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Abstract. This paper is devoted to the problem of asymptotic equivalence of n-th order differen-
tial equations with exponentially equivalent right-hand sides. With the help of the obtained result
asymptotic behavior of solutions to perturbed differential equations is described.
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რეზიუმე. ნაშრომი ეძღვნება ექსპონენციალურად ეკვივალენტური მარჯვენა მხარეების მქონე
n-ური რიგის დიფერენციალური განტოლებების ასიმპტოტური ეკვივალენტობის პრობლემას.
მიღებული შედეგის დახმარებით აღწერილია შეშფოთებული დიფერენციალური განტოლებების
ამონახსნების ასიმპტომური ყოფაქცევა.



On Asymptotic Equivalence of n-th Order Nonlinear Differential Equations 19

1 Introduction
We study the problem of asymptotic equivalence of the equations

y(n)(x) +

n−1∑
j=0

aj(x)y
(j)(x) + p(x)|y(x)|k sgn y(x) = f(x) (1.1)

and

z(n)(x) +

n−1∑
j=0

aj(x)y
(j)(x) + p(x)|z(x)|k sgn z(x) = 0 (1.2)

with n ≥ 2, k > 1, and continuous functions p(x), f(x) and aj(x). Equation (1.2) is a so-called Emden–
Fowler type differential equation. It was considered from different points of view (see, e.g., [3,12] and
the references there). In particular, the asymptotic behavior of its solutions vanishing at infinity is
described (see also [2, 4, 13]). So, if an asymptotic equivalence of equations (1.1) and (1.2) exists, it
is possible to describe the asymptotic behavior of vanishing at infinity solutions to equation (1.1),
too. Previous results are formulated in [1,5–7,11]. The asymptotic equivalence of ordinary differential
equations and their systems can be useful to investigate some problems for partial differential equations
(see, e.g., [10]). Note that the notion of asymptotic equivalence can be used in different senses
(cf. [8, 9, 14–19]).

Hereafter we denote |y|k sgn y by [y]
k
±.

2 Asymptotic equivalence of nonlinear perturbed
differential equations

Theorem 2.1. Let a0, . . . , an−1, p, f , and g be continuous functions defined in a neighborhood of ∞.
Suppose p(x), f(x) and g(x) are bounded while a0, . . . , an−1 satisfy the inequalities

∞∫
x0

xn−j−1|aj(x)| dx < ∞, j ∈ {0, . . . , n− 1}. (2.1)

If y is a solution to the equation

y(n)(x) +

n−1∑
j=0

aj(x)y
(j)(x) + p(x) [y(x)]

k
± = f(x) e−γx (2.2)

with n ≥ 2, k > 1, γ > 0 and y(x) → 0 as x → +∞, then there exists a unique solution z to the
equation

z(n)(x) +

n−1∑
j=0

aj(x)z
(j)(x) + p(x) [z(x)]

k
± = g(x) e−γx (2.3)

such that |z(x)− y(x)| = O(e−γx) as x → +∞.

Lemma 2.1. Any linear differential operator

L : y 7→ y(n) +

n−1∑
j=0

ajy
(j) (2.4)

with all continuous functions aj(x) satisfying (2.1) can be represented in a neighbourhood of +∞ as
the composition operator

L = Db = b0B1 ◦ · · · ◦Bn,

where b = (b0, b1, . . . , bn), all Bj , j = 1, . . . , n, are the first-order operators u 7→ (bju)
′ and each bj,

j = 0, . . . , n, is a Cj function satisfying at infinity the following conditions:
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(i) bj(x) → 1,

(ii) xib
(i)
j (x) → 0 for all i ∈ {1, . . . , j − 1},

(iii)
∞∫
x0

xi−1|b(i)j (x)| dx < ∞ for all i ∈ {1, . . . , j} and some x0 ∈ R.

Now, for b = (b0, b1, . . . , bn) and j ∈ {0, . . . , n}, put

b− j = (bj , . . . , bn).

Note that if a tuple b satisfies the conditions from Lemma 2.1, then so does the tuple b− j.

Lemma 2.2. Let b = (b0, b1, . . . , bn) satisfy the conditions from Lemma 2.1. If a function y satisfies
at infinity both y → 0 and Db(y) → 0, then the same is true for all functions Db−j(y), 0 < j < n.

Proof. Suppose the contrary, i.e., that for some j ∈ {1, . . . , n−1}, the function Db−j(y) does not tend
to zero. Consider the greatest of those j.

Since bj → 1 as x → ∞ for all j ∈ {0, . . . , n}, we can assume the inequality β < bj < β−1 to hold
for all those j and for some common β ∈ (0; 1). Without loss of generality, we can also assume that
for some ε > 0 there exists a sequence of points xi → ∞ such that Db−j(y)(xi) > ε. Let x′

i be the
closest point to the right of xi such that Db−j(y)(x

′
i) = βε. Such a point exists. Indeed, otherwise

Db−j(y) = bj(Db−(j+1)(y))
′ > βε on [xi;∞), whence

Db−(j+1)(y)(x) = Db−(j+1)(y)(xi) +

x∫
xi

Db−j(y)(s) ds

bj(s)

> Db−(j+1)(y)(xi) + β2ε(x− xi) → ∞ as x → ∞,

Db−(j+2)(y)(x) = Db−(j+2)(y)(xi) +

x∫
xi

Db−(j+1)(y)(s) ds

bj+1(s)
→ ∞,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

bn(x)y(x) = Db−n(y)(x) = Db−n(y)(xi) +

x∫
xi

Db−(n−1)(y)(s) ds

bn−1(s)
→ ∞,

which contradicts the assumption of Lemma 2.2 that y → 0. So, Db−j(y) ≥ βε on [xi;x
′
i]. To complete

the proof we need the following

Lemma 2.3. Suppose a tuple b = (b0, b1, . . . , bn) satisfies the conditions from Lemma 2.1 and a
function y satisfies, on a segment I of length ∆, the inequality |Db−j(y)| ≥ W with some j ∈
{1, . . . , n} and a constant W > 0. Then there exists a segment I ′ ⊂ I of length 4j−n∆ such that
|y| ≥ (2j−n β)n+1−jW∆n−j on I ′.

Proof. Still assuming β < bj < β−1 to hold for all j ∈ {0, . . . , n} and for some common β ∈ (0; 1), we
prove the lemma by reverse induction on j. For j = n, the statement is trivial since if |Db−n(y)| =
|bny| ≥ W , then |y| ≥ βW .

Suppose it is proved for some j > 1 and on a segment I of length ∆ the inequality |Db−(j−1)(y)| ≥
W > 0 holds.

Since the derivative of the function Db−j(y) equals Db−(j−1)(y)/bj−1 and hence does not vanish
on I, the function itself is monotone there and therefore can vanish at most at a single point.

If both Db−j(y) and Db−(j−1)(y) are non-negative at the middle point c of the segment I, then on
the last quarter of I we have

Db−j(y)(x) ≥ Db−j(y)(c) + βW · (x− c) ≥ βW∆

4
> 0.
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For other sign combinations of Db−j(y)(c) and Db−(j−1)(y)(c) we can prove by the same way the
inequality

|Db−j(y)| ≥ W ′ =
βW∆

4
> 0

to hold on either the first or last quarter I ′ ⊂ I of length ∆′ = ∆/4.
Now, according to the induction hypothesis, there exists a segment I ′′ ⊂ I ′ of length 4j−n ∆′ =

4(j−1)−n ∆, where the function y satisfies

|y| ≥ (2j−n β)n+1−jW ′(∆′)n−j = (2j−n β)n+1−j · βW∆1+n−j

41+n−j

= β(2j−n−2 β)n+1−j ·W∆n−(j−1) = (2(j−1)−n β)n+1−(j−1)W∆n−(j−1).

So, the statement for (j − 1) and Lemma 2.3 are proved.

Now we continue proving Lemma 2.2.
We have a sequence of segments [xi;x

′
i] such that Db−j(y) ≥ βε on each of them as well as

Db−j(y)(xi) ≥ ε and Db−j(y)(x
′
i) = βε on their ends.

By Lemma 2.3, there exist the segments [x′′
i ;x

′′′
i ] ⊂ [xi;x

′
i] with the inequality

|y| ≥ (2j−n β)n+1−jβε(x′
i − xi)

n−j

holding on each of them.
Since by assumption y → 0, the length of the segments [xi;x

′
i] must also tend to zero. Now we

can choose a sequence of points ci ∈ [xi;x
′
i] with

|Db−(j−1)(y)(ci)| = bj−1(ci)
∣∣∣Db−j(y)(x

′
i)−Db−j(y)(xi)

x′
i − xi

∣∣∣ ≥ ε− βε

x′
i − xi

→ ∞.

This contradicts the choice of j as the smallest of those with Db−j(y) non-tending to zero. So,
Lemma 2.2 is proved.

Corollary 2.1. Under the conditions of Theorem 2.1, a function y is a solution to equation (2.2)
tending to zero as x → +∞ if and only if

bny = (Jn−1 ◦ · · · ◦ J0)
[
e−γxf(x)− p(x) [y(x)]

k
±

]
, (2.5)

where the operators Jj take each sufficiently rapidly decreasing continuous function φ to the vanishing
at infinity primitive function of φ/bj:

Jj [φ](x) = −
∞∫
x

φ(ξ)

bj(ξ)
dξ.

Proof. Under the conditions of Theorem 2.1, equation (2.2) can be written, in a neighborhood of
+∞, as

Db(y)(x) = e−γxf(x)− p(x) [y(x)]
k
± . (2.6)

So, if a solution y to (2.6) tends to 0 as x → ∞, then so does Db(y). By Lemma 2.2, the same is true
for all functions Db−j(y), 0 < j < n, which ensures that we can obtain (2.5) from (2.6) by successively
(for j = 0, . . . , n− 1) applying the formula

Db−(j+1)(y) = Jj [Db−j(y)], (2.7)

which is true whenever its left-hand side tends to zero at infinity.
For the converse statement, first, note that any function satisfying (2.5) tends to 0 due to the

definition of the operators Jj . To prove that such a function satisfies (2.6), we also successively (for
j = n − 1, . . . , 0) apply the same formula (2.7) to equation (2.5) with its left-hand side treated as
Db−n(y), whereafter take into account that functions having equal images under Jj must be equal to
each other.
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Proof of Theorem 2.1. Suppose that y is a vanishing at infinity solution to equation (2.2). Let M > 0
be a common upper bound for |f |, |g|, and |p| on their domains and

H =
3M

βn+1 γn
. (2.8)

Consider the space H of all continuous functions η : [x∗,+∞) → [−H; H], where x∗ is a sufficiently
large positive constant such that all the functions y(x), f(x), g(x), and p(x) are defined on [x∗,+∞)
and, moreover, the values e−γx∗ and Y = sup{|y(x)| : x ≥ x∗} are sufficiently small to ensure

k(Y +He−γx∗)k−1 ≤ H−1. (2.9)

Now we define an operator R : H → C[x∗;∞) by the formula

R(η)(x) = p(x)
(
[y(x)]

k
± −

[
y(x) + η(x)e−γx

]k
±

)
+ e−γx(g(x)− f(x)).

Taking into account the inequality∣∣ [a]k± − [b]
k
±
∣∣ ≤ kmax

{
|a|, |b|

}k−1|a− b|

as well as (2.8) and (2.9), we obtain, for η ∈ H, that

|R(η)(x)| ≤ Mk(Y +He−γx∗)k−1He−γx + 2Me−γx ≤ MH−1He−γx + 2Me−γx = 3Me−γx.

This allows us to define an operator F : H → C[x∗;∞) by

F (η)(x) =
eγx(Jn−1 ◦ · · · ◦ J0 ◦R)[η](x)

bn(x)
(2.10)

and to note that |F (η)(x)| ≤ eγxγ−nβ−n−1 3Me−γx = H for all η ∈ H, i.e., F (H) ⊂ H. Similar
estimates show that F is a contraction. Indeed, suppose η1, η2 ∈ H and

δ = sup
{
|η1(x)− η2(x)| : x ≥ x∗

}
.

Then ∣∣R(η1)(x)−R(η2)(x)
∣∣ ≤ Mk(Y +He−γx)k−1δ e−γx∗ ≤ Mδe−γx

H

for all x ≥ x∗, and therefore ∣∣F (η1)(x)− F (η2)(x)
∣∣ ≤ eγxMδe−γx

Hβn+1γn
=

δ

3
.

So, F is a contraction and there exists a unique η ∈ H such that F (η) = η. Taking into account
(2.10), this can be written as

eγx(Jn−1 ◦ · · · ◦ J0 ◦R)[η](x) = bn(x) η(x)

or, taking into account the definition of R and putting z = y + η e−γx, as

(Jn−1 ◦ · · · ◦ J0)
[
p ·

(
[y]

k
± − [z]

k
±
)
+ e−γx(g − f)

]
= bn·(z − y).

Since y is a vanishing at infinity solution to equation (2.2), we can use Corollary 2.1 to remove in the
last equality all terms with y and f :

(Jn−1 ◦ · · · ◦ J0)
[
e−γxg − p [z]

k
±
]
= bnz.

Now the same Corollary 2.1 ensures z to be a solution to equation (2.3). By definition, z also satisfies
|z(x) − y(x)| = O(e−γx) as x → ∞. Suppose there exist two functions z1(x) and z2(x) defined on
some half-line [c;∞), c ≥ x∗, and satisfying the statement of Theorem 2.1.
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Then D = sup{ eγx|z1(x)− z2(x)| : x ≥ c} < ∞. Moreover, both z1(x) and z2(x) tend to zero as
x → +∞ and therefore satisfy

bnzj = (Jn−1 ◦ · · · ◦ J0)
[
e−γxg − p [zj ]

k
±
]
, j = 1, 2.

So, putting
Zc = sup

{
max

{
|z1(x)|, |z2(x)|

}
: x ≥ c

}
,

we obtain
eγx|z1(x)− z2(x)| ≤ eγx · MkZk−1

c De−γx

βn+1γn
, whence D ≤ MkZk−1

c

βn+1γn
·D.

Now, choosing c large enough, we can make Zc to become sufficiently small so that the last inequality
holds only if D = 0. So, the uniqueness is proved.

Corollary 2.2. Suppose that the function f(x) in equation (1.1) is continuous and satisfies the
condition

|f(x)| ≤ Ce−γx, C > 0, γ > 0, (2.11)

p(x) is a bounded continuous function, and a0, . . . , an−1 are continuous functions satisfying (2.1).
Then for any solution y(x) to equation (1.1) tending to zero as x → ∞, there exists a solution

z(x) to equation (1.2) such that

|y(x)− z(x)| = O(e−γx), x → ∞. (2.12)

Similarly, for any solution z(x) to equation (1.2) tending to zero as x → ∞, there exists a solution
y(x) to equation (1.1) satisfying (2.12).
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