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Abstract

This paper gives a self contained proof of the perturbation theorem
for invariant tori in Hamiltonian systems by Kolmogorov, Arnold, and
Moser with sharp differentiability hypotheses. The proof follows an idea
outlined by Moser in [16] and, as byproducts, gives rise to uniqueness and
regularity theorems for invariant tori. 1

1 Introduction

KAM theory is concerned with the existence of invariant tori for Hamiltonian
differential equations. More precisely, we consider the following situation. Let
H(x, y) be a smooth real valued function of 2n variables x1, . . . , xn, y1, . . . , yn.
We assume that H is of period 1 in each of the variables x1, . . . , xn and y is
restricted to an open domainG ⊂ Rn so thatH is defined on Tn×G where Tn :=

1 The present paper was written in 1986 while I was a postdoc at ETH Zürich. I didn’t
publish it at the time because the results are well known and the paper is of expository na-
ture. The paper is reproduced here with the following changes: there are a few updates in
the introduction, a mistake in Lemma 3 and the proof of Theorem 2 has been corrected, the
hypotheses of Theorem 2 have been weakened, and Lemma 5 has been moved to Section 3.
The original manuscript can be found on my webpage http://www.math.ethz.ch/ sala-
mon/publications.html.
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Rn/Zn denotes the n-torus. Consider the Hamiltonian differential equation

ẋ = Hy, ẏ = −Hx, (1.1)

where Hx ∈ Rn and Hy ∈ Rn denote the vectors of partial derivatives of H with
respect to xν and yν . As a matter of fact, any Hamiltonian vector field on a
symplectic manifold can, in a neighborhood of a Lagrangian invariant torus, be
represented in the form (1.1).

By an invariant torus for (1.1) in parametrized form with prescribed fre-
quencies ω1, . . . , ωn we mean an embedding x = u(ξ), y = v(ξ) of Tn into
Tn×G such that u(ξ)− ξ and v(ξ) are of period 1 in all variables, u represents
a diffeomorphism of the torus, and the solutions of the differential equation

ξ̇ = ω

are mapped to solutions of (1.1). Equivalently, u and v satisfy the degenerate,
nonlinear partial differential equations

Du = Hy(u, v), Dv = −Hx(u, v), (1.2)

where D denotes the first order differential operator

D :=

n∑

ν=1

ων
∂

∂ξν
.

Observe that any such invariant torus consists of quasiperiodic solutions of the
Hamiltonian differential equation (1.1). In fact, the solutions are periodic if all
the frequencies ω1, . . . , ωn are integer multiples of a fixed number and they lie
dense on the torus if the frequencies are rationally independent.

The simplest case is where the functionH = H(y) is independent of x so that
each of the sets y = constant defines an invariant torus which can be represented
by the functions u(ξ) = ξ and v(ξ) = y. The frequency vector is then given
by ω = Hy(y) and will in general depend on the value of y. This situation
corresponds to an integrable Hamiltonian system and must be considered as the
exceptional case. In fact, it has already been shown by Poincaré that in general
one cannot expect equation (1.2) to have a solution for all values of ω in an
open region, even if the Hamiltonian function H(x, y) is close to an integrable
one. The remarkable discovery of KAM theory was that even though a solution
of (1.2) cannot be expected for rational frequency vectors it does indeed exist
if the frequencies ω1, . . . , ωn are rationally independent and, moreover, satisfy
the Diophantine inequalities

j ∈ Zn \ {0} =⇒ |〈j, ω〉| ≥ 1

c0|j|τ
(1.3)

for some constants c0 > 0 and τ > n− 1. Here |j| denotes the Euclidean norm.
Actually, only the perturbation problem for equation (1.2) is treated in KAM

theory. More precisely, in addition to (1.3) we will have to assume that the
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Hamiltonian function H(x, y) is sufficiently close to a function F (x, y) for which
a solution is known to exist. After a suitable coordinate transformation this
amounts to the condition

Fx(x, 0) = 0, Fy(x, 0) = ω, (1.4)

so that the invariant torus for F can be represented by the functions u(ξ) = ξ
and v(ξ) = 0. Moreover, we assume that the unperturbed Hamiltonian function
satisfies the Legendre type condition

det

(∫

Tn
Fyy(x, 0) dx

)
6= 0. (1.5)

Under these assumptions the theorem asserts that the invariant torus with pre-
scribed frequencies ω1, . . . , ωn survives under sufficiently small perturbations of
the Hamiltonian function and its derivatives.

The perturbation theory described above goes back over forty years to the
work of Kolmogorov [10, 11], Arnold [3, 4], and Moser [13, 14], Actually, the
history of the problem of finding quasiperiodic solutions of Hamiltonian differen-
tial equations is much longer. In particular, it was of great interest to Poincaré
and Weierstrass especially because of its relevance for the stability theory in
celestial mechanics. For a more detailed account of the historical development
the interested reader is referred to [17]. Closely related developments in the
theory of Hamiltonian systems like the theory of Mather and Aubry as well as
connections to various other fields in mathematics are described in [19].

The present paper builds on the ideas developed by Kolmogorov, Arnold,
Moser and also by Rüssmann, Zehnder, Pöschel and many others. Its purpose
is to summarize some of their work and to present a complete proof of the
above mentioned perturbation theorem for invariant tori. We are particularly
interested in the minimal number of derivatives required for F and H . The
main ideas of this proof were outlined by Moser [16] and the details were later
provided by Pöschel [22, 23] in a somewhat different way than it is done here.
Moser’s proof may be roughly sketched as follows. The first step is to prove a
theorem for analytic Hamiltonians which involves quantitative estimates (The-
orem 1). For differentiable Hamiltonians the result will then be obtained by
approximating H(x, y) with a sequence of real analytic functions - again includ-
ing quantitative estimates - and then applying Theorem 1 to each element of
the sequence (Theorem 2).

A beautiful presentation of similar ideas can be found in [15] in connection
with Arnold’s theorem about vector fields on a torus [2]. Moser has also used
these methods for proving his perturbation theorem for minimal foliations for
variational problems on a torus. This result was first stated in [18] and its
proof appeared in [20]. In [9] Jacobowitz has applied the same approach to
Nash’s embedding problem for compact Riemannian manifolds [21] in order to
reduce the number of derivatives to ` > 2. Later Zehnder [28] has developed
a general abstract setup for small divisor problems along these lines. Other
versions of such abstract implicit function theorems can be found in the work
of Hamilton [6] and Hörmander [8].
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In connection with his paper [16] Moser produced a set of handwritten notes
in which he sketched the necessary estimates for the proofs of the theorems
presented here. The present paper is to a large extent based on those notes.
Incidentally, also Pöschel’s paper [22] was based on Moser’s notes. Both in [16]
and [22] it is essential that the unperturbed Hamiltonian function F is analytic
whereas, changing the proof slightly, one can dispense with the unperturbed
function F and instead assume that H is a C` Hamiltonian function that satis-
fies (1.5) and is an approximate solution of (1.4) in a suitable sense. Here

` > 2τ + 2 > 2n

and τ is the number appearing in (1.3). The resulting solutions u and v of (1.2)
are of class Cm, where m < `− 2τ − 2, and the function v ◦ u−1, whose graph
is the invariant torus, is of class Cm+τ+1 (Theorem 2). These are precisely the
regularity requirements which we need for the solutions of (1.2) to be locally
unique (Theorem 3). Combining these two results we obtain that every solu-
tion of (1.2) of class C`+1 for a Hamiltonian function of class C∞ must itself
be of class C∞ (Theorem 4). We point out that the result presented here is
close to the optimal one as in [7] Herman gave a counterexample concerning
the nonexistence of an invariant curve for an annulus mapping of class C3−ε.
Translated to our situation this corresponds to the case n = 2 with ` = 4− ε.
Other counterexamples with less smoothness were given by Takens [27] and
Mather [12].

Before entering into the details of the proof we shall discuss a few funda-
mental properties of invariant tori. If the frequencies ω1, . . . , ωn are rationally
independent then it follows from (1.2) that the torus is a Lagrangian submani-
fold of Tn ×G or, equivalently,

uTξ vξ = vTξ uξ. (1.6)

This implies that the embedding of the torus extends to a symplectic embedding
z = φ(ζ) where z = (x, y), ζ = (ξ, η), and

x = u(ξ), y = v(ξ) + uTξ (ξ)
−1η. (1.7)

In this notation u and v satisfy equations (1.2) if and only if the transformed
Hamiltonian function K := H ◦ φ satisfies

Kξ(ξ, 0) = 0, Kη(ξ, 0) = ω (1.8)

Note that the transformations of the form (1.7) with u and v satisfying (1.6)
form a subgroup of the group of symplectic transformations of Tn × Rn.

It follows from (1.6) that the transformation z = φ(ζ) defined by (1.7) can
be represented in terms of its generating function

S(x, η) := U(x) + 〈V (x), η〉
where the scalar function U(x) and the vector function V (x) are chosen as to
satisfy

V ◦ u = id, Ux ◦ u = v, (1.9)
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so that z = φ(ζ) if and only if y = Sx and ξ = Sη. Observe that the functions
V (x)−x and Ux(x) are of period 1 in all variables. The invariant torus can now
be represented as the graph of

y = Ux(x) (1.10)

and the flow on it can be described by the differential equation

ẋ = Hy(x, Ux). (1.11)

The requirement that equation (1.10) defines an invariant torus is equivalent to
the Hamilton-Jacobi equation

H(x, Ux) = constant. (1.12)

In particular, the Hamiltonian system (1.1) can be understood in terms of the
characteristics of the partial differential equation (1.12). Thus we are trying
to find a solution of the partial differential equation (1.12) such that Ux is of
period 1 and such that there is a diffeomorphism ξ = V (x) of the torus which
transforms the differential equation (1.11) into ξ̇ = ω. The latter condition can
be expressed by the formula

VxHy(x, Ux) = ω. (1.13)

Equations (1.12) and (1.13) together are equivalent to (1.8) and hence to (1.2).

2 The analytic case

The existence proof of invariant tori for analytic Hamiltonians goes back to
Kolmogorov [10]. It was his idea to solve in each step of the iteration a linearized
version of equations (1.12) and (1.13). The complete argument of the proof was
given by Arnold [3] for the first time and in [16] Moser provided the quantitative
estimates. The latter play an essential role in this paper.

In the course of the iteration we shall need an estimate for the solutions of the
degenerate, linear partial differential equation Df = g. Such an estimate was
given by Arnold [3] and Moser [15] and was later improved by Rüssmann [24, 25].
A slightly modified proof of Rüssmann’s result can be found in Pöschel [22]. For
the convenience of the reader we include a proof here (Lemma 2).

This requires some preparation. We introduce the space Wr of all bounded
real analytic functions w(ξ) in the strip |Im ξ| ≤ r, ξ ∈ Cn, which are of period
1 in all variables. Here we denote by |Im ξ| the Euclidean norm of the vector
Im ξ ∈ Rn. Moreover, we introduce the norms

|w|r := sup
|Im ξ|≤r

|w(ξ)|, ‖w‖r := sup
|v|≤r

(∫

Tn
|w(u+ iv)|2

)1/2
,
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for w ∈ Wr and we denote by W 0
r the subspace of those functions w ∈ Wr

which have mean value zero on Im ξ = 0. Observe that every w ∈ Wr can be
represented by its Fourier series

w(ξ) =
∑

j∈Zn
wje

2πi〈j,ξ〉, wj :=

∫

Tn
w(u+ iv)e−2πi〈j,u〉 du e2π〈j,v〉.

Here the formula for wj holds for every v ∈ Rn with |v| ≤ r and w−j = w̄j .
Note also that w ∈ W 0

r if and only if w0 = 0.

Lemma 1. There exists a constant c = c(n) > 0 such that the following in-
equalities hold for every w ∈Wr and every ξ ∈ Cn with |Imξ| ≤ ρ < r ≤ 1.

(i) ‖w‖r ≤ |w|r and |wj | ≤ ‖w‖re−2π|j|r.

(ii) |w(ξ)| ≤∑j∈Zn |wj |e−2π〈j,Im ξ〉 ≤ c(r − ρ)−n/2‖w‖r.

(iii) |wξ|ρ ≤ (r − ρ)−1|w|r.

Proof. The first inequality in (i) is obvious and the second is a consequence of
the following estimate for v := −r|j|−1j:

|wj | ≤
∫

Tn
|w(u+ iv)| du e2π〈j,v〉 ≤ ‖w‖re−2π|j|r.

The first inequality in (ii) is again obvious. To establish the second inequality
in (ii) fix a vector ξ ∈ Cn with |Im ξ| ≤ ρ and consider the set J0 ⊂ Zn of those
integer vectors j ∈ Zn that satisfy

2〈j, Im ξ〉 < −|j|ρ.

We will use the identity
∫

Tn
|w(u+ iv)|2 du =

∑

j∈Zn
|wj |2e−4π〈j,v〉

and obtain with µ := r/ρ > 1 that

∑

J0

|wj |e−2π〈j,Im ξ〉 ≤
∑

J0

|wj |e−2π〈j,µIm ξ〉e−π|j|(r−ρ)

≤
(
∑

J0

|wj |2e−4π〈j,µIm ξ〉
)1/2(∑

J0

e−2π|j|(r−ρ)

)1/2

≤ c
1/2
1

(r − ρ)n/2 ‖w‖r,

where
c1 = c1(n) := sup

0<λ≤1

∑

j∈Zn
λne−2π|j|λ <∞.
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Now let e1, . . . , es be a collection of unit vectors in Rn such that, for every
x ∈ Rn, there exists a σ ∈ {1, . . . , s} with 〈x, eσ〉 ≥ |x|/2. Then every integer
vector outside J0 belongs to one of the sets Jσ of all those j ∈ Zn that satisfy

2〈j, Im ξ〉 ≥ −|j|ρ, 2〈j, eσ〉 ≥ |j|.

Moreover, for σ = 1, . . . , s we obtain

∑

Jσ

|wj |e−2π〈j,Im ξ〉 ≤
∑

Jσ

|wj |eπ|j|ρ

≤
(
∑

Jσ

|wj |2e2π|j|r
)1/2(∑

Jσ

e−2π|j|(r−ρ)

)1/2

≤
(
∑

Zn
|wj |2e4π〈j,reσ〉

)1/2(∑

Zn
e−2π|j|(r−ρ)

)1/2

≤ c
1/2
1

(r − ρ)n/2 ‖w‖r.

Hence (ii) holds with c := c
1/2
1 (1 + s), where both c1 and s depend on n only.

Assertion (iii) follows from Cauchy’s integral formula

|wξ(ξ)| =
1

2πi

∫

Γ

λ−2w

(
ξ + λ

wξ(ξ)

|wξ(ξ)|

)
dλ,

with Γ := {λ ∈ C | |λ| = r − ρ}. This proves the lemma.

It might be interesting to compare assertion (ii) of the previous lemma with
similar results in the literature working with max|Im ξν | and

∑|jν | instead of
the Euclidean norms. In that case the L2-norm on the larger strip |Im ξν | ≤ r is
equivalent to the square root of

∑
j |wj |2e4πr

∑
|jν |, but an analogous statement

does not seem to hold in the case of the Euclidean norm. Therefore the proof
of Lemma 1 (ii) is a bit more delicate than might be expected.

We are now in a position to prove the desired inequality for the solutions of
Df = g. This requires estimating a series with small divisors. The observation
that the inequality (2.1) below holds with the L2-norm ‖g‖r on the right hand
side, instead of the sup-norm |g|r, was pointed out to the author by Jürgen
Moser. Another minor difference to analogous results in the literature lies in
the aforementioned use of the Euclidean norm for Im ξ ∈ Rn.

Lemma 2 (Moser, Rüssmann). Let n ≥ 2, τ > n− 1, and c0 > 0 be given.
Then there exists a constant c > 0 such that the following holds for every vector
ω ∈ Rn that satisfies (1.3). If g ∈W 0

r with 0 < r ≤ 1 then the equation

Df = g
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has a unique solution f ∈ W 0
ρ , ρ < r, and this solution satisfies the inequality

|f |ρ ≤
c

(r − ρ)τ ‖g‖r. (2.1)

Proof. Representing the functions f, g ∈ W 0
r by their Fourier series we obtain

that the equation Df = g is equivalent to

fj =
gj

2πi〈j, ω〉 , 0 6= j ∈ Zn.

This proves uniqueness. To establish existence and the inequality (2.1), we
first single out the subset J0 ⊂ Zn of all those vectors j 6= 0 that satisfy
|〈j, ω〉|−1 ≤ 2c0 and define

f0(ξ) :=
∑

j∈J0

fje
2πi〈j,ξ〉.

Then the following inequality holds for |Im ξ| ≤ ρ < r:

|f0(ξ)| ≤ 1

2π

∑

j∈J0

|gj |
|〈j, ω〉|e

−2π〈j,Im ξ〉

≤ c0
π

∑

j∈J0

|gj |e−2π〈j,Im ξ〉

≤ c0c1
(r − ρ)τ ‖g‖r.

Here we have used the inequality τ > n − 1 ≥ n/2 and chosen c1 = c1(n) > 0
so that c := c1π is the constant of Lemma 1 (ii).

The more delicate part of the estimate concerns the integer vectors in Zn \ J0
and is based on the observation that only a few of the divisors 〈j, ω〉 are ac-
tually small. This fact was used e.g. by Siegel [26], Arnold [3], Moser [15],
Rüssmann [25], and Pöschel [22].

Fix a number K ≥ 1 and, for ν = 1, 2, 3, . . . , denote by J(ν,K) the set of
all integer vectors j ∈ Zn that satisfy the inequality

1

2ν+1c0
≤ |〈j, ω〉| < 1

2νc0
, 0 < |j| ≤ K.

In order to estimate the number of points in J(ν,K) we assume without loss of
generality that |ων | ≤ |ωn| for all ν and define j̄ := (j1, . . . , jn−1) ∈ Zn−1 for
j ∈ Zn. Fixing j̄ 6= 0 and choosing jn so as to minimize |〈j, ω〉| we then obtain
|jn| ≤ |j1|+ · · ·+ |jn−1|+1 ≤ 2

√
n− 1|j̄| which implies |j| ≤ 2

√
n|j̄|. Therefore

it follows from (1.3) that

|〈j, ω〉| ≥ 1

c0 (2
√
n|j̄|)τ
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for every j ∈ Zn with j̄ 6= 0. It follows also from (1.3) that |ωn| ≥ 1/c0 and
therefore any two integer vectors j, j ′ ∈ J(ν,K) with j 6= j′ must satisfy j̄ 6= j̄′.
Hence, by what we have just observed,

|j̄ − j̄′|−τ ≤ c0(2
√
n)τ |〈j − j′, ω〉| ≤ 2(2

√
n)τ2−ν ≤ (4

√
n)τ2−ν .

Thus the distance

|j̄ − j̄′| ≥ 2ν/τ

4
√
n

gets very large for large ν. This shows that the number of points in J(ν,K) can
be estimated by

#J(ν,K) ≤ c2K
n−12−ν(n−1)/τ

for some constant c2 = c2(n) > 0. Moreover, we obtain from (1.3) that
J(ν,K) = ∅ for 2ν/τ ≥ K. Denote by J(K) the set of all integer vectors j ∈ Zn

that satisfy
1

|〈j, ω〉| > 2c0, 0 < |j| ≤ K.

Then J(K) is the union of the sets J(ν,K) for ν = 1, 2, 3, . . . and we conclude
that ∑

j∈J(K)

1

|〈j, ω〉| ≤ 2c0c2K
n−1

∑

2ν/τ≤K

2ν(τ+1−n)/τ ≤ c0c3K
τ

for some constant c3 = c3(n, τ) > 0. It is interesting to note that the size of
this sum is of the same order as the size of the largest term in it.

Using Lemma 1 (i) we can now continue estimating |f |ρ:

|f − f0|ρ ≤ 1

2π

∑

j 6=J0

|gj |
|〈j, ω〉|e

2π|j|ρ

≤ ‖g‖r
2π

∑

j 6=J0

1

|〈j, ω〉|e
−2π|j|(r−ρ)

=
‖g‖r
2π

∞∑

k=1

∑

j 6=J0

|j|2=k

1

|〈j, ω〉|e
−2π

√
k(r−ρ)

=
‖g‖r
2π

∞∑

k=1

∑

j∈J(
√
k)

1

|〈j, ω〉|
(
e−2π

√
k(r−ρ) − e−2π

√
k+1(r−ρ)

)

≤ c0c3‖g‖r
2

∞∑

k=1

kτ/2
r − ρ√
k
e−2π

√
k(r−ρ)

≤ c0c3‖g‖r
(r − ρ)τ sup

0<λ≤1

∞∑

k=1

(λ
√
k)τ

λ

2
√
k
e−2πλ

√
k.

Here the penultimate inequality uses the fact that, for λ > 0, we have

e−2λ
√
k − e−2λ

√
k+1 ≤ 2λ

(√
k + 1−

√
k
)
e−2λ

√
k ≤ λ√

k
e−2λ

√
k.
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This proves the lemma.

Theorem 1 (Kolmogorov, Arnold, Moser). Let n ≥ 2, τ > n− 1, c0 > 0,
0 < θ < 1, and M ≥ 1 be given. Then there are positive constants δ∗ and c such
that cδ∗ ≤ 1/2 and the following holds for every 0 < r ≤ 1 and every ω ∈ Rn

that satisfies (1.3).
Suppose H(x, y) is a real analytic Hamiltonian function defined in the strip

|Imx| ≤ r, |y| ≤ r, which is of period 1 in the variables x1, . . . , xn and satisfies
∣∣∣∣H(x, 0)−

∫

Tn
H(ξ, 0) dξ

∣∣∣∣ ≤ δr2τ+2,

|Hy(x, 0)− ω| ≤ δrτ+1,

|Hyy(x, y)−Q(x, y)| ≤ cδ

2M
,

(2.2)

for |Imx| ≤ r and |y| ≤ r, where 0 < δ ≤ δ∗, and Q(x, y) ∈ Cn×n is a symmetric
(not necessarily analytic) matrix valued function in the strip |Imx| ≤ r, |y| ≤ r
and satisfies in this domain

|Q(z)| ≤M,

∣∣∣∣∣

(∫

Tn
Q(x, 0) dx

)−1∣∣∣∣∣ ≤M. (2.3)

Then there exists a real analytic symplectic transformation z = φ(ζ) of the
form (1.7) mapping the strip |Im ξ| ≤ θr, |η| ≤ θr into |Imx| ≤ r, |y| ≤ r,
such that u(ξ)− ξ and v(ξ) are of period 1 in all variables and the Hamiltonian
function K := H ◦ φ satisfies (1.8). Moreover, φ and K satisfy the estimates

|φ(ζ) − ζ| ≤ cδ(1− θ)r, |φζ(ζ) − 1l| ≤ cδ,

|Kηη(ζ)−Q(ζ)| ≤ cδ

M
,

∣∣v ◦ u−1(x)
∣∣ ≤ cδrτ+1,

(2.4)

for |Im ξ| ≤ θr, |η| ≤ θr, and |Imx| ≤ θr.

Proof. We will construct inductively a sequence of real analytic Hamiltonian
functions Hν(x, y) in the strips |Imx| ≤ rν , |y| ≤ rν , where

rν :=

(
1 + θ

2
+

1− θ
2ν+1

)
r, r0 = r,

such that H0 := H and Hν+1 := Hν ◦ ψν . The symplectic transformation
z = ψν(ζ) will be real analytic, will map the strip |Im ξ| ≤ θrν+1, |η| ≤ θrν+1
into |Imx| ≤ rν , |y| ≤ rν , and it will be represented in terms of its generating
function

Sν(x, η) = Uν(x) + 〈V ν(x), η〉.
Following Kolmogorov [10] we will choose the real analytic functions

Uν(x) = 〈α, x〉+ a(x), V ν(x) = x+ b(x)
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in the strip |Imx| ≤ rν such that a(x) and b(x) are of period 1 in all variables,
have mean value zero over the n-torus, and satisfy the following equations for
|Imx| ≤ rν :

Da(x) =

∫

Tn
Hν(ξ, 0) dξ −Hν(x, 0),

∫

Tn

(
Hν

y (ξ, 0) +Hν
yy(ξ, 0)(α+ ax(ξ))

)
dξ = ω,

Db(x) = ω −Hν
y (ξ, 0)−Hν

yy(ξ, 0)(α + ax(ξ)).

(2.5)

Note that the second equation in (2.5) determines α and that it is necessary in
order for the right hand side of the third equation to have mean value zero so
that Lemma 2 can be applied. Moreover, observe that (2.5) can be obtained
from (1.12) and (1.13) by linearizing these equations around V (x) = x and
U(x) = 0 if we replace Da by 〈ax, Hν

y (x, 0)〉 and Db by bxHν
y (x, 0).

Let us now define the error at the νth step of the iteration to be the smallest
number εν > 0 that satisfies the inequalities
∣∣∣∣H

ν(x, 0)−
∫

Tn
Hν(ξ, 0) dξ

∣∣∣∣ ≤ εν ,
∣∣Hν

y (x, 0)− ω
∣∣ (rν − rν+1)τ+1 ≤ εν

for |Imx| ≤ rν . We will then show that εν converges to zero according to the
quadratic estimate

εν+1 ≤
c3

(rν − rν+1)2τ+2
ε2ν . (2.6)

Here c3 > 0 is a suitable constant independent of r. It is important to notice
that the geometrically growing factor in front of ε2ν in (2.6) is dominated by the
quadratic convergence of εν . In fact, one checks easily that (2.6) implies

εν ≤ δνr
2τ+2

where the sequence δν is defined by the recursive law

δν+1 := c2ν(2τ+3)δ2ν , δ0 := δ ≤ δ∗,

γν := c2(ν+1)(2τ+3)δν , γ0 := 22τ+3cδ,
(2.7)

and the constant c > 0 is related to c3 as in equation (2.10) below.2 The
sequence γν will then satisfy

γν+1 = γ2ν (2.8)

and therefore γν converges to zero whenever γ0 < 1. For the sequence Hν this
will lead to the estimates∣∣∣∣H

ν(x, 0)−
∫

Tn
Hν(ξ, 0) dξ

∣∣∣∣ ≤ δνr
2τ+2,

∣∣Hν
y (x, 0)− ω

∣∣ (rν − rν+1)τ+1 ≤ δνr
2τ+2,

∣∣Hν
yy(x, y)−Qν(x, y)

∣∣ ≤ 2−ν cδ

2M

(2.9)

2 A small flaw in the formula (2.7) is the factor 2τ + 3 where one would like to have 2τ + 2.
The number 2τ + 3 is only needed in Step 3 for estimating the y-component of ψν − id.
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for |Imx| ≤ rν and |y| ≤ rν , where

Q0 := Q, Qν := Hν−1
yy

for ν ≥ 1. In this discussion the constants are chosen explicitly as follows. Let
c1 = c1(n, τ, c0) be the constant of Lemma 2 and define c2, c3, and c by

c2 := 12M3
(
1 + c18

τ+1
)2
, c3 := 4Mc22 + c2, c :=

(
4

1− θ

)2τ+3
c3. (2.10)

Next we choose δ∗ > 0 so small that

cδ∗ ≤ 2−2τ−4. (2.11)

This implies γ0 ≤ 1/2 and therefore γν+1 ≤ γν/2 for ν ≥ 1. Finally, define

Mν :=
Mν−1

1− 2−νcδ∗
, M−1 :=M, (2.12)

and note that
Mν ≤Mν−1e

21−νcδ∗ ≤Me4cδ
∗ ≤ 2M (2.13)

for ν ≥ 0. Here the last inequality follows from (2.11).

With the constants in place, we are now ready to prove by induction that
Hν satisfies (2.9). First observe that, by assumption, the inequalities (2.9) are
satisfied for ν = 0 provided that δ ≤ δ∗. Fix an integer ν ≥ 0 and assume, by
induction, that the real analytic functions Hµ(x, y) on the domains |Imx| ≤ rµ,
|y| ≤ rµ, have been constructed for µ = 1, . . . , ν such that (2.9) is satisfied
with ν replaced by µ. Then we obtain from (2.3), (2.9), (2.12), and (2.13) by
induction that

|Hν
yy(x, y)| ≤Mν ,

∣∣∣∣∣

(∫

Tn
Hν

yy(x, 0) dx

)−1∣∣∣∣∣ ≤Mν (2.14)

for |Imx| ≤ rν and |y| ≤ rν . We shall now construct, in four steps, a real
analytic Hamiltonian function Hν+1 = Hν ◦ ψν and show that it satisfies (2.9)
with ν replaced by ν + 1.

Step 1. If Hν(x, y) satisfies (2.14) then

|Hν(x, y)−Hν(x, 0)− 〈Hν(x, 0), y〉| ≤M |y|2 ,
∣∣Hν

y (x, y)−Hν
y (x, 0)

∣∣ ≤ 2M |y| ,
∣∣Hν

y (x, y)−Hν
y (x, 0)−Hν

yy(x, 0)y
∣∣ ≤ 2M |y|2

rν − |y|

for |Imx| ≤ rν and |y| < rν .
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These estimates follow from the fact that Mν ≤ 2M and from the identities

Hν(x, y)−Hν(x, 0)− 〈Hν
y (x, 0), y〉 =

∫ 1

0

∫ t

0

〈y,Hν
yy(x, sy)y〉 dsdt,

Hν(x, y)−Hν(x, 0) =

∫ 1

0

Hν
yy(x, ty)y dt,

Hν
y (x, y)−Hν

y (x, 0)−Hν
yy(x, 0)y =

∫ 1

0

(
Hν

yy(x, ty)y −Hν
yy(x, 0)y

)
dsdt

=

∫ 1

0

1

2πi

∫

Γ

1

λ(λ− 1)
Hν

yy(x, λty)y dλdt,

with Γ := {λ ∈ C | |λ| = rν/|y| > 1} . This proves Step 1.

Now it follows from Lemma 2 that there exist unique solutions a(x), α, b(x)
of equation (2.5) in the strip |Imx| < rν such that a(x) and b(x) are of period
1 in all variables and have mean value zero over the torus.

Step 2. The solutions a(x), α, b(x) of (2.5) satisfy the estimates

|a(x)| ≤ c2εν
(rν − rν+1)τ

, |α+ ax(x)| ≤
c2εν

(rν − rν+1)τ+1
, (2.15)

|b(x)| ≤ c2εν
(rν − rν+1)2τ+1

, |bx(x)| ≤
c2εν

(rν − rν+1)2τ+2
, (2.16)

for |Imx| ≤ (rν + rν+1)/2.

Define ρj := ((8− j)rν + jrν+1) /8 for 0 ≤ j ≤ 4 so that ρ0 = rν and ρ4 =
(rν + rν+1)/2. Then it follows from Lemma 2 that

|a|ρ1
≤ c1

(
8

rν − rν+1

)τ ∣∣∣∣H
ν(·, 0)−

∫

Tn
Hν(ξ, 0) dξ

∣∣∣∣
ρ0

≤ c18
τεν

(rν − rν+1)τ

and hence, by Lemma 1 (iii),

|ax|ρ2
≤ 8

rν − rν+1
|a|ρ1

≤ c18
τ+1εν

(rν − rν+1)τ+1
.

This estimate, together with (2.5) and (2.14), implies

|α| ≤ Mν

(∣∣ω −Hν
y (·, 0)

∣∣
ρ2

+
∣∣Hν

yy(·, 0)ax
∣∣
ρ2

)

≤ Mν

(
1 +Mνc18

τ+1
) εν
(rν − rν+1)τ+1

≤ 4M2
(
1 + c18

τ+1
) εν
(rν − rν+1)τ+1

.

Here the second inequality follows from the definition of εν and the last from
equation (2.13). Thus we have proved that

|α+ ax|ρ2
≤ 5M2

(
1 + c18

τ+1
) εν
(rν − rν+1)τ+1

.
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Combining this with (2.10) gives (2.15). Furthermore, we obtain from (2.5) and
Lemma 2 that

|b|ρ3
≤ c1

(
8

rν − rν+1

)τ ∣∣ω −Hν
y (·, 0)−Hν

yy(·, 0)(α+ ax)
∣∣
ρ2

≤ c1

(
8

rν − rν+1

)τ (
1 + 10M3

(
1 + c18

τ+1
)) εν

(rν − rν+1)τ+1

≤ 12M3

8

(
1 + c18

τ+1
)2 εν

(rν − rν+1)2τ+1
.

Hence, by Lemma 1 (iii), we have

|bx|ρ4
≤ 8

rν − rν+1
|b|ρ3

≤ 12M3
(
1 + c18

τ+1
)2 εν

(rν − rν+1)2τ+2
.

Combining this with (2.10) gives (2.16). This proves Step 2.

Having constructed the functions U(x) := U ν(x) := 〈α, x〉 + a(x) and
V (x) := V ν(x) := x + b(x) we can define the symplectic transformation z =
ψν(ζ) by (1.7) and (1.9). Thus

z = ψν(x) ⇐⇒ ξ = x+ b(x), y = α+ ax(x) + η + bx(x)
T η.

That this map is well defined will be established in the proof of Step 3.

Step 3. The transformation z = ψν(ζ) maps the strip |Im ξ| ≤ rν+1, |η| ≤ rν+1
into |Imx| ≤ (rν + rν+1)/2, |y| ≤ (rν + rν+1)/2 and satisfies the estimates

|ψν(ζ)− ζ| ≤ 2−νcδ
rν − rν+1

4
, (2.17)

and ∣∣ψν
ζ (ζ)− 1l

∣∣ ≤ 2−νcδ, (2.18)

for |Im ξ| ≤ rν+1 and |η| ≤ rν+1.

First note that the induction hypothesis (2.9) implies εν ≤ δνr
2τ+2 and hence

c2εν
(rν − rν+1)2τ+2

≤ c2

(
2ν+2

1− θ

)2τ+2
δν

=
c3

4Mc2 + 1

(
4

1− θ

)2τ+2
2ν(2τ+2)δν

=
γν

22τ+3(4Mc2 + 1)

1− θ
2ν+2

≤ 2−νcδ

16M2

1− θ
2ν+2

.

(2.19)

Here the second equality follows from the definition of c3, the third equality
from the definition of c and γν , and the last inequality follows from the fact
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that γν ≤ 2−νγ0 = 2−ν22τ+3cδ and c2 ≥ 4M . Combining (2.19) with Step 2 we
obtain the following estimates for |Imx| ≤ (rν + rν+1)/2 and ξ := V ν(x):

|x− ξ| = |b(x)| ≤ c2εν
(rν − rν+1)2τ+1

≤ 2−νcδ

16M2
(rν − rν+1) ,

|bx(x)| ≤
c2εν

(rν − rν+1)2τ+2
≤ 2−νcδ

16M2

1− θ
2ν+2

.

(2.20)

This implies that V ν = id + b has an inverse u := (V ν)−1 which maps the
strip |Im ξ| ≤ (rν + 3rν+1)/4 into |Imx| ≤ (rν + rν+1)/2. To see this fix a
vector ξ ∈ Cn with |Im ξ| ≤ (rν + 3rν+1)/4 and apply the contraction mapping
principle to the map x 7→ ξ − b(x) on the domain |Imx| ≤ (rν + rν+1)/2.

Now let ξ, η ∈ Cn such that |Im ξ| ≤ (rν+3rν+1)/4 and |η| ≤ (rν+3rν+1)/4,
let x ∈ Cn be the unique vector that satisfies |Imx| ≤ (rν + rν+1)/2 and
x+ b(x) = ξ, and define y ∈ Cn by

y := α+ ax(x) + η + bx(x)
T η.

Then z = ψν(ζ) and it follows again from Step 2 that

|y − η| ≤ |α+ ax|+
∣∣bTx η

∣∣

≤ c2εν
(rν − rν+1)τ+1

+
c2εν

(rν − rν+1)2τ+2
rν + 3rν+1

4

≤ c2ενr

(rν − rν+1)2τ+2

≤ 2−νcδ

16M2
(rν − rν+1)

(2.21)

Here the third inequality uses the fact that (rν − rν+1)τ ≤ 1/4. The last in-
equality follows from (2.19) and the fact that rν − rν+1 = 2−ν−2(1 − θ)r. It
follows from (2.21) that |y| ≤ (rν + rν+1)/2. The inequalities (2.20) and (2.21)
together show that ψν satisfies (2.17) in the domain |Im ξ| ≤ (rν + 3rν+1)/4,
|η| ≤ (rν + 3rν+1)/4. The estimate (2.18) follows from (2.17) and Cauchy’s
integral formula (Lemma 1 (iii)). This proves Step 3.

In view of Step 3 we can define

Hν+1 := Hν ◦ ψν .

The next step establishes (2.6) along with the required estimates for Hν+1.

Step 4. The inequalities in (2.9) are satisfied with ν replaced by ν + 1.

We will first establish (2.6). For this define the real number h by

h :=

∫

Tn
Hν(ξ, 0) dξ + 〈ω, α〉.
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and denote z := (x, α + ax) := ψν(ξ, 0), where |Im ξ| ≤ rν+1. Then it follows
from Step 3 that |Imx| ≤ (rν + rν+1) /2 and |y| = |α+ ax| ≤ (rν + rν+1) /2.
Moreover, it follows from (2.5) that

Hν+1(ξ, 0)− h = Hν(x, α+ ax)− h
= Hν(x, α+ ax)−Hν(x, 0)−Da− 〈ω, α〉
= Hν(x, α+ ax)−Hν(x, 0)− 〈Hν

y (x, 0), α+ ax〉
+ 〈Hν

y (x, 0)− ω, α+ ax〉.

By Step 1 and Step 2, this implies

∣∣Hν+1(ξ, 0)− h
∣∣ ≤ M |α+ ax|2 +

∣∣Hν
y (x, 0)− ω

∣∣ |α+ ax|

≤ Mc22 + c2
(rν − rν+1)2τ+2

ε2ν

≤ c3/2

(rν − rν+1)2τ+2
ε2ν ,

and hence
∣∣∣∣H

ν+1(ξ, 0)−
∫

T2

Hν+1(ξ, 0) dξ

∣∣∣∣ ≤
c3

(rν − rν+1)2τ+2
ε2ν . (2.22)

Secondly, it follows from (2.5) that

Hν+1
y (ξ, 0)− ω = (1l + bx)H

ν
y (x, α + ax)− ω

= Hν
y (x, α+ ax)−Hν

y (x, 0)−Hν
yy(x, 0)(α + ax)

+ bx
(
Hν

y (x, α+ ax)−Hν
y (x, 0)

)

+ bx
(
Hν

y (x, 0)− ω
)
.

By Step 1 and Step 2, this implies

∣∣Hν+1
y (ξ, 0)− ω

∣∣ ≤ 2M |α+ ax|2
rν − |α+ ax|

+ 2M |bx| |α+ ax|+ |bx|
∣∣Hν

y (x, 0)− ω
∣∣

≤ 4Mc22 + c2
(rν − rν+1)3τ+3

ε2ν

=
1

(rν+1 − rν+2)τ+1
c3

(rν − rν+1)2τ+2
ε2ν .

In the second inequality we have used the fact that |α+ ax| ≤ (rν − rν+1)/2,
by (2.21), and hence (rν − rν+1)

τ+1 ≤ (rν − rν+1)/2 ≤ rν − |α+ ax|. The
estimate (2.6) now follows by combining the last inequality with (2.22).

Combining (2.6) with (2.7) and the induction hypothesis εν ≤ δνr
2τ+2 we

obtain

εν+1 ≤
c3δ

2
νr
4τ+4

(rν − rν+1)2τ+2
= c3

(
2ν+2

1− θ

)2τ+2
δ2νr

2τ+2 ≤ δν+1r
2τ+2.
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This implies the first two inequalities in (2.9) with ν replaced by ν + 1. To
prove the last inequality, suppose that |Im ξ| ≤ rν+1, |η| ≤ rν+1 and denote
z := ψν(ζ). Then Step 3 shows that |Imx| ≤ (rν + rν+1) /2, |y| ≤ (rν + rν+1) /2
and, moreover, it follows from the definition of Hν+1 that

Hν+1
yy (ξ, η) = (1l + bx)H

ν
yy(x, y)

(
1l + bTx

)
.

Hence, by Step 2, we obtain

∣∣Hν+1
yy (ζ)−Hν

yy(z)
∣∣ ≤ 2 |bx|

∣∣Hν
yy(z)

∣∣+ |bx|2
∣∣Hν

yy(z)
∣∣

≤ 3 |bx|
∣∣Hν

yy(z)
∣∣

≤ 6Mc2εν
(rν − rν+1)2τ+1

≤ 2−νcδ

4M
.

The last inequality follows from (2.19). Moreover,

Hν
yy(z)−Hν

yy(ζ) =
1

2πi

∫

Γ

1

λ(λ− 1)
Hν

yy(ζ + λ(z − ζ)) dλ,

where

Γ :=

{
λ ∈ C | |λ| = min

{
rν − |Im ξ|
|x− ξ| ,

rν − |η|
|y − η|

}
> 1

}
.

This implies

∣∣Hν
yy(z)−Hν

yy(ζ)
∣∣ ≤ 2M max

{ |x− ξ|
rν − |Im ξ| − |x− ξ| ,

|y − η|
rν − |η| − |y − η|

}

≤ 2M
2−νcδ

16M2

rν − rν+1
(rν − rν+1)/2

=
2−νcδ

4M
.

Here the second inequality follows from (2.20) and (2.21) and the fact that
|x− ξ| ≤ (rν − rν+1)/2 and |y − η| ≤ (rν − rν+1)/2. This proves Step 4.

Step 4 completes the induction step and it remains to establish the uniform
convergence of the sequence

φν := ψ0 ◦ ψ1 ◦ · · · ◦ ψν

in the domain |Im ξ| ≤ θr, |η| ≤ θr along with the estimates in (2.4). First it
follows from Step 3 that, if |Im ξ| ≤ rν and |η| ≤ rν and z := ψµ+1◦· · ·◦ψν−1(ζ)
then |Imx| ≤ rµ+1 and |y| ≤ rµ+1 and therefore, by (2.18),

∣∣∣ψµ
ζ (ψ

µ+1 ◦ · · · ◦ ψν−1(ζ))
∣∣∣ ≤ 1 + 2−µcδ.

This implies

∣∣∣φν−1ζ (ζ)
∣∣∣ ≤ (1 + cδ) · · · (1 + 21−νcδ) ≤ e2cδ ≤ 2
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for |Im ξ| ≤ rν and |η| ≤ rν and hence
∣∣φν(ζ)− φν−1(ζ)

∣∣ =
∣∣φν−1(ψν(ζ)) − φν−1(ζ)

∣∣ ≤ 2 |ψν(ζ) − ζ| ≤ cδ(rν − rν+1)

for |Im ξ| ≤ rν+1 and |η| ≤ rν+1 and ν ≥ 1. Here the last inequality follows
from (2.17). The same inequality holds for ν = 0 if we define φ−1 := id. We
conclude that the limit function

φ := lim
ν→∞

φν

satisfies the estimate

|φ(ζ) − ζ| ≤ cδ

∞∑

ν=0

(rν − rν+1) = cδ
1− θ
2

r

for |Im ξ| ≤ r(1 + θ)/2 and |η| ≤ r(1 + θ)/2. This proves the first inequality
in (2.4) and the second follows from Lemma 1 (iii). Since cδ ≤ 1/2 this second
estimate also shows that φ is a diffeomorphism and, as a limit of symplectomor-
phisms of the form (1.7), it is itself a symplectomorphism of this form.

The transformed Hamiltonian function can be expressed as the limit

K(ζ) := H ◦ φ(ζ) = lim
ν→∞

H ◦ ψ0 ◦ · · · ◦ ψν(ζ) = lim
ν→∞

Hν(ζ)

for |Im ξ| ≤ θr and |η| ≤ θr. Since the sequence

δν
(rν − rν−1)τ+1

=

(
4

(1− θ)r

)τ+1
δν

2ν(τ+1)

converges to zero, by (2.7) and (2.8), it follows from (2.9) that the limit K
satisfies (1.8). Moreover,

|Kηη(ζ)−Q(ζ)| = lim
ν→∞

∣∣Hν
yy(ζ)−Q0(ζ)

∣∣

≤ lim
ν→∞

ν∑

µ=0

∣∣Hµ
yy(ζ)−Qµ(ζ)

∣∣

≤
∞∑

µ=0

2−µ cδ

2M
=
cδ

M

for |Im ξ| ≤ θr and |η| ≤ θr. Here the third inequality follows from (2.9). Thus
we have proved the third inequality in (2.4). To prove the estimate for v ◦ u−1
we observe that

v ◦ u−1(x) =
∞∑

ν=1

(
V 0
x

)T ·
(
V 1
x

)T · · ·
(
V ν−1
x

)T · Uν
x

for |Imx| ≤ θr. Here we abbreviate

V µ
x := V µ

x (V µ−1 ◦ · · · ◦ V 0(x)).
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This expression is well defined for |Imx| ≤ θr since, by Step 2 and (2.19), we
have

∣∣V ν ◦ · · · ◦ V 0(x)− V ν−1 ◦ · · · ◦ V 0(x)
∣∣ ≤ c2εν

(rν − rν+1)2τ+1
≤ rν − rν+1,

∣∣V ν ◦ · · · ◦ V 0(x)− x
∣∣ ≤ r − rν+1 ≤

1− θ
2

r ≤ rν+1 + rν+2
2

− θr.

This last expression allows us to use Step 2 and (2.19) again to estimate the
terms V ν+1

x := V ν+1
x (V ν ◦ · · · ◦ V 0(x)) by 1 + 2−ν−1cδ for |Imx| ≤ θr. It also

follows from Step 2 and (2.19) that |Ux(x)| ≤ 2−νcδrτ+1/4. Hence we obtain

∣∣v ◦ u−1(x)
∣∣ =

∞∑

ν=0

∣∣V 0
x

∣∣ · · ·
∣∣V ν−1

x

∣∣ |Uν
x |

≤
∞∑

ν=1

(1 + cδ) · · · (1 + 21−νcδ)2−νcδ
rτ+1

4

≤ e2cδ

4

∞∑

ν=0

2−νcδrτ+1

≤ cδrτ+1

for |Imx| ≤ θr. This completes the proof of Theorem 1.

3 The differentiable case

The perturbation theorem for invariant tori for differentiable Hamiltonian func-
tions is due to Moser [13, 14]. He first proved this result in the context of
invariant curves for area preserving annulus mappings which satisfy the mono-
tone twist property [14]. This corresponds to the case of two degrees of freedom.
One of the main ideas in [13, 14] was to use a smoothing operator in order to
compensate for the loss of smoothness that arises in solving the linearized equa-
tion. Moreover, it was essential to observe that the error introduced by the
smoothing operator would not destroy the rapid convergence of the iteration. A
similar approach was also used by Nash [21] for the embedding problem of com-
pact Riemannian manifolds. But this method required an excessive number of
derivatives like for example ` ≥ 333 for the annulus mapping [14]. Incidentally,
this number was later reduced by Rüssmann [24] to ` ≥ 5.

In [16] Moser proposed a different approach which is based on approximating
differentiable functions by analytic ones. In this section we provide the complete
arguments for this second approach as it has also been done by Pöschel in [22] in
a somewhat different way. The fundamental observation is that the qualitative
property of differentiability of a function can be characterized in terms of quan-
titative estimates for an approximating sequence of analytic functions. Moser’s
first proof of this result in [15] was based on a classical approximation theorem
due to Jackson. A direct proof was later provided by Zehnder [28]. For the sake
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of completeness we will include proofs of these results that were given by Moser
in a set of unpublished notes entitled Ein Approximationssatz (see Lemmata 3
and 4 below).

Let us first recall that Cµ(Rn) for 0 < µ < 1 denotes the space of of bounded
Hölder continuous functions f : Rn → R with the norm

|f |Cµ := sup
0<|x−y|<1

|f(x)− f(y)|
|x− y|µ + sup

x∈Rn

|f(x)| .

If µ = 0 then |f |Cµ denotes the sup-norm. For ` = k + µ with k ∈ N and
0 ≤ µ < 1 we denote by C`(Rn) the space of functions f : Rn → R with
Hölder continuous partial derivatives ∂αf ∈ Cµ(Rn) for all multi-indices α =
(α1, . . . , αn) ∈ Nn with |α| := α1 + · · ·+ αn ≤ k. We define the norm

|f |C` :=
∑

|α|≤`

|∂αf |Cµ

for µ := ` − [`] < 1. Given an integer k ≥ 0 and a Ck function f : Rn → R
denote by Pf,k : Rn × Cn → C the Taylor polynomial of f up to order k. Thus

Pf,k(x; y) :=
∑

|α|≤k

1

α!
∂αf(x)yα

for x ∈ Rn and y ∈ Cn. Here the sum runs over all multi-indices α with |α| ≤ k.
We abbreviate α! := α1! · · ·αn! and y

α := yα1

1 · · · yαn
n for y = (y1, . . . , yn) ∈ Cn.

Lemma 3 (Jackson, Moser, Zehnder). There is a family of convolution
operators

Srf(x) = r−n

∫

Rn

K(r−1(x − y))f(y) dy, 0 < r ≤ 1, (3.1)

from C0(Rn) into the space of entire functions on Cn with the following property.
For every ` ≥ 0, there exists a constant c = c(`, n) > 0 such that, for every
f ∈ C`(Rn), every multi-index α ∈ Nn with |α| ≤ `, and every x ∈ Cn, we have

|Imx| ≤ r =⇒
∣∣∂αSrf(x)− P∂αf,[`]−|α|(Rex; iImx)

∣∣ ≤ c |f |C` r
`−|α|.

Moreover, K(Rn) ⊂ R so that Srf is real analytic whenever f is real valued.

Proof. Let

K(x) =
1

(2π)n

∫

Rn

K̂(ξ)ei〈x,ξ〉 dξ, x ∈ Cn,

be an entire function whose Fourier transform

K̂(ξ) =

∫

Rn

K(x)e−i〈x,ξ〉 dx, ξ ∈ Rn,

20



is a smooth function with compact support, contained in the ball |ξ| ≤ a, that

satisfies K̂(ξ) = K̂(−ξ) and

∂αK̂(0) =

{
1, if α = 0,
0, if α 6= 0.

Then K : Cn → R is a real analytic function with the property
∫

Rn

(u+ iv)α∂βK(u+ iv) du =

{
(−1)|α|α!, if α = β,
0, if α 6= β,

(3.2)

for v ∈ Rn and multi-indices α, β ∈ Nn. The integral is always well defined since,
for every m > 0 and every p > 0, there exists a constant c1 = c1(m, p) > 0 such
that

|β| ≤ m =⇒
∣∣∂βK(u+ iv)

∣∣ ≤ c1 (1 + |u|)−p
ea|v| (3.3)

for all β ∈ Nn and u, v ∈ Rn. Moreover, it follows from Cauchy’s integral formula
that the expression on the left hand side of (3.2) is independent of v. This
proves (3.2) in the case β = 0 and in general it follows from partial integration.

We prove that any such function K satisfies the requirements of the lemma.
The proof is based on the observation that, by (3.2), the convolution opera-
tor (3.1) acts as the identity on polynomials, i.e.

Srp = p

for every polynomial p : Rn → R. We will make use of this fact in case of the
Taylor polynomial

pk(x; y) := Pf,k(x; y) =
∑

|α|≤k

1

α!
∂αf(x)yα

of f with k := [`]. The difference f − pk can be expressed in the form

f(x+ y)− pk(x; y)

=

∫ 1

0

∫ s1

0

· · ·
∫ sk−1

0

∑

|α|=k

k!

α!

(
∂αf(x+ sky)− ∂αf(x)

)
yα dskdsk−1 · · · ds1

=

∫ 1

0

k(1− t)k−1
∑

|α|=k

1

α!

(
∂αf(x+ ty)− ∂αf(x)

)
yα dt.

for x, y ∈ Rn. This gives rise to the well known estimate

|f(x+ y)− pk(x; y)| ≤ c2 |f |C` |y|` (3.4)

for x, y ∈ Rn, k := [`], and a suitable constant c2 = c2(n, `) > 0.
Now let x = u+ iv with u, v ∈ Rn. Then

Srf(x) = r−n

∫

Rn

K
(
r−1(u− y) + ir−1v

)
f(y) dy

=

∫

Rn

K
(
ir−1v − η

)
f(u+ rη) dη.
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Moreover, it follows from (3.2) that

pk(u; iv) = r−n

∫

Rn

K(r−1(iv − y))pk(u; y) dy

=

∫

Rn

K
(
ir−1v − η

)
pk(u; rη) dη.

Hence, by (3.4), we have

|Srf(u+ iv)− pk(u; iv)| ≤
∫

Rn

∣∣K
(
ir−1v − η

)∣∣ |f(u+ rη)− pk(u; rη)| dη

≤ c2 |f |C` r
`

∫

Rn

∣∣K
(
ir−1v − η

)∣∣ |η|` dη

≤ c1c2e
a |f |C` r

`

∫

Rn

(1 + |η|)`−p dη.

The last inequality follows from (3.3) with β = 0,
∣∣r−1v

∣∣ ≤ 1, and p > `+ n so
that the integral on the right is finite. This proves the lemma for α = 0. For
α 6= 0 the result follows from the fact that Sr commutes with ∂α.

The converse statement of Lemma 3 holds only if ` is not an integer. A
classical version of this converse result is due to Bernstein and relates the dif-
ferentiability properties of a periodic function to quantitative estimates for an
approximating sequence of trigonometric polynomials [1].

Lemma 4 (Bernstein, Moser). Let ` ≥ 0 and n be a positive integer. Then
there exists a constant c = c(`, n) > 0 with the following significance. If f :
Rn → R is the limit of a sequence of real analytic functions fν(x) in the strips
|Imx| ≤ rν := 2−νr0 such that 0 < r0 ≤ 1 and

f0 = 0, |fν(x) − fν−1(x)| ≤ Ar`ν

for ν ≥ 1 and |Imx| ≤ rν , then f ∈ Cs(Rn) for every s ≤ ` which is not an
integer and, moreover,

|f |Cs ≤
cA

µ(1− µ) r
`−s
0 , 0 < µ := s− [s] < 1.

Proof. It is enough to consider the case ` = s. Moreover, once the result has
been established for 0 < ` < 1 it follows for ` > 1 by Cauchy’s estimate,
or else by repeatedly applying Lemma 1 (iii). Therefore we may assume that
0 < µ = s = ` < 1.

Let us now define
gν := fν − fν−1.

Then f =
∑∞

ν=1 gν satisfies the estimate

|f |C0 ≤ A
∞∑

ν=1

rµν =
2−µArµ0
1− 2−µ

≤ 2A

µ
rµ0 .
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Here we have used the inequality 1− 2−µ ≥ µ/2 for 0 < µ < 1. For x, y ∈ Rn

with r0 < |x− y| ≤ 1 this implies

|f(x)− f(y)| ≤ 4A

µ
rµ0 ≤

4A

µ(1− µ) |x− y|
µ
.

In the case 0 < |x− y| < r0 there is an integer N ≥ 0 such that

2−N−1r0 ≤ |x− y| < 2−Nr0.

Moreover, it follows from Lemma 1 (iii) that

|gνx(u)| ≤ Arµ−1ν

for every u ∈ Rn. and hence

|gν(x) − gν(y)| ≤ Arµ−1ν |x− y| .
We shall use this estimate for ν = 1, . . . , N . For ν > N we use the trivial
estimate

|gν(x) − gν(y)| ≤ 2Arµν .

Taking into account the inequalities 1 − 2−µ ≥ µ/2 and 21−µ − 1 ≥ (1 − µ)/2
for 0 < µ < 1 we conclude that

|f(x)− f(y)| ≤
∞∑

ν=1

|gν(x)− gν(y)|

≤ A |x− y|
N∑

ν=1

(
2νr−10

)1−µ
+ 2A

∞∑

ν=N+1

(
2−νr0

)µ

≤ 2A

21−µ − 1
|x− y|

(
2Nr−10

)1−µ
+

2A

1− 2−µ

(
2−N−1r0

)µ

≤ 4A

1− µ |x− y|
µ +

4A

µ
|x− y|µ

=
4A

µ(1− µ) |x− y|
µ
.

This proves the lemma.

The approximation result of Lemma 3 can be used to prove the following
interpolation and product estimates. Denote by Cs(Tn,Rk) the space of all
functions w ∈ Cs(Rn,Rk) that are of period 1 in all variables, and by Cs

0(Tn,Rk)
the space of all functions w ∈ Cs(Tn,Rk) with mean value zero. For k = 1 we
abbreviate Cs(Tn) := Cs(Tn,R) and Cs

0(Tn) := Cs
0(Tn,R).

Lemma 5. For every n ∈ N and every ` > 0 there is a constant c = c(`, n) > 0
such that the following inequalities hold for all f, g ∈ C`(Tn):

|f |`−k
Cm ≤ c |f |`−m

Ck |f |m−k
C` , k ≤ m ≤ `,

|fg|Cs ≤ c

(
|f |C0 |g|Cs + |f |Cs |g|C0

)
, 0 ≤ s ≤ `.
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Proof. If Sr : C0(Tn) → C∞(Tn) denotes the smoothing operator of Lemma 3
then one checks easily that

|f − Srf |Cm ≤ c1r
`−m |f |C` , |Srf |Cm ≤ c1r

k−m |f |Ck

for all f ∈ C`(Tn), 0 < r ≤ 1, k ≤ m ≤ `, and a suitable constant c1 =
c1(`, n) > 0. Choosing r > 0 so as to satisfy

r`−k =
|f |Ck

|f |C`

we obtain

|f |Cm ≤ c1

(
r`−m |f |C` + rk−m |f |Ck

)

= 2c1 |f |(`−m)/(`−k)

Ck |f |(m−k)/(`−k)

C` .

This proves the first estimate. Moreover, the second follows from the first since

∂β(fg) =
∑

α≤β

(
β

α

)
(∂αf)

(
∂β−αg

)

where α ≤ β if and only if αν ≤ βν for all ν and

(
β

α

)
:=

(
β1
α1

)
· · ·
(
βn
αn

)
.

This proves the lemma.

The next theorem is the main result of this paper. It is Moser’s perturba-
tion theorem for invariant tori of differentiable Hamiltonian systems. We have
phrased it in the form that the existence of an approximate invariant torus im-
plies the existence of a true invariant torus nearby. It then follows that every
invariant torus of class C`+1 satisfying (1.5) with a frequency vector satisfy-
ing (1.3) persists under C` small perturbations of the Hamiltonian function. In
this formulation it is also an obvious consequence that every invariant torus of
class C`+1 satisfying (1.5) gives rise to nearby invariant tori for nearby frequency
vectors that satisfy the Diophantine inequalities (1.3).

Theorem 2 (Moser). Let n ≥ 2, τ > n− 1, c0 > 0, m > 0, ` > 2τ + 2 +m,
M ≥ 1, and ρ > 0 be given. Then there are positive constant ε∗ and c such that
the following holds for every vector ω ∈ Rn that satisfies (1.3) and every open
set G ⊂ Rn that contains the ball Bρ(0).

Suppose H ∈ C`(Tn ×G) satisfies

|H |C` ≤M,

∣∣∣∣∣

(∫

Tn
Hyy(ξ, 0) dξ

)−1∣∣∣∣∣ ≤M, (3.5)
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and ∣∣∣∣H(x, 0)−
∫

Tn
H(ξ, 0) dξ

∣∣∣∣+ |Hy(x, 0)− ω| ετ+1 < Mε` (3.6)

for every x ∈ Rn and some constant 0 < ε ≤ ε∗. Then there is a solution

x = u(ξ), y = v(ξ)

of (1.2) such that u(ξ) − ξ and v(ξ) are of period 1 in all variables. Moreover,
u ∈ Cs(Rn,Rn) and v ◦u−1 ∈ Cs+τ (Rn, G) for every s ≤ m+1 such that s /∈ N
and s+ τ /∈ N and

|u− id|Cs ≤
c

µ(1− µ)ε
m+1−s, 0 < s ≤ m+ 1,

∣∣v ◦ u−1
∣∣
Cs ≤

c

µ(1− µ)ε
m+τ+1−s, 0 < s ≤ m+ τ + 1,

(3.7)

where 0 < µ := s− [s] < 1.

Proof. By Lemma 3, we can approximate H(x, y) by a sequence of real analytic
functions Hν(x, y) for ν = 0, 1, 2, . . . in the strips

|Imx| ≤ rν−1, |Im y| ≤ rν−1, rν := 2−νε,

around Rex ∈ Tn, |Re y| ≤ ρ, such that

∣∣∣∣∣∣
Hν(z)−

∑

|α|≤`

∂αH(Re z)
(iIm z)α

α!

∣∣∣∣∣∣
≤ c1 |H |C` r

`
ν ,

∣∣∣∣∣∣
Hν

y (z)−
∑

|α|≤`

∂αHy(Re z)
(iIm z)α

α!

∣∣∣∣∣∣
≤ c1 |H |C` r

`−1
ν ,

∣∣∣∣∣∣
Hν

yy(z)−
∑

|α|≤`

∂αHyy(Re z)
(iIm z)α

α!

∣∣∣∣∣∣
≤ c1 |H |C` r

`−2
ν ,

(3.8)

for |Imx| ≤ rν−1, |Im y| ≤ rν−1, and |Re y| ≤ ρ. Here the constant c1 =
c1(`, n) > 0 is chosen appropriately (Lemma 3) and ε > 0 is the number ap-
pearing in (3.6).

Fix the constant θ := 1/
√
2. By induction, we shall construct a sequence of

real analytic symplectic transformations z = φν(ζ) of the form

x = uν(ξ), y = vν(ξ) +
(
uνξ
)T

(ξ)−1η, (3.9)

such that uν(ξ)− ξ and vν(ξ) are of period 1 in all variables, φν maps the strip
|Im ξ| ≤ θrν+1, |η| ≤ θrν+1 into |Imx| ≤ rν , |Im y| ≤ rν , |Re y| ≤ ρ, and the
transformed Hamiltonian function

Kν := Hν ◦ φν
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satisfies (1.8).
For ν = 0 we shall use the smallness assumption on H0 − H and condi-

tion (3.6) in order to verify that the real analytic Hamiltonian function H0(x, y)
satisfies the assumptions of Theorem 1 in the strip of size r = θε with δ = εm

(Step 1). Having established the existence of φν−1 for some ν ≥ 1, we use the
smallness condition on Hν −H and H−Hν−1 in order to verify that Hν ◦φν−1
satisfies the assumptions of Theorem 1 with r = θrν and δ = rmν (Step 2).
This guarantees the existence of a symplectic transformation z = ψν(ζ) of the
form (1.7) from the strip |Im ξ| ≤ rν+1, |η| ≤ rν+1 to |Imx| ≤ θrν , |y| ≤ θrν
such that ψν(ξ, 0)− (ξ, 0) is of period 1 and Kν := Hν ◦φν satisfies (1.8), where

φν := φν−1 ◦ ψν .

Moreover, Theorem 1 will yield the estimates

|ψν(ζ)− ζ| ≤ c2(1− θ)rm+1
ν ,

∣∣ψν
ζ (ζ) − 1l

∣∣ ≤ c2r
m
ν ,

∣∣Kν
ηη(ζ) −Qν(ζ)

∣∣ ≤ c2r
m
ν

2M
,

|Uν
x (x)| ≤ θc2r

m+τ+1
ν ,

(3.10)

for |Im ξ| ≤ rν+1, |η| ≤ rν+1, and |Imx| ≤ rν+1, where Q
ν := Kν−1

ηη for ν ≥ 1,

Q0(z) :=
∑

|α|≤`−2
∂αHyy(Re z)

(iIm z)
α

α!
,

and
Sν(x, η) = Uν(x) + 〈V ν(x), η〉

is the generating function for ψν . In Step 3 we will show that (3.10) implies the
inequalities
∣∣φν(ζ)− φν−1(ζ)

∣∣ ≤ 2c2(1− θ)rm+1
ν , |Im ξ| ≤ rν+1, |η| ≤ rν+1,∣∣∣φνζ (ζ)− φν−1ζ (ζ)

∣∣∣ ≤ 4c2r
m
ν , |Im ξ| ≤ θrν+1, |η| ≤ θrν+1,

∣∣vν ◦ (uν)−1(x) − vν−1 ◦ (uν−1)−1(x)
∣∣ ≤ c2r

m+τ+1
ν , |Imx| ≤ θrν+1.

(3.11)

We denote by c2 = c2(n, τ, c0, θ, 2M) ≥ 4M and δ∗ = δ∗(n, τ, c0, θ, 2M) > 0 the
constants of Theorem 1 with θ := 1/

√
2, by c3 > 0 the constant of Lemma 4

with ` replaced by m+ τ + 1 and m+ 1, and by c4 = c4(`, n) > 0 the constant
of Lemma 5. The constants c5 > 0, c > 0, γ > 0, and ε∗ > 0 will be chosen as
to satisfy ε∗ ≤ ρ and

ε∗m ≤ δ∗, 2nε∗ ≤ log 2, (3.12)

(4c1 + (`+ 1)c4)Mε∗γ ≤ (θ/2)`, γ := `− 2τ − 2−m, (3.13)

c5ε
∗m ≤ 1− θ ≤ log 2, c5 :=

4c2
1− 2−m

, (3.14)
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c :=

(
2

θ

)m+τ+1

c2c3. (3.15)

Given rν := 2−νε with 0 < ε ≤ ε∗ we define the numbers Mν > 0 recursively
by

Mν :=
Mν−1

1− c2rmν
, M0 :=M, (3.16)

and observe that, by (3.14), we have

Mν ≤Mν−1e
2c2ε

m
ν ≤Mec5ε

∗m ≤ 2M. (3.17)

Step 1. There is a symplectic transformation z = ψ0(ζ) of the form (1.7) from
the strip |Im ξ| ≤ r1, |η| ≤ r1 to |Imx| ≤ θr0, |y| ≤ θr0 such that ψ

0(ξ, 0)−(ξ, 0)
is of period 1 and K0 := H0 ◦ ψ0 satisfies (1.8). Moreover, K0 and ψ0 satisfy
the estimates in (3.10) for ν = 0.

First abbreviate

h(x) := H(x, 0)−
∫

Tn
H(ξ, 0) dξ, x ∈ Rn.

Then |h|C` ≤M and |h|C0 ≤Mε`, by (3.6). Hence, by Lemma 5, we have

|h|Ck ≤ c4 |h|k/`C` |h|1−k/`
C0 ≤ c4Mε`−k

for 0 ≤ k ≤ `. Now

H0(x, 0)−
∫

Tn
H0(ξ, 0)

)
dξ = H0(x, 0)−

∑

|α|≤`

∂αxH(Rex, 0)
(iImx)α

α!

+

∫

Tn

(
H(ξ, 0)−H0(ξ, 0)

)
dξ

+
∑

|α|≤`

∂αh(Rex)
(iIm x)α

α!
.

If |Imx| ≤ θr0 = θε then it follows from (3.8) that

∣∣∣∣H
0(x, 0)−

∫

Tn
H0(ξ, 0) dξ

∣∣∣∣ ≤ 2c1 |H |C` ε
` +

∑̀

k=0

|h|Ck ε
k

≤ (2c1 + (`+ 1)c4)Mεγεmε2τ+2

≤ εm(θε)2τ+2.

The second inequality follows from ` = γ+m+2τ +2 and the last from (3.13).
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Second, consider the vector valued function

f(x) := Hy(x, 0)− ω, x ∈ Rn.

It satisfies |f |C`−τ−1 ≤M and |f |C0 ≤Mε`−τ−1, by (3.6). Hence, by Lemma 5,
we have

|f |Ck ≤ c4 |f |k/(`−τ−1)
C`−τ−1 |f |1−k/(`−τ−1)

C0 ≤ c4Mε`−τ−1−k.

for 0 ≤ k ≤ `− τ − 1. The estimate |f |Ck ≤ c4Mε`−τ−1−k obviously continues
to hold for `− τ − 1 < k ≤ `− 1. Now

H0
y (x, 0)− ω = H0

y (x, 0)−
∑

|α|≤`−1
∂αxHy(Rex, 0)

(iImx)α

α!

+
∑

|α|≤`−1
∂αf(Rex)

(iIm x)α

α!
.

Hence, with |Imx| ≤ θε, it follows from (3.8) that

∣∣H0
y (x, 0)− ω

∣∣ ≤ c1 |H |C` ε
`−1 +

`−1∑

k=0

|f |Ck ε
k

≤ (c1 + `)Mε`−τ−1

= (c1 + `)Mεγεmετ+1

≤ εm(θε)τ+1.

Here the last inequality follows from (3.13).
Third, it follows from the definition of Q0 by

Q0(z) :=
∑

|α|≤`−2
∂αHyy(Re z)

(iIm z)α

α!

and (3.8) that

∣∣H0
yy(z)−Q0(z)

∣∣ ≤ c1 |H |C` ε
`−2 ≤ c1Mεγεm ≤ c2ε

m

4M

for |Imx| ≤ θε and |y| ≤ θε. Here the last inequality follows from the fact that
c2 ≥ 4M and c1Mεγ ≤ 1, by (3.13). Moreover, since

∑
α∈N2n ε|α|/α! = e2nε

and 2nε ≤ log 2, by (3.12), we have

∣∣Q0(z)
∣∣ ≤

∑

|α|≤`−2
M
ε|α|

α!
≤Me2nε ≤ 2M

for |Im z| ≤ ε. Since Q0(z) = Hyy(z) for z ∈ R2n we have proved thatH0 andQ0

satisfy the hypotheses of Theorem 1 with M replaced by 2M and δ = εm ≤ δ∗

and r = θr0 = θε. Hence Step 1 follows from the assertion of Theorem 1.
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Observe that the inequalities in (3.11) for ν = 0 follow immediately from
Step 1 if we define φ−1 := id and φ0 := φ−1 ◦ ψ0 = ψ0.

Now assume, by induction, that the transformation z = φν−1(ζ) of the
form (3.9) from the strip |Im ξ| ≤ θrν , |η| ≤ θrν into |Imx| ≤ rν−1, |Im y| ≤
rν−1, |Re y| ≤ ρ has been constructed such that uν−1(ξ) − ξ and vν−1(ξ) have
period 1 in all variables, Kν−1 := Hν−1 ◦ φν−1 satisfies (1.8), and (3.11) holds
with ν replaced by ν − 1. Assume also that the transformations z = ψµ(ζ)
satisfy (3.10) for µ = 0, . . . , ν − 1. Then we obtain from (3.16) and (3.17) by
induction that

∣∣Kν−1
ηη (ζ)

∣∣ ≤Mν−1,

∣∣∣∣∣

(∫

Tn
Kν−1

ηη (ξ, 0) dξ

)−1∣∣∣∣∣ ≤Mν−1 (3.18)

for |Im ξ| ≤ rν and |η| ≤ rν . Define the Hamiltonian function H̃ by

H̃(x, y) := Hν ◦ φν−1(x, y)

for |Imx| ≤ θrν and |y| ≤ θrν . This is possible because φν−1 maps this strip
into the domain of Hν .

Step 2. The Hamiltonian function H̃ satisfies the estimates
∣∣∣∣H̃(x, 0)−

∫

Tn
H̃(ξ, 0) dξ

∣∣∣∣ ≤ rmν (θrν)
2τ+2,

∣∣∣H̃y(x, 0)− ω
∣∣∣ ≤ rmν (θrν)

τ+1,
∣∣∣H̃yy(x, y)−Qν(x, y)

∣∣∣ ≤ c2r
m
ν

4M

for |Imx| ≤ θrν and |y| ≤ θrν . Here we abbreviate Q
ν := Kν−1

ηη .

If |Imx| ≤ θrν then φν−1(x, 0) lies in the region where the estimate (3.8) holds
for both Hν and Hν−1. Therefore it follows from (3.8) that

∣∣∣∣H̃(x, 0)−
∫

Tn
H̃(ξ, 0) dξ

∣∣∣∣ ≤ 2 sup
|Im ξ|≤θrν

∣∣Hν(φν−1(ξ, 0))−Hν−1(φν−1(ξ, 0))
∣∣

≤ 2c1Mr`ν + 2c1Mr`ν−1

≤
(
2

θ

)`

4c1Mrγνr
m
ν (θrν)

2τ+2

≤ rmν (θrν)
2τ+2

for |Imx| ≤ θrν . Here the last inequality follows from (3.13). Now the second
estimate in (3.10) with η = 0 implies that, for |Im ξ| ≤ θrν , we have

∣∣∣uν−1ξ (ξ) − 1l
∣∣∣ ≤

ν−1∑

µ=0

∣∣∣uµξ (ξ)− u
µ−1
ξ (ξ)

∣∣∣ ≤ 4c2

∞∑

µ=0

rmµ = c5ε
m ≤ 1− θ. (3.19)
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Here we have used (3.14) twice. It follows from (3.19) that

|Im ξ| ≤ θrν =⇒
∣∣∣uν−1ξ (ξ)−1

∣∣∣ ≤ θ−1. (3.20)

Therefore it follows from (3.8) and (3.13) that

∣∣∣H̃y(x, 0)− ω
∣∣∣ =

∣∣∣∣u
ν−1
ξ (x)−1

(
Hν

y (φ
ν−1(x, 0))−Hν−1

y (φν−1(x, 0))

)∣∣∣∣

≤ θ−1
(
c1r

`−1
ν + c1r

`−1
ν−1

)

≤
(
2

θ

)`

c1r
γ
ν r

m
ν (θrν)

2τ+1

≤ rmν (θrν)
τ+1

and
∣∣∣H̃yy(z)−Qν(z)

∣∣∣ =
∣∣∣∣u

ν−1
ξ (x)−1

(
Hν

yy(φ
ν−1(z))−Hν−1

yy (φν−1(z))

)
uν−1ξ (x)T

−1
∣∣∣∣

≤ θ−2
(
c1r

`−2
ν + c1r

`−2
ν−1

)

≤
(
2

θ

)`

c1r
γ
ν r

m
ν (θrν)

2τ

≤ c2r
m
ν

4M

for |Imx| ≤ θrν and |y| ≤ θrν . The last inequality uses the fact that c2 ≥ 4M
and (2/θ)`c1r

γ
ν ≤ 1, by (3.12). This proves Step 2.

It follows from Step 2 and (3.18) that the Hamiltonian function H̃ satisfies
the hypotheses of Theorem 1 with M replaced by 2M , r = θrν , δ = rmν , and
Q = Qν = Kν−1

ηη . Hence Theorem 1 asserts that there exists a symplectic
transformation z = ψν(ζ) of the form (1.7) from the strip |Im ξ| ≤ rν+1 = θ2rν ,
|η| ≤ rν+1 into |Imx| ≤ θrν , |y| ≤ θrν such that ψν(ξ, 0) − (ξ, 0) is of period 1
in all variables, the transformed Hamiltonian function

Kν := H̃ ◦ ψν = Hν ◦ φν , φν := φν−1 ◦ ψν ,

satisfies (1.8), and ψν and Kν satisfy (3.10). Observe that, by construction, the
transformation φν = φν−1 ◦ ψν maps the strip |Im ξ| ≤ rν+1, |η| ≤ rν+1 into
|Imx| ≤ rν−1, |Im y| ≤ rν−1, |Re y| ≤ ρ. But we will show the following.

Step 3. The transformation z = φν(ζ) maps the strip |Im ξ| ≤ θrν+1, |η| ≤
θrν+1 into |Imx| ≤ rν , |Im y| ≤ rν , |Re y| ≤ ρ and satisfies (3.11).

Using the second inequality in (3.11) with ν replaced by µ = 0, . . . , ν − 1, we
obtain

∣∣∣φν−1ζ (ζ)
∣∣∣ ≤ 1 +

ν−1∑

µ=0

∣∣∣φµζ (ζ)− φ
µ−1
ζ (ζ)

∣∣∣ ≤ 1 + 4c2

∞∑

µ=0

rmµ = 1 + c5ε
m ≤ 2
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for |Im ξ| ≤ θrν and |η| ≤ θrν . Here we have used (3.14) again. Hence it follows
from (3.10) that, for |Im ξ| ≤ rν+1 and |η| ≤ rν+1, we have
∣∣φν(ζ) − φν−1(ζ)

∣∣ =
∣∣φν−1(ψν(ζ)) − φν−1(ζ)

∣∣ ≤ 2 |ψν(ζ)− ζ| ≤ 2c2(1−θ)rm+1
ν .

Thus we have established the first inequality in (3.11) and the second follows
immediately from the first and Lemma 1 (iii). As we have seen above, this
implies that

|Im ξ| ≤ θrν+1, |η| ≤ θrν+1 =⇒
∣∣φνζ (ζ)

∣∣ ≤ 2

and hence z := φν(ζ) satisfies

|Im z| ≤ 2 |Im ζ| ≤ 2
(
|Im ξ|2 + |Im η|2

)1/2
≤ 2rν+1 = rν .

Moreover, we have seen already that |Re y| ≤ ρ.
In order to establish the last inequality in (3.11) we make use of the identity

vν ◦ (uν)−1(x) − vν−1 ◦ (uν−1)−1(x) =
(
uν−1ξ (ξ)−1

)T
Uν
x (ξ)

for x = uν−1(ξ). From (3.19) we obtain that if |Imx| ≤ θrν+1 and x =: uν−1(ξ)
then |Im ξ| ≤ rν+1. (The map ξ 7→ x + ξ − uν−1(ξ) defines a contraction from
the strip |Im ξ| ≤ rν+1 to itself.) This allows us to apply the inequalities (3.10)
and (3.20) so that

∣∣∣∣
(
uν−1ξ (ξ)−1

)T
Uν
x (ξ)

∣∣∣∣ ≤ c2ε
m+τ+1
ν .

Thus we have proved Step 3.

Step 3 finishes the induction and it remains to establish the convergence
of the sequences uν(ξ) and vν(ξ) along with the estimates in (3.7). But the
inequalities in (3.11) imply that

∣∣uν(ξ)− uν−1(ξ)
∣∣ ≤ 2m+2c2r

m+1
ν+1

∣∣vν ◦ (uν)−1(x)− vν−1 ◦ (uν−1)−1(x)
∣∣ ≤

(
2

θ

)m+τ+1

c2 (θrν+1)
m+τ+1

(3.21)

for |Im ξ| ≤ rν+1 and |Imx| ≤ θrν+1. In particular, these estimates hold for
ν = 0 since in that case uν−1 = id and vν−1 = 0. Hence it follows from Lemma 4
that the limit functions

u(ξ) := lim
ν→∞

uν(ξ), v(ξ) := lim
ν→∞

vν(ξ)

satisfy (3.7) with c := (2/θ)m+τ+1c2c3. Moreover, The functions x = u(ξ) and
y = v(ξ) satisfy (1.2) as well as the periodicity requirements (because uν and
vν satisfy (1.2) with H replaced by Hν , and all three functions uν , vν , and Hν

converge in the C1-topology). This completes the proof of Theorem 2.
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The following C∞ result is a simple consequence of the proof of Theorem 2.
Other versions of it can be found in the work of Zehnder [28], Pöschel [22], and
Bost [5].

Corollary 1. Let H ∈ C`(Tn ×G) satisfy the requirements of Theorem 2 and
let x = u(ξ) and y = v(ξ) be the solutions of (1.2) constructed in the proof of
Theorem 2. Moreover, let γ > 0 be the constant defined in (3.13) and let `′ > `
be any number such that m′ := `′ − 2τ − 2− γ /∈ N and m′ + τ /∈ N. Then

H ∈ C`′ =⇒ u ∈ Cm′+1, v ◦ u−1 ∈ Cm′+τ+1

and, in particular,

H ∈ C∞ =⇒ u, v ∈ C∞.

Proof. By Lemma 3, there exists a constant c′1 such that the inequalities in (3.8)
are satisfied with c1 and ` replaced by c′1 and `′, respectively. Now one checks
easily that the assertions of Step 2 in the proof of Theorem 2 continue to hold
with m replaced by m′ provided that ν is sufficiently large. But this implies that
the inequalities (3.10), and hence also (3.11), are still satisfied, with m replaced
by m′, for ν sufficiently large. Hence we deduce that (3.21) also still holds with
m replaced by m′ for large ν. Therefore Lemma 4 implies that u ∈ Cm′+1 and
v ◦ u−1 ∈ Cm′+τ+1. This proves the corollary.

4 Uniqueness and regularity

In the context of area preserving annulus mappings the uniqueness of an in-
variant curve with a given irrational rotation number follows easily from the
monotone twist property in connection with Denjoy’s theory. In this section we
prove a local uniqueness result for invariant tori with a given frequency vector
ω ∈ Rn which in this form seems to be new. In a more general abstract set-
ting the uniqueness problem has been discussed by Zehnder [28] for the analytic
case and our methods are closely related to Zehnder’s work. We begin with the
following estimate for the solutions of the differential equation Df = g.

Lemma 6. Let n ≥ 2, τ > n − 1, c0 > 0 and ` > τ be given. Then there
exists a constant c = c(n, τ, c0, `) > 0 such that the following holds. If ω ∈ Rn

satisfies (1.3) and g ∈ C`
0(Tn) then the equation Df = g has a unique solution

f ∈ Cs
0(Tn) for s+ τ ≤ `, s /∈ N, and this solution satisfies the estimate

|f |Cs ≤ c

µ(1− µ) |Df |Cs+τ , 0 < µ := s− [s] < 1, (4.1)

for every s ≤ `− τ with s /∈ N.

Proof. By Lemma 3, there exists a sequence of real analytic functions gν(x) on
the strip |Imx| ≤ rν := 2−ν which are of period 1 in all variables, have mean
value zero on Tn, converge to g on Rn, and satisfy

g0 = 0, |gν − gν−1|rν ≤ c1r
s+τ
ν |g|Cs+τ
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for a suitable constant c1 = c1(`, n) > 0. Hence it follows from Lemma 2 that
the unique solution fν of Dfν = gν satisfies the estimate

|fν − fν−1|rν+1
≤ c2

(rν − rν−1)τ
|gν − gν−1|rν ≤ c1c22

s+τrsν+1 |g|Cs+τ

for some constant c2 = c2(n, τ, c0) > 0. Hence Lemma 4 asserts that the limit
function f := lim fν belongs to Cs

0(Tn) and satisfies the estimate (4.1) with
c = 2`c1c2. This proves the lemma.

We are now in a position to prove the desired uniqueness theorem for invari-
ant tori with a given frequency vector ω ∈ Rn.

Theorem 3 (Uniqueness). Let n ≥ 2, τ > n − 1, c0 > 0, 0 < γ < 1, and
M ≥ 1 be given. Then there exists a constant δ = δ(n, τ, c0, γ,M) > 0 with
the following significance. Suppose ω ∈ Rn satisfies (1.3), G ⊂ Rn is an open
neighborhood of zero, and H ∈ C`+2(Tn ×G), ` := γ + τ + 1, is a Hamiltonian
function satisfying

Hx(x, 0) = 0, Hy(x, 0) = ω,

and

|H |C`+2 ≤M,

∣∣∣∣∣

(∫

Tn
Hyy(x, 0) dx

)−1∣∣∣∣∣ ≤M. (4.2)

If u ∈ C1(Rn,Rn) and v ∈ C1(Rn, G) satisfy (1.2), u(ξ) − ξ and v(ξ) are of
period 1, v ◦ u−1 ∈ C`(Tn, G), and

|uξ − 1l|C0 ≤ δ,
∣∣v ◦ u−1

∣∣
C` ≤ δ, (4.3)

then uξ ≡ 1l and v ≡ 0.

Proof. Let the functions V (x) and U(x) be defined by (1.9) so that (1.12)
and (1.13) are satisfied. Then the real numbers αν := U(x + eν) − U(x) are
independent of x for ν = 1, . . . , n and the function a(x) = U(x)− 〈α, x〉 can be
chosen without loss of generality to be of mean value zero over the torus Tn.
Moreover, let us define b(x) := V (x) − x, h := H(x, Ux), and

R0(x) :=

∫ 1

0

∫ t

0

〈Ux, Hyy(x, sUx)Ux〉 dsdt

R1(x) := Hy(x, Ux)−Hy(x, 0)−Hyy(x, 0)Ux + bx

(
Hy(x, Ux)− ω

)
.

Then one checks easily that

Da = h− 〈α, ω〉 −R0
Db = −Hyy(x, 0)(α + ax)−R1.

33



This implies that h− 〈α, ω〉 is the mean value of R0 and, moreover,

∫

Tn
Hyy(x, 0)α dx = −

∫

Tn

(
Hyy(x, 0)ax +R1(x)

)
dx.

Therefore, we obtain from Lemma 5 and Lemma 6 that

|ax|C0 ≤ |a|C1+γ ≤ c1 |R0|C` ≤ c2 |Ux|C0 |Ux|C`

for suitable constants c2 > c1 > 0, depending only on n, τ , c0, γ and M .
Moreover, it follows from (4.2) that

|α| ≤M2 |ax|C0 +M |R1|C0 ≤ c3

(
|Ux|C` + |bx|C0

)
|Ux|C0

for some constant c3 > 0. Finally, we obtain from (4.3) that |bx|C0 ≤ δ/(1− δ)
and |Ux|C` ≤ δ so that

|Ux|C0 ≤ |α|+ |ax|C0 ≤ 2c3

(
|Ux|C` + |bx|C0

)
|Ux|C0 ≤ 4δc3

1− δ |Ux|C0 .

We conclude that Ux = v ◦ u−1 must vanish if 4δc3 < 1 − δ. But this implies
Db = 0 so that b(x) ≡ b is constant ad hence u(ξ) = ξ − b. This completes the
proof of Theorem 3.

We close this section with a regularity theorem for invariant tori which is
apparently new.

Theorem 4 (Regularity). Let G ⊂ Rn be an open set and ω ∈ Rn be a
vector which satisfies (1.3) for some constants c0 > 0 and τ > n− 1. Let H ∈
C∞(Tn × G) be given and suppose that u ∈ C`+1(Rn,Rn) and v ∈ C`(Rn, G),
` > 2τ +2, are solutions of (1.2) such that u(ξ)− ξ and v(ξ) are of period 1 and
u represents a diffeomorphism of the torus Tn. If

det

(∫

Tn
uξ(ξ)

−1Hyy(u(ξ), v(ξ))u
T
ξ (ξ)

−1 dξ

)
6= 0

then u ∈ C∞ and v ∈ C∞.

Proof. Let z = φ(ζ) denote the symplectic transformation (1.7) and choose a
sequence of C∞ smooth symplectic transformation ψν of the same form which
converges to φ in the C`-norm. Hence the Hamiltonian function H ◦ ψν con-
verges to H in the C`-norm and hence satisfies the assumptions of Theorem 2
for ν sufficiently large. This implies that, for large ν, there is a symplectic
transformation χν of the form (1.7) such that Kν := H ◦ψν ◦χν satisfies (1.8).
By Corollary 1, we have χν ∈ C∞. We claim that

φ = ψν ◦ χν

for ν sufficiently large and hence φ is C∞ smooth.
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To see this, let
Sν(x, η) = Uν(x) + 〈V ν(x), η〉

be a generating function for φ−1 ◦ ψν . Then the sequences Uν
x and V ν

x − 1l
converge to zero in the C`-norm. Moreover, let

Ŝν(x, η) = Ûν(x) + 〈V̂ ν(x), η〉

be a generating function for χν . Then Theorem 2 asserts that V̂ ν
x − 1l converges

to zero in the C0-norm and Ûν
x converges to zero in the Cτ+1+γ-norm for some

γ > 0. Now define

Ũν := Uν + Ûν ◦ V ν , Ṽ ν := V̂ ν ◦ V ν ,

so that S̃ν(x, η) := Ũν(x)+ 〈Ṽ ν(x), η〉 is a generating function for φ−1 ◦ψν ◦χν .

Then Ũν
x converges to zero in the Cτ+1+γ -norm and Ṽ ν

x − 1l converges to zero
in the C0-norm. Therefore it follows from Theorem 3 with H replaced by H ◦φ
that φ−1 ◦ ψν ◦ χν = id for ν sufficiently large. Hence φ = ψν ◦ χν ∈ C∞ as
claimed. This proves Theorem 4.

The proof of Theorem 4 depends in an essential way on the fact that the
Hamiltonian function H in Theorem 2 is only assumed to be of class C` with
` > 2τ + 2 > 2n and is not required to be close to any integrable analytic
function. Another important ingredient in the proof of Theorem 4 is the obser-
vation that the smoothness requirements of the uniqueness result (Theorem 3)
precisely coincide with the regularity which is obtained in the existence result
(Theorem 2). Finally, Theorem 4 suggests that every invariant circle of class C `

with ` > 4 (and with a sufficiently irrational rotation number) for a monotone
twist map of class C∞ must itself be of class C∞.
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Poincaré 3 (1986), 229–272.

[19] J. Moser, Recent developments in the theory of Hamiltonian systems, SIAM

Review 28 (1986), 459–485.

[20] J. Moser, A stability theorem for minimal foliations on a torus, Ergodic Theory

& Dynamical Systems 8 (1988), 251–281.

[21] J. Nash, The imbedding problem for Riemannian manifolds, Annals of Mathe-

matics 63 (1956), 20–63.
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