova, Application of dynamical systems to the investigation of the asymptotic properties of solutions of higher-order nonlinear differential equations. (Russian) Sovrem. Mat. Prilozh. No. 8 (2003), 3-33; translation in J. Math. Sci. (N.Y.) 126 (2005), no. 5, 1361-1391.
[3] I. V. Astashova, Qualitative properties of solutions to quasilinear ordinary differential equations. (Russian) In: Astashova I. V. (Ed.) Qualitative Properties of Solutions to Differential Equations and Related Topics of Spectral Analysis, pp. 22-290, UNITY-DANA, Moscow, 2012.
[4] I. Astashova, On power and non-power asymptotic behavior of positive solutions to Emden-Fowler type higher-order equations. Adv. Difference Equ. 2013, 2013:220, 15 pp.
[5] I. Astashova, On asymptotic equivalence of nth order nonlinear differential equations. Tatra Mt. Math. Publ. 63 (2015), 31-38.
[6] I. Astashova, M. Bartušek, Z. Došlá and M. Marini, Asymptotic proximity to higher order nonlinear differential equations. Adv. Nonlinear Anal. 11 (2022), no. 1, 1598-1613.
[7] I. V. Astashova, A. V. Filinovskii, V. A. Kondratiev and L. A. Muravei, Some problems in the qualitative theory of differential equations. J. Nat. Geom. 23 (2003), no. 1-2, 1-126.
[8] F. Brauer and J. S. W. Wong, On the asymptotic relationships between solutions of two systems of ordinary differential equations. J. Differential Equations 6 (1969), 527-543.
[9] S. K. Choi, Y. H. Goo and N. J. Koo, Asymptotic equivalence between two linear differential systems. Ann. Differential Equations 13 (1997), no. 1, 44-52.
[10] Yu. V. Egorov, V. A. Kondrat'ev and O. A. Oleǐnik, Asymptotic behavior of solutions of nonlinear elliptic and parabolic systems in cylindrical domains. (Russian) Mat. Sb. 189 (1998), no. 3, 45-68; translation in Sb. Math. 189 (1998), no. 3-4, 359-382.
[11] I. T. Kiguradze, On the oscillatory character of solutions of the equation $d^{m} u / d t^{m}+$ $a(t)|u|^{n} \operatorname{sign} u=0$. (Russian) Mat. Sb. (N.S.) 65 (107) (1964), 172-187.
[12] I. T. Kiguradze and T. A. Chanturia, Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations. Mathematics and its Applications (Soviet Series), 89. Kluwer Academic Publishers Group, Dordrecht, 1993.
[13] V. A. Kozlov, On Kneser solutions of higher order nonlinear ordinary differential equations. Ark. Mat. 37 (1999), no. 2, 305-322.
[14] M. Pinto, Asymptotic equivalence of nonlinear and quasi linear differential equations with piecewise constant arguments. Math. Comput. Modelling 49 (2009), no. 9-10, 1750-1758.
[15] A. Reinfelds, Asymptotic equivalence of difference equations in Banach space. Theory and applications of difference equations and discrete dynamical systems, 215-222, Springer Proc. Math. Stat., 102, Springer, Heidelberg, 2014.
[16] S. Saito, Asymptotic equivalence of quasilinear ordinary differential systems. Math. Japon. $\mathbf{3 7}$ (1992), no. 3, 503-513.
[17] A. M. Samoilenko and O. Stanzhytskyi, Qualitative and Asymptotic Analysis of Differential Equations with Random Perturbations. World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises, 78. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2011.
[18] M. Švec, Asymptotic relationship between solutions of two systems of differential equations. Czechoslovak Math. J. 24(99) (1974), 44-58.
[19] A. Zafer, On asymptotic equivalence of linear and quasilinear difference equations. Appl. Anal. 84 (2005), no. 9, 899-908.
(Received 15.08.2022; accepted 08.09.2022)

Author's addresses:

Irina Astashova

1. Lomonosov Moscow State University, 1 Leninskie Gory, Moscow 119991, Russia.
2. Plekhanov Russian University of Economics, 36 Stremyanny lane, Moscow 117997, Russia.

E-mail: ast.diffiety@gmail.com

