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WHISKERED AND LOW DIMENSIONAL TORI IN

NEARLY INTEGRABLE HAMILTONIAN SYSTEMS

R. DE LA LLAVE AND C. E. WAYNE

Abstract. We show that a nearly integrable hamiltonian system has
invariant tori of all dimensions smaller than the number of degrees of
freedom provided that certain nondegeneracy conditions are met. The
tori we construct are generated by the resonances of the system and are
topologically different from the orbits that are present in the integrable
system. We also show that the tori we construct have stable and unstable
manifolds and point out how to construct other types of interesting
orbits.

The method of proof is a combination of different perturbation meth-
ods.
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Preface

This paper proves the existence of whiskered tori in nearly integrable
Hamiltonian systems. This paper was circulated widely in 1989, but was
never formally published due to a combination of circumstances.

The paper, however has been widely quoted and some of the perturbation
techniques described here have been used for a variety of purposes by several
people. In spite of very dramatic progress in Hamiltonian mechanics in the
intervening years we feel that this work may still be of interest for several
reasons.

We note that the tori constructed in this paper have different topologies
from the tori that are present in the original system. In some way they are
higher dimensional analogues of islands in nearly integrable maps.

Within the last five years there have been significant advances in the un-
derstanding of ”Arnold diffusion” – the process by which solutions in nearly
integrable Hamiltonian systems my drift far from their initial values. One
problem that must be confronted in analytical approaches to the Arnold dif-
fusion problem is the so called ”large gaps” problem. This is the appearance
of gaps in the ”transition chain” of whiskered tori near resonances of the
integrable Hamiltonian.

It is precisely in such gaps that the whiskered tori of the present paper
are constructed and we think that there is mounting evidence (numerical
and heuristic in [HdlL00] and rigorous studies of diffusion [DdlLMS03]) sec-
ondary invariant tori play an important role in recurrence in Fermi-Pasta-
Ulam as well as in phenomena of instability and diffusion. The later is in
agreement with the widely believed intuition that diffusion in Hamiltonian
systems is generated by resonances.

The paper that follows is largely unchanged from the version of 1989. The
only significant changes are:

• We have eliminated Appendix A, since a expanded version was pub-
lished in [dlLW95].

• We have shortened Section 3, so that we now just quote results in
the literature rather than indicating a proof.

• We have added a sentence to the abstract.

Besides the changes above, we have corrected a few obvious typos and
misspellings, but we decided not to introduce any other modifications.

In particular, we did not update the bibliography and, hence, we do not
cover any of the developments that have occurred after 1989. Also, we have
resisted the temptation to improve some of the results on regularity which
in light of subsequent theoretical developments are not optimal.
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1. Introduction

It is well known, (and probably true!) that certain trajectories of nearly
integrable hamiltonian systems with more than two degrees of freedom will
wander very far from their initial values. The best known mechanism pro-
posed to explain that effect is the so–called “Arnol’d diffusion”. This mech-
anism, first described in [Arn64], requires the existence of an abundance of
“whiskered tori” in the system. These are invariant tori that are the inter-
section of an “arriving whisker” and a “departing whisker.” All trajectories
in the arriving whisker are asymptotic to the invariant torus as t → +∞,
while those in the departing whisker are asymptotic to the torus as t→ −∞.
The intersection of arriving and departing whiskers corresponding to differ-
ent invariant tori provides the means to transport trajectories from one part
of the phase space to another.

In this paper we study the formation of whiskered tori in nearly integrable
systems, whose hamiltonian can be expressed in terms of action-angle vari-
ables as the smooth function

(1) H(I, φ) = h(I) + εf(I, φ),

with I ∈ V , an open subset of RN and φ ∈ TN . We assume that H is a
sufficiently smooth function that also satisfies:

(2)
∣∣∣
∣∣∣(hII)−1

∣∣∣
∣∣∣ < c, ∀I ∈ V.

Note that while the ε = 0 problem has an abundance of invariant tori,
it has no whiskered tori. In fact, there is no hyperbolicity in the unper-
turbed (ε = 0) problem. This is one of the differences between the present
paper, and [AA68], [Gra74],[Zeh76] where it is assumed that the ε = 0 prob-
lem already contains invariant whiskered tori and hence is not integrable. In
[HM82] it is assumed that the ε = 0 hamiltonian has homoclinic connections.
Even if this situation could happen in a system whose hamiltonian depends
only on action variables, it cannot happen in systems with the complemen-
tary variables of the actions being angles as we consider. Notice also that
the orbits in a homoclinic trajectory are hyperbolic. The present method,
on the other hand, not only proves the existence of invariant tori for (1) but
also elucidates the mechanism which gives rise to the hyperbolicity.

Unfortunately even though we can prove that (1) typically possesses an
abundance of whiskered tori our methods, which are perturbative in nature,
do not give sufficient control over the whiskers to prove that the whiskers
corresponding to different tori intersect one another. Thus we cannot con-
clude that (1) actually exhibits Arnol’d diffusion. Indeed, the verification
of the existence of Arnol’d diffusion by perturbative methods seems exceed-
ingly difficult because the results of Nekhoroshev [Neh77] show that the
effect of this diffusion for a C∞ system of the form (1) should be zero to all
orders in εn (see e.g [BG86, BGG85] for a more modern exposition). There-
fore, establishing the existence of Arnol’d diffusion for concrete systems of
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the form (1) would require a perturbation theory that can establish results
beyond all orders in ε.

Even if direct perturbation methods have not succeeded in establish-
ing Arnol’d diffusion for concrete systems, it is still possible to use non–
constructive arguments based on genericity. Douady [Dou88] has shown that
generically, in the neighborhood of an elliptic fixed point one gets Arnol’d
diffusion. It seems that his methods could be made to work with our analy-
sis to conclude that a generic hamiltonian (1) exhibits Arnol’d diffusion on
a certain scale.

Our results also shed some light on other aspects of the behavior of (1).
There has recently been considerable interest in whether or not (1) possesses
invariant tori of dimension greater than 1 (periodic orbits) and less than N-1.
The invariant tori most commonly constructed by the K. A. M. theory have
dimension N, but in [Mos67], Moser proved that one could also construct
tori of dimension N-1 using essentially the same methods and he asked the
question of whether it would be possible to construct tori of lower dimension.
Graff [Gra74] showed that if the unperturbed tori were hyperbolic, one could
develop a K.A.M. perturbation theory regardless of their dimension – see also
[Zeh76] for another way of developing this perturbation theory –, but it was
not until quite recently that Eliasson [Eli88], followed by Rüssman [R8̈8]
and Pöschel[Poschel89], showed that one could use a variant of K. A. M.
methods to construct low dimensional tori for (1).

Our methods also give low dimensional tori for (1) – whiskered tori must
have dimension less than N − 1, and can in general have any dimension
between 1 and N − 2. Both the methods we use and the tori we construct,
are quite different from those of [Eli89, R8̈8, Pös89]. The low dimensional
tori they construct could possibly have no hyperbolic direction even when
ε 6= 0, while those that we produce certainly do. The tori we construct,
can be retracted to a periodic orbit, so all the closed paths contained in
them have the same homotopy type in the original phase space. The tori
of [Eli89, R8̈8, Pös89] have as many homotopically different closed paths as
their dimension. A perturbation that left the system (1) integrable would
not produce tori with hyperbolic directions, therefore, our result must in-
clude non–degeneracy conditions on the perturbation as well as on the origi-
nal system. The results of [Eli89, R8̈8, Pös89]. only require non–degeneracy
conditions on the unperturbed system.

As a byproduct of our method, we can also produce some other invariant
sets using the rich theory of monotone area–preserving maps or the theory
of behavior near elliptic points. We point out that, from the point of view
of producing diffusion, the intersection of invariant manifolds of those sets
can be as effective as that of whiskers of tori.

We now state our results somewhat more precisely and sketch the method
of proof.

We will work in a neighborhood of a periodic orbit of the ε = 0 case of (1),
I(t) = I∗, φ(t) = hI(I

∗)t+ φ(0). Since the orbit is periodic, ThI(I
∗) ∈ ZN ,
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where T is the period. If ν ∈ ZN , we will have that Tν · hI(I∗) ∈ Z.
Therefore,

(3) |ν · hI(I∗)| ≥ c > 0

with c = 1/T whenever ν · hI(I∗) 6= 0.
We will be concerned with “whiskered invariant tori” which we will take to

mean d–dimensional invariant tori on which the motion of the hamiltonian
system is differentiably conjugate to a rotation and on which the restriction
of the symplectic form vanishes. Each point in the torus, will have N − d
dimensional “stable” and “unstable” manifolds consisting of points whose
orbits are asymptotic (for positive and negative times respectively) to the
orbit of the corresponding point in the torus with exponential bounds on
the speed of approach. The union of all the stable manifolds of all the
points of the torus will form a smooth N dimensional manifold on which the
symplectic form vanishes. Notice that it is impossible to have any manifold
of dimension greater than N on which the symplectic form vanishes. These
manifolds of maximal dimension on which the symplectic form vanishes are
usually called Lagrangian submanifolds and are known to enjoy remarkable
topological properties.

Notice that since the motion on the torus is conjugate to a rotation the
infinitesimal displacements tangent to the torus will not grow under posi-
tive or negative iteration. Since the symplectic form is to be preserved under
time evolution, the conjugate directions to these infinitesimal displacements
cannot grow under iteration either. It is easy to check that the symplectic
conjugates to d independent vectors should also be independent. Moreover,
since the symplectic form vanishes on the torus, the span of the vectors
symplectically conjugate to tangents should not contain any tangent vec-
tor. A torus with the motion conjugate to a rotation and on which the
symplectic form vanishes should, therefore, have 2d neutral directions. So
“whiskered tori” have as many hyperbolic directions as possible under the
other conditions. It is for such tori that there are perturbation theories; e.g.
[Gra74],[Zeh76].

Only a part of the interaction term, f, in (1) is relevant for the construction
of whiskered tori. Define the resonant part of the interaction by

fR(I, φ) =
1

T

∫ T

0
f(I, φ+ ω(I∗)t)dt

=
∑

ν∈NN
ν·ω(I∗)=0

f̂ν(I)e
2πiν·φ(4)

where ω(I) = hI(I). Since the components of ω(I∗) are rationally related
there will be infinitely many ν ∈ ZN such that ν · ω(I∗) = 0. Let φ∗ be a
point at which fRφ (I∗, φ∗) = 0. (Since fR(I, φ) is a smooth function on a

compact manifold such points must exist.) We have to consider the N ×N
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matrix hII(I
∗)fRφφ(I

∗, φ∗). In particular, suppose that this matrix has only
a single zero eigenvalue. We then have,

Theorem 1.1. Assume that h,I∗, ω(I∗) are as in (1), (2),(3), H suffi-
ciently differentiable and that certain non-degeneracy conditions –detailed
in section 3 – are satisfied. If the matrix β = −hII(I∗)fRφφ(I∗, φ∗) has k

positive eigenvalues, N − (k + ` + 1) negative eigenvalues, ` eigenvalues
of non–zero imaginary part and one zero eigenvalue, and if all the nega-
tive eigenvalues are different, then, for all positive ε sufficiently small, (1)
has whiskered tori of dimension N − k − `, with k + ` dimensional stable
and unstable whiskers. If the positive eigenvalues of β are different, for ε
sufficiently small and negative, the hamiltonian (1) has whiskered tori of
dimension k+ 1 with N − k − 1 dimensional stable and unstable manifolds.

Remark 1.2. The matrix β is not necessarily symmetric, but nevertheless,
in many important cases, all its eigenvalues are real. We recall, for example,
the following result from [WR71] p. 303 ( See also [GVL83] sec. 8.6 )

Proposition 1.3. Let A,B be symmetric matrices and let A be positive
definite. Then, the eigenvalues of AB are real.

Proof. By the Cholesky decomposition theorem (see [GVL83] sec. 5.2), we
can find a lower triangular invertible matrix L such that A = LLT . Intro-
ducing w = L−1v, the eigenvalue problem ABv = λv is equivalent to the
eigenvalue problem LTBLw = λw. Since the matrix LTBL is symmetric,
all the eigenvalues are real. 2

Remark 1.4. We note that −hII(I∗)fRφφ(I∗, φ∗) will have exactly one zero
eigenvalue for h and f in an open and dense set of functions. By an elemen-
tary application of Morse theory, in a C2 open and dense set of functions
f there will be points φ1, φ2, . . . , φN at which fRφφ(I

∗, φj) has k positive
eigenvalues N − k − 1 negative eigenvalues and one zero eigenvalue.

By the proof of Proposition 1.3, we see that, when hII(I
∗) is positive defi-

nite, the eigenvalues of hII(I
∗)fRφφ(I

∗, φ∗) are the eigenvalues of LT fRφ,φ(I
∗, φ)L

for some conveniently chosen L. It follows from Sylvester’s law of inertia
(See [GVL83] p. 274 ff.) that, in this case, the number of positive and neg-
ative eigenvalues of hII(I

∗)fRφφ(I
∗, φ∗) are the same as those of fRφφ(I

∗, φ∗).

So that when hII(I
∗) is positive definite, and φ1, . . . , φN are as above,

hII(I
∗)fRφφ(I

∗, φ∗j ) has k positive eigenvalues N − k− 1 negative eigenvalues
and one zero eigenvalue.

Remark 1.5. It will also follow from the details of the proof of Theorem
1.1 that the other nondegeneracy conditions we require will hold in a C 5

open and dense set. Notice that the open and dense sets we consider have
quite a lot of structure. In certain regions, their complement is a manifold
of strictly positive codimension. Thus we have
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Corollary 1.6. Define Pk to be the set of h ∈ Ck such that hII is a positive
definite matrix for all values of I ∈ V . For h and f in a C 5 open and
dense set of Pk × Ck, and ε sufficiently small (1) has whiskered tori of all
dimensions between 1 and N-1.

Zehnder outlined a method in [Zeh88] to show that a generic perturbation
of an integrable system leads to the existence of invariant whiskered tori.
His method consisted–roughly–in showing that one could add a generic per-
turbation to the original hamiltonian (1) in such a way that the original
invariant torus becomes hyperbolic and then, that these invariant tori per-
sist with the full perturbation.

Our method, on the other hand consists in a sequence of perturbation
theories. First, an averaging method gives us the existence of perturbed
periodic orbits as well as control on the eigenvalues of the time T map
for a carefully chosen intermediate system. An elementary application of
the implicit function theorem then gives the same result for our original
system. In a second stage, we restrict ourselves to the center manifold and
use K. A. M. theory to construct invariant tori near this periodic orbit.
Finally, we use the perturbation theory for partially hyperbolic systems to
show that these tori are in fact whiskered tori.

This procedure is fully constructive, so that given a specific system it is
possible to decide by a finite computation whether our theorem applies or
not. We also have explicit expressions for the expansions of the invariant tori
and their stable and unstable manifolds. It looks plausible that by pushing
these calculations further than we did, one could establish more properties
of the tori and their whiskers. A numerical computation of these invariant
objects also seems quite feasible when they are of low dimension.

We observe that to analyze the motion on the center stable manifold, one
could use other methods than K. A. M. theory. When the center manifold
is two dimensional, one could use the theory of monotone twist maps (see
[Che85, Mat86, Ban88] for reviews) to produce invariant Cantor sets with
minimal orbits. It seems that significant parts of this theory carry over to
higher dimensions [Kat92]. Other interesting invariant sets such as homo-
clinic orbits, etc., have been known for a long time, and could also be shown
to exist in these systems. From the point of view of explaining diffusion, the
intersection of invariant manifolds corresponding to any of those sets could
play the same role as the intersection of whiskers of tori–this is the reason we
formulate the stable and unstable manifold theorems in enough generality
to cover all these possibilities. It seems quite possible that one could adapt
the method of [Dou88] in such a way that the role of the periodic points is
played by these other invariant sets.

The use of the center manifold theorem has a technical shortcoming. We
can only conclude that our invariant tori are finitely differentiable even if the
original hamiltonian and its perturbation are C∞ or Cω. This restriction
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is unnatural and somewhat more elaborate methods can eliminate it. In
future papers, we plan to come back to these issues.

Since the most delicate step of our construction–the K. A. M. computation–
is done in a low dimensional manifold, our approach could work in some
infinite dimensional systems such as partial differential equations for which
there are good substitutes of the averaging method to produce periodic or-
bits. We plan to apply this approach to the Boussinesq equation in future
work.

One particularly interesting result in the study of Arnol’d diffusion is the
unpublished thesis of A. Delshams, which was brought to our attention by
C. Simó after the main results of this paper were completed. Even if the
methods and the model considered are different from those of this paper,
the point of view is similar in that only constructive methods are used.
That paper studies a hamiltonian system in the neighborhood of an elliptic
fixed point at which the eigenvalues of the derivative of the hamiltonian
are resonant. One then makes canonical transformations that reduce the
hamiltonian to a canonical normal form up to an error which vanishes to
high order in the distance to the fixed point. By inspection, the main term
of the canonical form, is shown to have invariant tori of dimension N − 1,
where N is the number of degrees of freedom, and that they have hyper-
bolic directions. By invoking an appropriate perturbation theory for those
objects it is possible to show that these invariant objects predicted by the
main term of the normal form are present for the full system. (One needs to
modify somewhat the exposition in [Del83] so that the perturbation theory
that is invoked is that of [Gra74] or [Zeh76] rather than the perturbation
theory for normally hyperbolic manifolds of [HPS77] since as we detail below
the whiskered tori are not normally hyperbolic.) Since the invariant man-
ifolds do not leave the neighborhood in which the normal form is defined,
it is possible to perform the calculations required by the first order Mel-
nikov’s method and show that, in this approximation, the manifolds cross
transversally. Unfortunately, as Delshams points out, this does not suffice
to establish that the whiskers cross transversally in the real model since
the errors incurred by first order Melnikov’s method are much bigger than
the first order results. Nevertheless, since the method is quite constructive,
for concrete sytems, Delshams [Del88] has shown to us how it is possible
to perform reliable computer calculations that, if taken at face value would
establish the existence of Arnol’d diffusion in a certain scale for the concrete
system being considered. (See [BGGS84] for related calculations.) The cal-
culations needed fall within the framework of those that can be turned into
rigorous proofs by a careful automatic analysis of the errors involved.

2. Whiskered Periodic Orbits

In the present section we will show how certain periodic orbits in the inte-
grable problem persist in the nearly integrable case. We will also construct
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the stable, unstable, and center manifolds of this periodic orbit. Note that
the integrable problem will typically have uncountably many periodic orbits
of fixed period which fill an invariant torus. In the perturbed problem only
finitely many periodic orbits will generally survive. We use the method of
averaging to determine which of the orbits of the unperturbed problem con-
tinue to an orbit of an intermediate perturbed problem. We get sufficient
control of the periodic orbits in the “averaged” problem to be able to con-
clude that we can use the implicit function theorem to control the remaining
part of the perturbation, and to be able to apply stable, unstable and center
manifold theorems.

The problem we will analyze is a nearly integrable hamiltonian expressed
in action-angle variables,

(5) H(I, φ) = h(I) + εf(I, φ),

with I ∈ V ⊂ RN and φ ∈ TN ≡ RN/NN . Using (2), the set of frequency
vectors of the unperturbed problem Ω = {ω(I) ≡ ∂h

∂I (I)
∣∣ I ∈ V } has non

empty interior. In particular, it contains frequency vectors of the form
1
T (n1, . . . , nN ) with T ∈ R, nj ∈ N. These frequencies correspond to periodic
orbits for the unperturbed problem and satisfy:

(6) |ν · ω(I∗)| ≥ c > 0

with c = 1/T whenever ν · ω(I∗) 6= 0.
If I∗ is an interior point of V one can compute the time-T map for this pe-

riodic orbit. Attempting to apply the implicit function theorem to construct
an orbit for the perturbed problem fails though, essentially because there
is no hyperbolicity in the unperturbed problem. This is where our method
differs from that of [AA68] or [HM82], for instance. One of the strengths of
the present approach is that it shows how the hyperbolicity present in the
whiskered torus is generated.

Let fR be the resonant part of the interaction defined in (4) and φ∗ a
point for which fRφ (I∗, φ∗) = 0. The main result of the present section is

Theorem 2.1. If the matrix β ≡ −hII(I∗)fRφφ(I∗, φ∗) has only a single

zero eigenvalue, and |ε| is sufficiently small, then the hamiltonian (1) has a
periodic orbit, whose period differs from the periodic orbit of the unperturbed
hamiltonian passing through I∗ by at most O(ε). Suppose further that k of
the eigenvalues of the matrix above are positive, N− (k+`+1) are negative,
and ` of the eigenvalues have non-zero imaginary part. When ε is positive
and the negative eigenvalues of β are all different the periodic orbit of (1)
has k + ` dimensional stable and unstable manifolds, and a 2(N − (k + `))
dimensional center manifold. When ε is negative and the positive eigenvalues
of β are all different, the periodic orbit of (1) has (N − (k+1)) dimensional
stable and unstable manifolds and a 2(k + 1) dimensional center manifold.

Remark 2.2. For fixed I∗ there will be many points φ∗ for which fRφ (I∗, φ∗) =
0. In fact these points will occur in one parameter families corresponding
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to motion along the unperturbed periodic orbit. It is easy to check that
the number of positive and negative eigenvalues of hII(I

∗)fRφφ(I
∗, φ∗) is in-

dependent of the point φ∗ we pick in such a family.

Our first task in proving Theorem 2.1 will be to clarify the existence of
critical points of functions such as fR and their properties. We prove:

Lemma 2.3. Suppose f(I, φ) is a Cr function r = 2, 3 . . . ,∞, ω on V ×TN ,
with 0 ∈ V ⊂ RN , which satisfies:

(i) f(I, φ + tω∗) = f(I, φ), for all t, where ω∗ is an N -dimensional
vector whose components are multiples of an integer vector.

(ii) There is a point φ0 such that fφ(0, φ0) = 0 and fφφ(0, φ0) has exactly
one zero eigenvalue. (Note that condition (i) implies that fφφ(0, φ0)
always has at least one zero eigenvalue, with eigenvector ω∗.)

Then there is a Cr function, φ(I), defined for |I| sufficiently small such that

fφ(I, φ(I)) = 0.

Proof. Setting φ̃ to represent the orbit of the rational flow going though
φ, we can identify the functions satisfying (i) with functions f̃(I, φ̃) on V ×
TN−1. (The space of orbits of the rational flow on TN is TN−1.) We can see

that f̃φ̃(I, φ̃) = 0 is equivalent to fφ(I, φ) = 0. By choosing an appropriate

set of coordinates, in which the direction of ω∗ is a coordinate vector, we can
see that the matrix fφφ(I, φ) is just the matrix of f̃φ̃,φ̃(I, φ̃) with an extra

row and column of zeros. Therefore, the eigenvalues of fφφ(I, φ) are those

of f̃φ̃,φ̃(I, φ̃) and another zero.

Condition (ii) becomes simply that f̃φ̃,φ̃(0, φ̃0) is non singular. Then,

we can apply the implicit function theorem to the equation f̃φ̃(I, φ̃) = 0

to find a Cr function φ̄(I) satisfying f̃φ̃(I, φ̄(I)) = 0. Once we have this

function, we can find the remaining coordinate as a function of I in any way
we please. This ambiguity is real, because we are parameterizing orbits by
a single point on the orbit. We will assume that we make the choice in a
differentiable way. 2

The same construction allows us to prove a lemma that we will use later

Lemma 2.4. Consider the set of Cr functions r = 2, 3, . . . ,∞, ω satisfying
(i) as above. Then, for all the functions in an open dense set there are at

least
(N−1

k

)
points φ̃ ∈ TN−1 satisfying f̃φ̃(0, φ̃) = 0 and at which f̃φ̃φ̃(0, φ̃)

has exactly k negative eigenvalues . Moreover, all those negative eigenvalues
are different.

Proof. This is an standard application of the Morse inequalities [Mil63]
(the ith Betti number for the n torus is

(n
i

)
). The fact that the negative

eigenvalues can be made different in an open dense set is a consequence of
transversality theory [AR67]. 2
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We begin the proof of Theorem 2.1 by making some preliminary changes
of variables. We first translate the origin of the coordinate system to I ∗

by setting J = I − I∗. (In a slight abuse of notation, we will denote the
transformed hamiltonian as H(J, φ).) Given a function of g(J, φ) we define
its power series with respect to J by g(J, φ) =

∑
α gα(φ)J

α. Here, α ∈ (N)N ,
Jα =

∏
i J

αi
i , and |α| =∑

i |αi|.
We now make a canonical transformation to make more explicit the long

time behavior. For the sake of convenience, we will use the Lie transform
method (see e.g. [Car81]). The generating function of the transformation

will be χ(J, φ) =
∑4

`=0

∑
α

|α|=`
χα(φ)J

α. We will choose χ so that:

H + {χ,H} = h(J) + εfR(J, φ) + higher order terms .

Exactly what we mean by “higher order terms” is explained below.
Consider the coefficient of Jα in {χ, h}. We have

{χ, h}α = {χα, ω(I∗) · J}+
∑

β,γ:
|β|+|γ|=|α|+1,|γ|>1

{Jβχβ, Jγhγ}α

Thus, we define χα to be the solution of

(7) ω(I∗)
∂χα
∂φ

= ε(fR − f)α −
∑

β,γ:
|β|+|γ|=|α|+1,|γ|>1

{Jβχβ, Jγhγ}α

(Note that in the sum on the right hand side of (7), |β| ≤ |α| − 1, so we
solve for χα by induction on |α|.) In the sequel we will use this proposition
for r = 4 only but the general case is not any harder.

Proposition 2.5. If H is Cr,r ≥ 1, then

χα(φ) =
1

T

∫ T

0
{ε(f − fR)α(φ+ ω(I∗)t)

+
∑

β,γ:
|β|+|γ|=|α|+1,|γ|>1

{Jβχβ(φ+ ω(I∗)t), Jγhγ}α}tdt

is well defined and solves (7) for 0 ≤ |α| ≤ r. Moreover, fR and χ are
Cr functions. The linear operators that to each f associate fR and χ are
bounded from Cr to Cr.

Proof. The proof is by induction on |α|. Assume that the proposition is
true for |α| < m. We prove it for any α with |α| = m. (The proof also holds
if m = 0, which allows us to start the induction.)

The boundedness in Cr follows from the fact that all the translates by
different ω(I∗)t have the same Cr norm and we are superimposing them
with a weight given by a function in L1.

Let gα(φ) =
∑

β,γ:
|β|+|γ|=|α|+1,|γ|>1

{Jβχβ(φ), Jγhγ}α.
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Observe that
N∑

i=1

ω(I∗)i
∂

∂φi

{
ε(f − fR)α(φ+ ω(I∗)t) + gα(φ+ ω(I∗)t)

}
=

=
d

dt

{
ε(f − fR)α(φ+ ω(I∗)t) + gα(φ+ ω(I∗)t)

}
.

Proceeding formally we insert the definition of χ and obtain

N∑

i=1

ω(I∗)i
∂

∂φi

1

T

∫ T

0

{
ε(f − fR)α(φ+ ω(I∗)t) + gα(φ+ ω(I∗)t)

}
tdt

=
1

T

∫ T

0

N∑

i=1

ω(I∗)i
∂

∂φi

{
ε(f − fR)α(φ+ ω(I∗)t) + gα(φ+ ω(I∗)t)

}
tdt

=
1

T

∫ T

0
(
d

dt

{
ε(f − fR)α(φ+ ω(I∗)t) + gα(φ+ ω(I∗)t)

}
)tdt

Integrating by parts and using the definition of fR and χβ, with |β| < m
we have:

1

T

∫ T

0

{
ε(f − fR)α(φ+ ω(I∗)t) + gα(φ+ ω(I∗)t)

}
dt = 0

so we get the desired result.
The interchange of order of the integral and the derivative we used in the

above argument is easily justified by observing that the resulting integral
converges uniformly. 2

We now proceed to estimate the remainder of this formal calculation.
We will show bounds which are uniform in a certain domain which, even
if it tends to zero when ε tends to zero, is big enough for the following.
Let Φ1(J, φ) be the time one map of the system whose hamiltonian is the
function χ(J, φ) constructed in the previous proposition. We are interested
in the transformed hamiltonian,

HR(J, φ) = H ◦ Φ1(J, φ)

This may be rewritten as

HR(J, φ) = H(J, φ) +

∫ 1

0
{χ,H} ◦ Φt(J, φ)dt

= H(J, φ) + {χ,H} −
∫ 1

0
(t− 1){χ, {χ,H}} ◦ Φt(J, φ)dt

(8)

Note that (7) implies that χ and all of its derivatives are O(ε) so the term
containing the integral in (8) is O(ε2) (along with all of its derivatives).

We now examine the term {χ,H}. Given a function g(J, φ), define
g≥(J, φ) = g(J, φ) −∑α:|α|≤4 gα(φ)J

α. Also, set fNR = f − fR. Using

the definition of χ we see that

εf(J, φ) + {χ,H}(J, φ) = εfR(J, φ) + εfNR
≥ (J, φ) + {χ,H}≥(J, φ) .
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Note that if H ∈ C5, then εfNR
≥ , {χ,H}≥ and their derivatives of order

two or less will be O(ε2) in any neighborhood of size O(εδ) about J = 0, if
δ ≥ 2/3. If we define a new hamiltonian

(9) HN (J, φ) = h(J) + εfR(J, φ) ,

then we have:

Proposition 2.6. On any neighborhood of size O(εδ) about J = 0, with
δ ≥ 2/3

||HR −HN ||C2 = O(ε2) .

We will establish the existence of periodic orbits for the hamiltonian HN

and then, perform an elementary perturbation theory to establish the ex-
istence of periodic orbits for the hamiltonian HR, in which we are really
interested.

The equations of motion for the hamiltonian HN are

J̇ = −HN
φ = −εfRφ (J, φ)

(10) φ̇ = HN
J = hJ (J)+εf

R
J (J, φ) = ω(I∗)+hII(I

∗)J+R3J (J)+εf
R
J (J, φ) .

Here, R3(J) =
∑

α:|α|≥3 hαJ
α. Lemma 2.3 implies that there is a smooth

function φ̃(J), defined for |J | sufficiently small such that fRφ (J, φ̃(J)) = 0.

Note that the domain on which φ̃(J) is defined is independent of ε. Now
consider the function

H(ε, J) = HN
J (J, φ̃(J))

Then H(0, 0) = ω(I∗), and HJ(0, 0) = hII(I
∗). Since this matrix is invert-

ible, the implicit function theorem implies that there is some ε0 > 0 such
that if |ε| < ε0, there exists a smooth function J̃(ε) such that

−εfRφ (J̃(ε), φ̃(J̃(ε))) = 0

ω(I∗) + hII(I
∗)J̃(ε) +R3J(J̃(ε)) + εfRJ (J̃(ε), φ̃(J̃(ε))) = ω(I∗).

Recall that fR(J, φ+ ω(I∗)t) = fR(J, φ). Thus, we have proved

Proposition 2.7. There exists a constant ε0 > 0 such that if |ε| < ε0, the
hamiltonian system HN (J, φ) has a periodic orbit with frequency ω(I∗).

We now proceed to compute the derivative of the time T map of the
hamiltonian HN around the periodic orbit constructed above and compute
its eigenvalues as well as the norm of the inverse of this derivative.

We note that from (10), J(t) = J(0) +O(ε). This in turn implies that

φ(t) = φ(0) + [ω(I∗) + hII(I
∗)J(0) +R3J(J(0))]t +O(ε).
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We then feed this back into the equation for J̇ in (10) and find

J(t) = J(0)− ε

∫ t

0
fRφ (J(0), φ(s))ds +O(ε2)

= J(0)− ε

∫ t

0
fRφ (J(0), φ(0) + [hII(I

∗)J(0) +R3J (J(0))]s)ds +O(ε2).

(11)

The last equation used the fact that fRφ (J, φ+ ω(I∗)t) = fRφ (J, φ).

Finally, we substitute this expression for J(t) into the equation for φ̇ and
find

φ(t) = φ(0) + ω(I∗)t+

∫ t

0
hII(I

∗)J(s) +R3J(J(s))ds+

+ ε

∫ t

0
fRJ (J(0), φ(0) + [hII(I

∗)J(0) +R3J(J(0))] s)) ds+O(ε2)

(12)

Remark 2.8. It is important to stress that in the above expressions for
J(t) and φ(t) both the omitted terms and all their derivatives are O(ε2).

Remark 2.9. We also have to point out that we are assuming that the time
t remains in the bounded interval [0, T ]. For any given T , the O(ε2) terms
can be chosen uniformly, but these choices will have to change if we change
T . A more precise notation for the errors here would have been O(Tε2).
Similar remarks will be valid for subsequent estimates that use this one and
involve integrations with respect to time.

Now consider the map that sends

T :

(
J

φ

)
→
(
J(T )

φ(T )

)

where T is the period of the periodic orbit constructed in Proposition 2.7.
We know that any point on this orbit is a fixed point for T . We now compute
the derivative of T at this fixed point, (J ∗, φ∗). We remark that |J∗| ≈ O(ε).

Then

∂J(T )

∂J
= 1− ε

∫ T

0
fRφJ(J, {φ∗ + [hII(I

∗)J +R3J(J
∗)]s})ds

− ε

∫ T

0
fRφφ(J, {φ∗ + [hII(I

∗)J +R3J(J
∗)]s})[hII(I∗) +R3JJ(J)]sds

+O(ε2)

= 1− ε

∫ T

0

{
fRφJ(J, φ) + fRφφ(J, φ)hII(I

∗)s
}
ds+O(ε2).

(13)
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so that

∂J(T )

∂J

∣∣∣∣
J∗,φ∗

= 1− εTfRφJ(J
∗, φ∗) + ε

T 2

2
fRφφ(J

∗, φ∗)hII(I
∗) +O(ε2)

= 1 + εA+O(ε2).

(14)

By very similar computations, whose details we omit, we find that:

(15) D(J∗,φ∗)T =

(
1 + εA −εTfRφφ(J∗, φ∗)

ThII(I
∗) + εB 1 + εC

)
+O(ε2).

where

C = TfRJφ(J
∗, φ∗) +

T 2

2
hII(I

∗)fRφφ(J
∗, φ∗)

and

B =
T 2

2
hII(I

∗)fRφJ(J
∗, φ∗) +

T 3

6
hII(I

∗)fRφφ(J
∗, φ∗)hII(I

∗)

+ TfRJJ +
T 2

2
fRJφhII(I

∗).

If λ1, . . . , λ2N are the eigenvalues of D(J∗,φ∗)T , it is clear that λj = 1+µj,
where µ1, . . . , µ2N are the eigenvalues of

U =

(
εA −εTfRφφ(J∗, φ∗)

ThII(I
∗) + εB εC

)
+O(ε2).

Furthermore, µ2
1, . . . , µ

2
2N are of the form µ2

j = εν2
j where ν2

1 , . . . , ν
2
2N are

the eigenvalues of

V 2 = (1/ε)U 2 =

( −T 2fRφφ(J
∗, φ∗)hII(I

∗) 0

ThII(I
∗)A+ TChII(I

∗) −T 2hII(I
∗)fRφφ(J

∗, φ∗)

)
+O(ε).

Ignoring the O(ε) correction terms, and noting that the spectrum of
fRφφ(J

∗, φ∗)hII(I
∗) is the same as that of hII(I

∗)fRφφ(J
∗, φ∗) (Notice that

fRφφ(J
∗, φ∗)hII(I

∗) =
(
hII(I

∗)fRφφ(J
∗, φ∗)

)T
), we see that, if ε = 0, ν2

1 =

ν2
N+1, . . . , ν

2
N = ν2

2N , with ν
2
1 , . . . , ν

2
N the eigenvalues of−T 2fRφφ(J

∗, φ∗)hII(I
∗),

which we denote as κ1, . . . , κN . By assumption exactly one of these eigen-
values is zero. For the sake of notation, choose it to be κN . The eigenvalues
of V 2 will be algebraic functions of ε, so for ε small we have

ν2
1 = κ1 +O(εα), . . . , ν2

2N = κN +O(εα),

with α > 0.
Working our way back to the eigenvalues of D(J∗,φ∗)T we see that

λj = 1 +
√
εκj +O(ε1+α)

λj+N = 1−
√
εκj +O(ε1+α) j = 1, . . . , N.
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Note that λN = λ2N = 1, but but all other eigenvalues must be different
from 1 by an amount of O(ε1/2).

We would now like to apply the Implicit Function Theorem to the map
T in order to prove that the transformed hamiltonian HR, (of (9)) has a
periodic orbit.

Define Hµ = HN +µ(HR−HN ). Let Tµ be the time T return map of Hµ.
Then T0 has a fixed point, but the presence of the eigenvalues λN = λN+1 =
1 in the spectrum of DT0 prevents us from applying the ordinary implicit
function theorem. Moreover, since we are making perturbation theory from
a degenerate situation where the Implicit Function Theorem indeed does not
apply, we will have to be quite careful with the set up and the dependence
on ε of all the relevant parameters.

It is easy to modify the Implicit Function Theorem along the lines of
Theorem 5.6.6 of [AM78] (see also [Dui84] and [Hal80]) to eliminate this
somewhat artificial problem. (Artificial, since one of the eigenvalues with
modulus 1 results from motion along the periodic orbit and can be removed
by taking a section transverse to the flow, while the other results from en-
ergy conservation.) Because one must keep careful control of the various
constants in the problem the statement and proof of our theorem is some-
what more involved than that in [AM78] but we follow the notation of that
reference.

Let (J∗, φ∗) be points on the periodic orbit of HN . Locally in a neighbor-
hood of (J∗, φ∗) we can regard V × TN as R2N ≡ RN ×RN . Without loss
of generality, we may assume that (J ∗, φ∗) is at the origin of our coordinate
system.

We now choose an orthonormal basis {e1, . . . , eN} for RN with e1 = ω(I∗)
and introduce new coordinates x in a neighborhood of (J ∗, φ∗). Let x be
coordinates with respect to the basis for R2N ≡ RN ×RN in which we take
{e1, . . . , eN} as a basis for each factor of RN .

Because energy is conserved, we will work in energy surfaces Σ(E,µ) =
H−1
µ (E). For ε sufficiently small, (depending only on ω(I ∗)), Σ(E,µ) will

be a smooth submanifold for all µ ∈ [0, 1], and E sufficiently close to E0 ≡
h(I∗). Furthermore, since the gradient of HN is parallel to (ω(I∗), 0) (here,
0 is an N -vector) when ε = 0, Σ(E,µ) will be a graph of a function of
(x2,x3, . . . ,x2N ) for ε sufficiently small, (where “sufficiently small” again
depends only on ω(I∗)). Denote this function by Φ(x2,x3, . . . ,x2N , E, µ).

Let Xµ be the vector field and T t
µ the flow associated with the hamiltonian

Hµ. Then the periodic orbits of T t
µ are zeros of

(16) Θ(x, t, µ) = T t
µ(x)− x

If we define ΠE to be the projection of x, onto its last 2N − 1 components,
then since T t

µ leaves Σ(E,µ) invariant, zeros of (16) are equivalent to zeros
of

Ψ(x2,x3, . . . ,x2N , t, E, µ) = ΠE(Θ(Φ(x2,x3, . . . ,x2N , E, µ), t, µ)).
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We now construct a Poincaré map for our system by noting that for ε = 0,
the vector field for our system is X0 = (0, ω(I∗)), so for ε sufficiently small,
the hyperplane xN+1 = 0 will remain transverse to the flow. With this in
mind, we define, y = (x2, . . . ,xN ,xN+2, . . . ,x2N ). Let ΠY be the projection
of (x2,x3, . . . ,x2N ) onto y. For ε sufficiently small, the flow T t

µ will map

B(r, 0) → B(2r, 0), for all µ ∈ [0, 1]. Let T̃ (y, µ) be the return time. (In

particular, T̃ (0, 0) = T .) We then define the Poincaré map by

P (y, E, µ) = ΠYΨ(y, T̃ (y, µ), µ).

By the usual smooth dependence on initial conditions for differential equa-
tions, provided that HR,HN ∈ C3 – which follows from h, f ∈ C5 we have
that P ∈ C2 and the second derivative is uniformly bounded in a neighbor-
hood of the line µ ∈ [0, 1]. If y0 is the zero of P (y0, E, µ = 0) corresponding
to the periodic orbit of HN , we will also have that ||P (y0, E, 1)|| ≤ O(ε2)
because the difference between the vector fields corresponding to HR and
HN is O(ε2) and we are only considering a finite interval of time.

Now, we would like to apply some version of the implicit function theorem
to show that we can obtain solutions of P (y, E, µ) = 0 or equivalently of
−P (y, E, µ) + y = y. As we will see, the standard version does not apply
so that we will need to prove a version specific to our case that will use not
only the sizes of the derivatives involved but also the specific form of the
equations we computed before.

Next note that the computations leading up to (15) imply that

(17) DyP (y0, E0, 0) =

(
0 0
A 0

)
+ ε

(
α β
γ δ

)
+ ε2Rε

where A, α, β, γ and δ are constant matrices, Rε is a continuous matrix
valued function, and A and β are invertible. The important observation
here is that β is invertible. This follows from the fact that fRφ,φ(J

∗, φ∗) has

a single eigenvalue equal to zero whose eigenvector is exactly ω(I ∗), and the
coordinates used for the Poincaré map were chosen to exclude this direction.

Our first task is to obtain estimates on ||DyP (y0, E0, 0)
−1||. It is very

tempting to try to derive estimates for this matrix just from the eigenvalues
of DyP (y0, E0, 0). which are easily seen to be O(

√
ε). Unfortunately, in our

situation, the matrix is not selfadjoint and we are starting from a degenerate
situation so that the separation between eigenspaces could be very small,
making the estimates of the inverse much worse that those of the eigenvalues.
A model for the situation is the matrix

Mε =

(
0 ε
1 0

)

whose eigenvalues are O(ε1/2) but whose inverse has norm O(ε−1).
Unfortunately, such estimates on the size of the derivatives are not enough

to conclude that the assumptions of the implicit function theorem are verified
for ε small enough. The one dimensional example: Pε(x) = (x − ε)2 + ε4
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verifies smallness assumptions on Pε(0) and DPε(0)
−1 similar to those of P

in our case, but clearly, it has no zero. So it is clear that we will have to use
the structure of the derivative we just computed.

Proposition 2.10. Let M(ε) be a matrix valued function from [−1, 1] to
Mn×n

(18) M(ε) ≡
(
0 0
A 0

)
+ ε

(
α β
γ δ

)
+ ε2Rε

where A, α, β, γ and δ are constant matrices and Rε is a continuous matrix
valued function. Assume that A and β are invertible. Then, for |ε| small
enough, M qi(ε) defined by

(19) M qi(ε) = ε−1

(
0 0
β−1 0

)
+

(
−A−1δβ−1 A−1

0 −β−1αA−1

)

is invertible and satisfies

||M(ε)M qi(ε)− Id|| ≤ K|ε|
||M qi(ε)M(ε)− Id|| ≤ K|ε| .

(20)

(Here, qi stands for quasi-inverse.) Moreover, suppose ||A−A0|| ≤ ρ, ||α−
α0|| ≤ ρ, ||β − β0|| ≤ ρ, ||γ − γ0|| ≤ ρ and ||δ − δ0|| ≤ ρ with ρ sufficiently
small (the smallness conditions depend only on A and β and are independent

of ε). Then, if M qi
0 (ε) is defined by substituting for each of the components

of M qi the corresponding matrix with subscript zero, we have

(21) ||M qi
0 (ε)M(ε)− Id|| < K1ρ+K2ε

Proof. The proof of the bounds is just a simple computation. Once we have
the bounds, we observe that the imply that MM qi and M qiM are invertible
for |ε| small, since then, they are perturbations of the identity. 2

The previous inequalities show that M qi(ε) is an approximate inverse for
M(ε) in the sense that it produces residuals up to order ε. It is possible
to show that a true inverse exists, but it could differ from M qi(ε) by O(ε0)
because the corrections can be introduced as multiplicative factors of the
form Id+O(ε) which, however, has to be multiplied by O(ε−1).

The crucial observation is (21). We will need that the derivatives we
have to control have the form of M . Clearly (21) is not true for general
perturbations of size ρ.

We now want to consider the existence of solutions of P (y, E, µ) = 0 .
Proceeding as in Newton’s method, we define

(22) N(y,E, µ) ≡ − (DyP (y0, E, µ))
qi P (y, E, µ) + y .

Since, by assumption DyP (y0, E, µ)
qi is invertible, the fixed points of N will

give zeros of P . Clearly one has:

DyN(y,E, µ) = − (DyP (y0, E, µ))
qiDyP (y, E, µ) + Id
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Furthermore we have already observed that DyP (y, E, µ) can be written
in the form M(ε) considered before, with A, α, β, γ, δ being a function
of y,E,µ, and A and β invertible. (We computed the first order in ε quite
explicitly ).

Since A and β depend differentiably on the point y, it is clear that they
will be invertible for all y,E,µ in a neighborhood of the fixed point. More
precisely, in a neighborhood of radius C1|ε|0.9 (C1 will be chosen later)
around y0 – the point which is a periodic orbit of HN we have:

||DyP (y, E, µ) −DyP (y0, E, µ)|| ≤ K1C1|ε|0.9

We take the convention that K’s will denote constants that depend on the
system we are considering but which can be chosen uniformly in ε small
enough. This bound is obvious if we realize that the second derivatives of
P can be bounded uniformly for ε small enough.

Applying (21) and (20) we get:

(23) ||DyN(y, E, µ)|| ≤ K2K1C1|ε|0.9 +K3|ε|
Since ||P (y0, E0, µ)|| ≤ K4ε

2 we also have

||N(y0, E, µ)|| < K5|ε|
We can see that, by choosing C1 and then choosing |ε| small enough, we

can ensure that the neighborhood of radius C1|ε|0.9 around y0 gets mapped
into itself by N and that N is a contraction there.

Remark 2.11. Notice that to obtain the estimate in (23) we used (21)
essentially, and that equation depends heavily on the specific form of the
derivative.

Since N has a fixed point, the Poincaré mapping has a zero by (22), so
we have proved:

Theorem 2.12. For ε sufficiently small, µ ∈ [0, 1], and E such that |E −
E0| ≤ O(ε2), then there exists a smooth function y∗ = y∗(µ,E), such that
P (y∗(µ,E), E, µ) = 0. In particular, for µ = 1, this gives us a periodic orbit
of the hamiltonian HR in (9).

Proof. Now, we finish the proof of Theorem 2.1. One has many periodic
solutions for every value of µ corresponding to different values of the energy,
E. To be definite we will choose the solution with E = E0. Note that with
this choice, it is easy to see from the implicit function theorem, and the
smooth dependence of solutions of differential equations on parameters in the
vector field that the period, T (µ), of the periodic orbit of Xµ satisfies |T (µ)−
T | ≤ O(ε3/2). If we again denote the eigenvalues of T 2fRφφ(0, φ

∗)hII by

κ1, . . . , κN , we find (not surprisingly) that λ̃j , the eigenvalues of the Poincaré
mapping evaluated on the periodic orbit constructed in Theorem2.12, are
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given by

λ̃j = 1 +
√
εκj +O(ε1+α)

λ̃j+N = 1−
√
εκj +O(ε1+α) j = 1, . . . , N.

(24)

(This calculation proceeds just as before, with the additional fact that

|T (µ) − T | ≤ O(ε3/2). We also recall that α is some positive constant.)

We see that, when κjε is positive, then, λ̃j, λ̃N+j are stable and unstable
eigenvalues respectively.

We claim that, under the assumption that all the negative κj ’s are differ-

ent, the corresponding λ̃j , λ̃N+j have modulus one for ε positive. In effect,

for a symplectic transformation, if λ̃ is an eigenvalue, so are 1/λ̃, λ̃∗. If

λ̃∗ 6= 1/λ̃, we would have two eigenvalues of the linearization which agree
up to order ε2, which contradicts the assumption that all the positive eigen-
values of hII(I

∗)ΨR
φφ(J(ε), φ(J(ε)))) are different for ε small enough. The

same argument can be used to show that, if all positive κj are different, the

corresponding λ̃j, λ̃N+j have modulus one for ε negative and small.
If some of the κj have a non-zero imaginary part, independently of the sign

of ε, neither of the two determinations of
√
εκj is real or purely imaginary.

Then, one of λ̃j , λ̃N+j will be a stable eigenvalue and the other will be
unstable.

This ends the proof of Theorem 2.1. 2

Remark 2.13. The problem of computing an expansion in ε of a periodic
orbit of (1) and its Lyapounov exponents is considered in [Poi99] chapters

74, 79. There, Poincaré shows it is possible to match powers of ε1/2 to get
a consistent formal expansion. The results of this section show that indeed
the orbits can be continued – something that a formal expansion does not
establish.

Moreover, our methods can be used to show that the expansions of Poincaré
are asymptotic. The idea is that if we substitute the orbit predicted by
the asymptotic expansion into the equation (22), we can compute that the
remainder is of the order predicted by the next term in the asymptotic ex-
pansion while the contraction is uniform. Thus, there is a true orbit whose
distance from the one predicted by the asymptotic expansion is of the order
of the remainder in the expansion.

3. Analysis on the Center Manifold

3.1. Reduction to the center manifold. We recall the center manifold
theorem.

Theorem 3.1. Let f be a Cr, r = 2, 3, . . . mapping of RN leaving the
origin fixed. Assume that Df(0) has eigenvalues of modulus 1 and let Πc

be the invariant subspace associated to these eigenvalues. There exists a C r
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manifold W c, tangent to Πc at the origin, and invariant under f . Moreover
if fµ is a C l family of Cr mappings, Dfµ(0) = Df0(0), then the center

manifold for each fµ can be chosen to be a C l family of Cr manifolds.

Remark 3.2. We recall that, in distinction to the stable and unstable man-
ifolds, the center manifolds are not unique because there are mappings with
infinitely many invariant center manifolds.

The C∞ analogue of Theorem 3.1 is also false in a very strong sense. There
are C∞ mappings which have infinitely many finitely differentiable invari-
ant manifolds, but none of them is C∞. In certain cases, it is possible to
find the Taylor expansion of the center manifold by matching powers. This
shows that, for a class of mappings analytic center manifolds are unique.
The same argument performed in a quantitative way can be used to show
that there exist analytic mappings without analytic center manifolds. One
such example, due to Lanford, can be found in [MM76] p. 44. In some
cases [Pös86] contains a proof of existence of analytic center manifolds. The
results of [Pös86] however, do not apply to real valued, let alone symplec-
tic, mappings since they include non-resonance assumptions that are never
verified by real valued mappings.

The existence of smooth families is important for us since it will allow
smooth perturbations. Of course, given the non-uniqueness of the center
manifolds for each value of the parameters, one could well choose a discon-
tinuous family.

Remark 3.3. In this section, we will produce invariant objects in any of
the invariant manifold. Since these invariant objects are locally unique, it
will follow that these whiskered tori lie in the intersection of all the possible
center manifolds

Proof. There are many standard proofs of the center manifold theorem.
One that produces dependence on parameters and that is well suited

for our purposes is to deduce the the center manifold theorem from the
“pseudostable manifold theorem”

A proof of the pseudostable manifold including dependence on parame-
ters and optimal regularity is obtained in [dlLW95]. Indeed, a preliminary
version of [dlLW95] was an appendix in the original version of this paper.

Theorem 3.4. Let f be a Cr, r = 2, 3, . . . mapping of RN leaving the
origin fixed and with ||f − Df(0)||Cr sufficiently small. Let α be a real
number bigger than 1. Assume that Df(0) has no eigenvalues of modulus in
the interval [α, αk], k < r and let Πα be the invariant subspace associated
to the eigenvalues of modulus less than α. Then there exists a C k manifold
Wα, tangent to Πα at the origin, and invariant under f . This manifold is
unique. Moreover if fµ is a C l family of Cr mappings, Dfµ(0) = Df0(0),

then the center manifold for each fµ can be chosen to be a C l family of Ck

manifolds.
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Using Theorem 3.4, we can prove Theorem 3.1 as follows: First, given
f , consider f̃(x) = Φ(x)Df(0)x + (1 − Φ(x))f(x), where Φ is C∞ function
taking the value 1 in a neighborhood of the origin and the value zero out-
side of another one. By choosing Φ appropriately, we can arrange that the
hypothesis about smallness of f −Df(0) in Theorem 3.4 is satisfied. If fµ
is a differentiable family of differentiable functions, one can choose a Φ that
works for all of them.

We now take α very close to 1 in such a way that αr is smaller than
the modulus of all the eigenvalues of Df(0) of modulus bigger than 1 and

applying Theorem 3.4 we can conclude that there is a W α manifold for f̃ .
Now, we can repeat the analysis for f̃−1 restricted toW α. Again, we observe
that if we have a family, then f̃−1

µ restricted to W α
µ depends smoothly on

parameters after we take coordinates. The resulting manifold is the center
manifold claimed in Theorem 3.1.

The possibility of having several center manifolds comes from the fact
that different choices of cutoff functions could lead to different α–manifolds.
2

It is clear that the hypotheses of Theorem 3.1 are verified for the return
mapping of the time T map of the orbit constructed in Theorem 2.1. So, we
will construct orbits in the center manifold using the theory of motion near
an elliptic fixed point.

Lemma 3.5. If the mapping f is symplectic, and satisfies the hypotheses of
Theorem 3.1 we can find a symplectic structure in W c which is preserved by
the restriction of f to W c.

Proof. Denote by i the immersion of W c into RN and by ω the symplectic
form in RN . Since i∗f∗ = f∗i∗ by the invariance of the manifold, i∗ω is
invariant under f and d(i∗ω) = i∗(dω) = 0. We also observe that i∗ω(0) is
non–degenerate because it agrees there with ω|Πc . By the implicit function
theorem, it is non-degenerate in a neighborhood of this point.

2

Lemma3.5 applies to the mapping T that we used in the previous sec-
tion because it is the restriction of a symplectic mapping to a symplectic
manifold. Denote the restriction of T to the center manifold by T c.

Remark 3.6. The importance of this lemma is that there are many methods
to analyze the behavior of a symplectic mapping in a neighborhood of an
elliptic periodic point. For example, one can produce periodic orbits in any
neighborhood of the origin [BL33, Wei73, Mos76, Mos77]. There are also
variational methods to produce quasiperiodic orbits when the manifold is of
dimension two. (These were originally worked out in [Mat82] for mappings
of the cylinder, but there is an adaptation to neighborhoods of elliptic fixed
points in [Che85], which also contains a very nice exposition of many related
results.) Other related methods to produce quasiperiodic minimal orbits
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in a neighborhood of elliptic points in higher dimensions can be found in
[BK87, Kat92]. (The adaptation requires non–resonance assumptions on the
eigenvalues along the neutral direction.) In two dimensions, it is known that,
generically, there are many homoclinic points in any neighborhood of an
elliptic point [Zeh73]. Some other properties that are true for generic systems
are discussed in [New77, Tak70], The task of adapting these theorems to the
situation described in Theorem 2.1 is rather straightforward and we leave it
to the reader.

Remark 3.7. Since there are many results about generic properties of map-
pings near elliptic fixed points, it is worthwhile pointing out that there is
a machinery to transform statements of genericity for germs of diffeomor-
phisms in a neighborhood of a fixed point into genericity statements for
Hamiltonian vector fields. As we mentioned, the mapping that to the pair
(h, f) associates the time T map is differentiable. (Recall that h and f are
respectively the integrable piece and perturbation in our hamiltonian func-
tion.) Furthermore the map that associates to a mapping an invariant center
manifold can be chosen to be differentiable. Therefore, the map that sends
a hamiltonian to the germ of the mapping in the center manifold can be
chosen to be differentiable. It can also be shown that this mapping is onto
([Mos86, Dou82]). A simple application of point set topology will show that
residual sets in the space of germs, correspond to residual sets in an open
set of hamiltonians and perturbations. This construction will be useful in
following sections to conclude that certain nondegeneracy conditions which
we will need hold in open and dense sets of flows. It will suffice to show that
they hold in open and dense sets of maps.

As we showed in section 2, the dimension of the center manifold of the
fixed point of the Poincaré mapping depends on the number of positive,
negative, and complex eigenvalues, as well as whether or not ε is positive or
negative. In order not to have to keep track of these various possibility, we
will throughout this section use 2M to denote the dimension of the center-
manifold, independently of which case we are in.

When restricted to the center manifold of the periodic orbit, we can take
a return map to a symplectic manifold. The periodic orbit corresponds to
an elliptic fixed point.

Applying the standard KAM theorem on existence of quasi-periodic orbits
around a fixed point, we obtain:

Theorem 3.8. Denote by 2M the dimension of the center manifold.
Assume that

(i) The negative eigenvalues κ1 . . . κN−(k+1) of the matrix considered in
Theorem 2.1 satisfy

(25)

N−(k+1)∑

i=1

κiνi 6= 0 whenever 0 <

N−(k+1)∑

i=1

|νi| ≤ `.
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We assume that ` ≥ 4.
(ii) The Birkhoff Normal form up to order 4 has full rank derivatives.
(iii) h, f are differentiable enough, depending just on M .

Then, for ε small enough and positive, there are invariant tori arbitrarily
close to the orbit constructed in Theorem 2.1. In each of the tori, the motion
is smoothly conjugate to an irrational rotation. The invariant tori in a
neighborhood of size ρ in the center manifold cover the whole set except a

measure O(ρ
1
2

(`−3)ρ2M )

Condition (ii) above just amounts to some algebraic expression of the
derivatives up to order 4 being different from zero. Hence, it holds for very
generic Hamiltonians.

Remark 3.9. An analogous result holds for ε small and negative, provided
that the positive eigenvalues of the matrix considered in Theorem 2.1 satisfy
relations analogous to (25).

Remark 3.10. To make more precise the conditions on the derivatives
of the Hamiltonian required in hypothesis (ii) of Theorem 3.8, note that
because of hypothesis (i) we can construct the Birkhoff normal form for
the mapping in a neighborhood of the origin and it will have the form, in
symplectic polar coordinates:

r′j = rj +O(r2)

φ′j = φj + (

N−(k+1)∑

`=1

Bj`r`) +O(r2) .

The “twist matrix”, B, is given (via the normal form construction) by a
complicated but explicit algebraic expressions in terms of the derivatives
of f and h of order 4 or less. The requirement in hypothesis (ii) of the
theorem is simply that this matrix be non-singular. Note that this will
clearly be the case for an open and dense set of Hamiltonians. Furthermore,
given a particular Hamiltonian it is possible, at least in principle, to compute
B and determine whether or not (ii) is satisfied.

The result of Theorem 3.8 follows from standard arguments although we
are unaware of anyplace in the literature where it is written out in detail.
The paper [Pös82], however, does contain a complete proof of the analogue
of this result for perturbations of flows. The proof of [Pös82] can be adapted
without difficulty to the case where one has a periodic perturbation of the
flow (and hence to the case of mappings). The fact that the theorem for flows
can be adapted for periodic perturbations in a rather automatic fashion is
discussed in [Zeh76].

4. Hyperbolic Invariant Manifolds

In this section we prove the existence of contracting and expanding man-
ifolds – the whiskers – for the invariant tori constructed in the previous
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sections. Actually, we will show the existence of stable and unstable man-
ifolds for all invariant sets in a neighborhood of the periodic orbits, not
just the invariant tori. In the case of invariant tori, we will show that the
whiskers depend differentiably on the point in the torus.

The invariant manifolds we construct are going to be perturbations of
those of the periodic orbit. The techniques we use will work for general
dynamical systems and we will not make any use of the hamiltonian struc-
ture in this section–except for the final theorem where we show that some
manifolds are Lagrangian.

The best known invariant manifold theorems are those for the so–called
“normally hyperbolic” systems of [HPS77]. This theory does not apply to
our situation because the tori we constructed in Theorem 3.8, have infini-
tesimal displacement vectors which do not grow under forward or backward
iteration and are not tangent to the manifold. Nevertheless, we will be
able to use the theory of “ρ-hyperbolic” sets which is developed in [HPS77]
chapter 5. Similar results are contained in [Fen72, Fen74]. The main dif-
ference is that the later references are concerned with invariant sets which
are manifolds, but make less restrictive assumptions in the uniformity of the
hyperbolic behavior.

The proof is divided into three parts. First, we make a perturbation
theory of the infinitesimal situation: using the hyperbolicity of the periodic
orbit, we conclude hyperbolicity of the invariant torus. Second–following
the references above–we transform the infinitesimal results into results that
hold under smallness assumptions: we can construct an invariant manifold
for each orbit. Then, those assumptions will have to be checked in the cases
that we are interested in. The results we obtain so far in this section are quite
general and apply to any invariant sets e.g. Aubry–Mather sets, invariant
circles with Liouville rotation number and any other invariant set in the
center manifold as discussed in the remarks after Theorem 3.8. Thirdly, we
will show that, for invariant tori with the motion on them conjugate to a
rotation we can construct invariant manifolds for the whole torus: in other
words, the stable manifolds we constructed for each of the orbits fit together
in a smooth manner. A very similar theory has been developed in [Zeh76]
Section 7. The main difference is that our theory is based on real variable
methods and optimized for finitely differentiable systems while the theory of
[Zeh76] is based on analyticity considerations and uses complex extensions.
We will perform a more detailed comparison in the remarks at the end of
the section.
Notation

In order to manipulate d–dimensional subbundles of the tangent bundle
of an n–dimensional manifold it is quite convenient to associate to each of
them a (n− d)–form in such a way that the kernel of this form is precisely
the subbundle. The advantage of working with forms is that the space of
all forms has much more structure – in particular it is a linear space and we
can use techniques based on partitions of unity.
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If S is a d–dimensional subbundle of TM andM is a Riemannian manifold
of dimension n, we can associate to S an (n− d)–form ΨS as follows:

Choose a coordinate patch in which S is trivial and in this coordinate
patch choose v1, v2, . . . , vn−d orthonormal vectors which are orthogonal to
S. Then, set ΨS = v1 ∧ v2 ∧ . . . ∧ vn−d. This form is uniquely determined
by S–up to a sign– in the coordinate patch since it is the only (n− d) form
of norm one that vanishes when contracted with vectors in S. Conversely, S
is characterized as the span of the vectors which, when contracted with ΨS,
give 0. Therefore, ΨS is a geometric object even if we used coordinates to
define it. By elementary perturbation theory for matrices, if two C k forms
are sufficiently Ck–close, we can apply the range theorem and conclude that
the associated subbundles are also Ck–close.

By the uniqueness in each coordinate patch, this form has to agree in the
overlap of two different patches–up to a sign. For a fixed set of coordinate
patches, we can– if necessary by passing to a double cover, obtain a globally
defined form representing S. Passing to a double cover will not affect any
of the following considerations, so we will deal with subbundles by studying
their associated forms.

We will say that a subbundle S is Ck if its associated form is, and we will
refer to the Ck norm of the ΨS as the Ck norm of S. Notice that a Ck norm
can only be defined when we fix a set of coordinate patches. It is clear that all
such norms will be equivalent. Even if the norms of the operators we consider
are affected and we need some of them to be contractions, the arguments
do not require modification, because they would remain contractions if we
impose slightly stronger smallness conditions.

Since two forms differing in a scalar multiple have the same null space, it is
convenient for us to take the convention of considering only forms normalized
to have norm 1. It is possible to define a push forward in the space of
normalized forms by just using the usual push forward for the form and,
then, dividing by the norm. This operator is not linear, since the space of
normalized forms is not linear.

Lemma 4.1. Let Ω be a compact set and let S be a continuous subbundle
of TΩ. Let V be a sufficiently small neighborhood of Ω. (How small depends
only on Ω). Then, there is a continuous subbundle S∗ of TV which extends
S. Moreover, if S is Ck, k = 1, . . . ,∞ in the sense of Whitney, this
extension can be taken to be Ck, with a Ck norm as close as we wish to that
of S.

Proof. Let ΨS be a form on Ω defining S. Let V1, . . . , VN be coordinate
patches covering Ω and on which S is trivial.

For a fixed i we denote by vi1, . . . , v
i
n vector fields that, at each point x in

Vi span Tx – the tangent space at x.
The functions φj1,...,jn−d

(x) = ΨS(x)(v
i
j1
(x), . . . , vijn−d

(x)) are defined in

Ω ∩ Vi. By the Borel–Whitney extension theorem (see e.g the appendix in



WHISKERED TORI 27

[AR67] ), they can be extended to functions φ̃i defined on Vi and, hence,
we can define a form Ψi

S on Vi by setting Ψi
S(x)(v

i
j1
(x), . . . , vijn−d

(x)) =

φij1,...,jn−d
(x) and using the linearity to define the result on other vector

fields.
If Θ1, . . . ,ΘN are C∞ functions so that (Θ1)

n−d+1, . . . , (ΘN )n−d+1 con-
stitute a partition of unity subordinate to V1, . . . , VN , then the (n−d)–form
Ψ̃S defined by :

Ψ̃S(v1, . . . , vn−d) =
∑

i

ΘiΨ
i
S(Θiv1, . . . ,Θivn−d)

will agree with ΨS on Ω and be as smooth on Vi as ΨS is on Ω
By reading carefully the proof of the Borel–Whitney theorem, it is also

possible to check that the Ck norm of the functions φ̃i can be made as close
to the Ck norm of the restriction, φi as desired. This translates immediately
into the possibility of making the Ck norm of the extended subbundle S∗ as
close as desired to the Ck norm of the subbundle S. 2

Lemma 4.2. Let Ω be a compact invariant set for the flow Φt generated by
the C2 vector field X. Assume moreover that there is a splitting invariant
under Φt∗:

TΩ = S ⊕ U ⊕N

such that:

||DΦt(x)|S || ≤ Ce−λt , t ≥ 0 , x ∈ Ω

||DΦt(x)|U || ≤ Ceλt , t ≤ 0 , x ∈ Ω

||DΦt(x)|N || ≤ Ceµ|t| , t ∈ R , x ∈ Ω

for some C > 0, λ > µ > 0. Let Ω′ be another invariant set for X with the
property that, for every point x′ ∈ Ω′ we can find another point x ∈ Ω with
d(x, x′) ≤ ε for some sufficiently small ε > 0. Then, we can find another
continuous splitting :

(26) TΩ′ = S′ ⊕ U ′ ⊕N ′

such that:

||DΦt(x)|S′ || ≤ C ′e−λ
′t , t ≥ 0 , x ∈ Ω′

||DΦt(x)|U ′ || ≤ C ′eλ
′t , t ≤ 0 , x ∈ Ω′

||DΦt(x)|N ′ || ≤ C ′eµ
′|t| , t ∈ R , x ∈ Ω′

(27)

for some C ′ > 0, λ′ > µ′ ≥ 0.

Proof.
Let V be an open neighborhood of Ω.
Fix T in such a way that Ce−λTCeµT is sufficiently small.
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By Lemma 4.1, we can extend the subbundles S,U,N to V, having, thus
a new splitting of TV. The new splitting will be invariant under Φt only on
Ω, but we will, nevertheless have :

|| (ΨS − ΦT ∗ΨS) |Ω′ ||C0 ≤ ε′

where ΨS is the normalized form defining S on Ω and ε′ can be made as
small as we wish by making ε small enough.

The reason is that on Ω we have that

ΨS − ΦT ∗ΨS = 0

and, under the assumptions of the lemma, the left hand side is differentiable.
If ΦT is C2, then the push–forward on normalized (n−d)–forms equipped

with the supremum norm is C1. Given the inequalities that define T and the
invariance of S, we see that, on Ω, ΦT is a contraction. By requiring that ε
is small enough – depending only on Ω and Φt, we can ensure that ΦT ∗ is
a contraction acting on the space of (n− d) forms on TΩ′. Notice that the
same argument establishes that Φt is a contraction for all t big enough. We
can assume that T is such that Φt is a contraction for all t ≥ T .

Since Ω′ is invariant, we can iterate ΦT and Ψ̃S
T = limn→∞ΦnT ∗ΨS will

be the unique fixed point. Moreover, we will have ||(ΨS − Ψ̃S
T )|Ω′ ||C0 ≤ 2ε′.

We want to show that Ψ̃S
T – which in principle is invariant only under ΦT

is actually invariant under all Φt, t ∈ R. This will complete the proof of the
theorem with respect to S, since the inequalities claimed in Lemma 4.2 are
obvious from the ones we have studied so far.

To show that ΨS
T is invariant under Φt for all t ∈ R it suffices to show

that this Ψ̃S
T is invariant under Φt, for all t ∈ [T, T ′], T ′ > T because,

then, we can use the group property of the evolution (Φt+t′ = Φt ◦ Φt′) to

conclude that Ψ̃S
T is invariant under all Φt. If t0 is slightly bigger than T ,

the same argument we have used to produce the fixed point applies. Φt0∗

is a contraction and has a fixed point Ψ̃S
t0 . If T = (n/m)t0, n,m ∈ Z, we

have that that Ψ̃S
T and Ψ̃S

t0 are both fixed points of ΦmT ∗ = Φnt0∗, which
is a contraction, so that both agree. Moreover, Φt is continuous in t. The
fixed points Ψt depend continuously on t, but we have shown that they
are constant on the rationals. This finishes the proof of the claim for the
subbundle S.

The same proof applies for the subbundle U just changing the direction
of time.

The proof for N is obtained along the same lines. We just have to observe
that the contraction in the space of normalized forms only depends on the “
gap ” between the rates of growth for vectors in the different splittings. We
could then consider repeating the same proof for the splitting TV = S ⊕ Ũ
; Ũ = U ⊕N and TV = S̃ ⊕ U ; S̃ = S ⊕N . Then, we can set N = Ũ ∩ S̃.

2
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Lemma 4.3. If S,U ,N are continuous bundles satisfying (26), (27), and
β > 0 is such that supx∈M ||DΦt(x)|| < Ceβt ∀t ∈ R then S, U , S ⊕ N ,
U ⊕N , N are Cα1 , α1 = (λ− µ)/β.

Proof.
This theorem can be reduced to Theorem 6.1 of [HP70]. Another very

similar proof can be found in [Fen77] Theorem 2, which is stated only for in-
variant sets that are smooth manifolds but the proof carries over to compact
invariant sets.

We recall briefly the argument omitting some details on the precise defi-
nition of Hölder norms.

In a C0 neighborhood of ΨS, Φt will be a contraction by a factor Ce−(λ−µ)t.
Working in a set of coordinates, we can define a Hölder norm and obtain

that for Ψ in this neighborhood,

||Φt∗Ψ||Cα ≡ sup
x,y
||(Φt∗Ψ)(x)− (Φt∗Ψ)(y)||/d(x, y)α <

Ce(λ−µ)t sup
x,y
||Ψ(x)−Ψ(y)||/d(x, y)α sup

x,y

(
d(x, y)

d(Φt(x),Φt(y))

)α
.

2

Lemma 4.4. Let Ω be a closed invariant set under the C r flow Φt. Assume
that, we can decompose TΩ into bundles S,U ,N satisfying the hypothesis
of (27). Then, for each point in Ω, we can find C r manifolds W S

x , W
U
x

characterized by:

y ∈W S
x (resp.WU

x ) ⇐⇒
d(Φt(y),Φt(x)) < Ce−λtd(x, y), t ≥ 0 (resp. t ≤ 0).

(28)

Moreover, the r–jets of these manifolds depend in a Hölder fashion on the
point. The tangent space of W S

x at x is Sx (analogously for U). The set of
these manifolds extends to a foliation in a neighborhood of Ω.

Remark 4.5. Notice that if Ω is a compact invariant set contained in a
neighborhood V , then, W U

Ω ∩ V will also be an invariant set. If we have
a set Ω of small enough diameter all of whose points have a splitting then
using the characterization in (28):

y ∈W S
x ⇐⇒ x ∈W S

y

so that the set of W S
x extends to a foliation.

Proof. Except for the claim of Hölder continuity of the jets, this is a par-
ticular case of theorem (5.5) of [HPS77]. It is also very similar to Theorem
1 of [Fen77] except that [Fe3] does not assume that the hyperbolic behavior
is uniform but does assume that the invariant sets are smooth manifolds.

With small modifications, the methods of [HPS77, Fen77] would suffice
to prove Lemma 4.4. We do not present the details here, but rather, we will
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prove a stronger result for the case of most interest to us, namely when the
invariant set is a torus and the flow on it is a linear flow with an irrational
frequency vector. For this particular case, we will prove that the jets of W s

x ,
W u

x depend smoothly on the point x on the torus. 2

Notation. We will sometimes refer to W S
x as the the stable manifold

of x. This is an slight abuse of notation since there could be points not in
W S

x whose orbit is asymptotic to the orbit of x. Nevertheless, they have to
approach the orbit of xmuch slower that those inW S

x as the characterization
of W S

x shows. We will prefer to use the name whiskers.

Remark 4.6. It is possible to use the invariant bundles S⊕N , U ⊕N and
N to produce other invariant structures which are perturbations of them.
See Theorem 5.5 of [HPS77]. Nevertheless, the regularity theory of these
objects is more complicated than that of the objects obtained by perturbing
S or U . They can also fail to be foliations.

Putting together the results we have proved so far, we can obtain easily
the main result of this section:

Theorem 4.7. Let Hε be a hamiltonian as in (1). Let O be a periodic
orbit as in Theorem 2.1 existing for ε 6= 0. Let N a sufficiently small
neighborhood of O. Let Ω be an invariant set in W c

O ∩ N . Then, for each
point x ∈ Ω there are two smooth k–dimensional manifolds W S

x and WU
x

which are characterized by (28).

Remark 4.8. We could take Ω in the above theorem to be one of the
invariant tori produced in Theorem 3.8 but we could also take Ω to be
any invariant set contained in the neighborhood of the origin in the center
manifold e.g. Aubry–Mather sets, invariant tori with Liouville rotations,
periodic orbits, horseshoes, homoclinic tangles, or the union of several of
those.

Remark 4.9. The argument so far does not allow us to conclude that the
invariant whisker for the whole torus Ω , defined by W S

Ω ≡ ∪x∈ΩW
S
x , is

even a C1 manifold. It could, in principle, happen that even if the stable
manifolds for each point in the torus are C r they fit together in a fashion
which is only Hölder. This situation, could happen for a general system and
there are examples of this situation in [Fen74] section I.H. Nevertheless, for
the particular case of invariant tori, whose motion is differentiably conjugate
to a rotation such as those in Theorem 3.8, we will show that the union of
all the whiskers of points in Ω forms a smooth manifold. Notice that we do
not require that the rotation on the torus satisfies Diophantine properties.

What we will show is that the invariant bundle S is smooth when re-
stricted to Ω if the motion in Ω is smoothly equivalent to a rotation and
then prove a theorem that says that the foliation is almost as smooth as the
bundle. Although the later theorem is only proved in the context we need it
– this avoids to have to set up a complicated notation – it is a general theo-
rem and applies to dynamical systems leaving invariant a smooth manifold.
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An analytic version of these results can be found in [Zeh76] Section 7. We
will compare the two approaches in some remarks at the end of the section.

Lemma 4.10. Let Ω be a Cr invariant torus as in Theorem 3.8 sufficiently
close to the periodic orbit and such that the motion on it is conjugate by
a Cr change of variables to a linear rotation of angular frequency ω (not
necessarily Diophantine) and let S⊕N⊕U be a decomposition of the tangent
bundle to the ambient space as in (26). Then, S is C r.

Proof. We can perform a Cr change of coordinates (we do not require
that it is symplectic) in a neighborhood of the torus in such a way that the
equations of motion in the torus are motion at constant speed with frequency
ω.

It is well known that if x(t) is a solution of ẋ = X(x), the flow Φs will
act on tangent vectors based at x(t) by multiplying them by a matrix Mt(s)
obtained by solving the so called “equations of variation”

Ṁt(s) = DX(x(s))Mt(s)
Mt(t) = Id

(See e.g. [Hal80] p.95.)
In our case, the equation of variation becomes

(29) Ṁ ≡
k∑

i=1

ωi
∂M(x)

∂xi
= Γ(x)M(x)

and the bundle S can be identified with the vectors that decrease exponen-
tially fast.

Notice that by assuming that the torus is sufficiently close to the periodic
orbit, we can assume that Γ(x) is close to a constant matrix Γ̄. Furthermore,
by choosing an appropriate system of coordinates, we can assume that the
matrix Γ̄ is already in normal form. We will adopt the convention that the
first k coordinates in our space are close to the contracting eigenspace.

We claim that there exists a Cr matrix valued function Υ on the torus
such that it is Cr close to the identity and

(30) Υ̇Υ−1 +ΥΓΥ−1 =

(
Γ̃S 0

0 Γ̃U+N

)

with Γ̃S close to the contractive part and Γ̃U+N is close to the expansive
part of Γ.

If we set M̃ = ΥM , (29) becomes :

˙̃M =
(
Υ̇Υ−1 +ΥΓΥ−1

)
M̃

In this new equation, given that Υ satisfies (30), it is quite obvious that the
vectors which decrease exponentially fast are those that have the coordinates
corresponding to the last block equal to zero. The bundle S will be the range
under Υ−1 of a constant bundle and hence smooth.
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Remark 4.11. We emphasize that the matrix valued functions Υ, Γ̃S , Γ̃S+N

solving (30) are not unique. For example, if we multiply any solution Υ by
block diagonal matrices like those on the right hand side of (30), the result
will still be a solution. Therefore, the smallness and proximity statements
in the conclusions of the claim refer only to the specific solution that we will
construct.

The claim will be established by constructing an iterative procedure and
showing it is a contraction. We will use, roughly, a Newton method that,
assuming that the blocks off diagonal are small produces an Υ that kills
them off up to quadratic terms.

We start by discussing the “linear approximation” to equation (30) and
show that it has solutions satisfying suitable bounds. After that, we will
describe the iterative procedure that uses it.

The linear approximation will be derived by setting Υ = Id+Υ̂, Γ = Γ̄+Γ̂,
substituting in (30) and keeping only linear terms.

The linear approximation to the L . H . S . of (30) will be:

(31)
˙̂
Υ− Γ̄Υ + ΥΓ̄ .

We will determine Υ̂ in such a way that the off-diagonal blocks of this
expression are zero in the linear approximation. As we will see, this does
not determine Υ̂ completely. The only ambiguity, though, is related to the
fact that the diagonal terms are not determined. This causes no problem
because the result we want to establish does not make any claims about the
diagonal blocks except that they are C r and close to constant.

For simplicity we will only discuss the case when Γ̄ is a perturbation of
a diagonal matrix, which is true, for instance, if the real eigenvalues of the
Poincaré map we considered in Section 2 are all different. For the purposes
of this discussion, we can allow complex valued matrices. The case when Γ̄
contains Jordan blocks is notationally more complicated but not essentially
different. We will remark at the end on which modifications are necessary.

In the case that Γ̄ is diagonal, we have Γ = Diagonal(λ1, λ2, . . . , λn) + Γ̂
and equating to zero the off-diagonal elements in (31) we obtain:

(32)
˙̂
Υij + (λj − λi)Υ̂ij = −Γ̂ij

with i = 1, . . . , k and j = k + 1, . . . , n or j = 1, . . . , k and i = k + 1, . . . , n.
We will show that (32) admits solutions by showing that the related equa-

tion

(33) Υ̂ij(x) =

(
Υ̂ij(x− tω)−

∫ t

0
Γ̂ij(x+ (s− t)ω)e−(λi−λj)sds

)
e(λi−λj)t

can be solved for Υ̂ given Γ̂ and that the solutions of (33) are also solutions
of (32).

The heuristic motivation for considering (33) is that it is the equation that
one obtains by applying the formula for the solution of an inhomogeneous
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linear equation to (32). Therefore, if Υ̂ solves (32), then it solves (33) for

any value of t. Conversely, if Υ̂ solves (33) for all t, taking derivatives we
obtain that it also solves (32).

We will first show that (33) has a solution for some particular t and then
will show that the solution thus obtained, solves (32). For the moment, we
will take t = +1 when <(λi − λj) > 0 or t = −1 when <(λi − λj) < 0.
Notice that there are no cases with <(λj − λi) = 0 by the assumptions we
made on the spectrum of M and the definition of the splitting.

Since the only way that Υ̂ enters in the R.H.S of (33) is as a translated
version multiplied by a number smaller than one, it is clear that the R.H.S.
of (33) considered as a function of Υ̂ is a contraction when Υ̂ is given the Cr

norm. Applying the contraction mapping theorem, we obtain that (33) has

a Cr solution. Furthermore, the Cr norm of Υ̂ij is bounded by a constant

times the Cr norm of Γ̂.
We now have to show that this solution of (33) actually solves (32). Since

the R.H.S. of (33) depends on t, it could, in principle happen that the
solution we have produced for t± 1, fails to be a solution for all t. Once we
know that (32) is satisfied, we conclude that Υ̂ solves (33) for all t.

Since Υ̂ is Cr, we can apply to it the operator Dω ≡
∑

i ωi
∂
∂xi

. Using

(33) for a fixed t, we obtain
(34)

DωΥ̂ij(x) =

(
DωΥ̂ij(x− tω) +

∫ t

0
DωΓ̂ij(x+ (s− t)ω)e−(λi−λj)sds

)
e(λi−λj)t

We now observe that DωΓ̂ij(x+(s−t)ω) = ∂
∂s Γ̂ij(x+(s−t)ω). Substituting

this into (34) and integrating by parts, we obtain:

DωΥ̂ij(x) = e(λi−λj)tDωΥ̂ij(x− tω)− Γ̂ij(x) + Γ̂ij(x− tω)e(λi−λj)t

− (λi − λj)

∫ t

0
Γ̂ij(x+ (s− t)ω)e−(λi−λj)sdse(λi−λj)t

(35)

Using now the expression for the integral given by (33), we obtain that

the function R(x) ≡ DωΥ̂ij(x) + (λi − λj)Υ̂ij(x)− Γ̂ij(x) satisfies:

R(x) = e(λi−λj)tR(x− tω)

From that, we can see, e.g. taking Fourier coefficients and observing that
|e(λi−λj)t| 6= 1 that R(x) = 0. That is, Υ̂ satisfies (32).

Notice also that, as we pointed out, the C r norm of Υ̂ij is bounded by

a constant times the norm of Γ̂ij. Using (32), we obtain that so is the C r

norm of
˙̂
Υ.

This finishes the discussion of the first order equation.
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To study the full equation we observe that if we write Υ = Υ̃1Υ1, then
(30) becomes:

(36) Υ̇2Υ̃
−1
1 + Υ̃1

(
Υ1ΓΥ

−1
1 Υ̇1Υ1

)
Υ̃−1

1 =

(
Γ̃S 0

0 Γ̃U+N

)

Notice that if we choose Υ1 to be any matrix valued function we wish, we
can determine Υ̃1 by solving an equation of the same form of (30) but with Γ

replaced by Γ1 ≡ Υ1ΓΥ
−1
1 Υ̇1Υ1. If we choose Υ1 to be the solution of (32),

then Υ̃1 will satisfy an equation of the form (30) in which the off–diagonal
terms of Γ1 have a Cr norm which is of the order of the square of the C r

norm of those of Γ. We can then write Υ̃1 = Υ̃2Υ2 where Υ2 is determined
by solving the linearized equation. As before, Υ̃2 will satisfy an equation of
the form (30) but with Γ1 replaced by Γ2 whose off diagonal terms have Cr

norm of the order of the square of the C r norm of the off–diagonal terms of
Γ1.

The procedure can be iterated indefinitely and, provided that the original
non–diagonal terms were small enough, the off diagonal terms of Γn will
converge to zero quadratically. Using the bounds for ||Υ̂||Cr in terms of the
Cr norm of the off–diagonal terms of Γ obtained in the discussion of (32),
it is easy to show that Υ = limn→∞Υn · · ·Υ2Υ1 converges and solves (30).

2

Now we prove that the union of all the S manifolds for all the points in
the invariant torus form a smooth manifold. In order to avoid having to
introduce a complicated notation, we will prove only a version that applies
to our situation.

Theorem 4.12. Let Ω be a Cr d–dimensional torus contained in Rν, and
Φt be a Cr flow. Assume that the flow Φt leaves Ω invariant and that the
restriction of Φt to Ω is Cr conjugate to a rotation of angular frequency
ω. Assume that, in Ω, there is a decomposition TRν = S ⊕ N ⊕ U which
is invariant under Φt and which satisfies (26), (27) and that, moreover, S
is a Cr bundle. Then, the mapping that to each x ∈ Ω associates W S

x –
constructed in Lemma 4.4 – is Cr−2 when the space of curves is given the
the C1 topology. The set W S

Ω = ∪x∈ΩW
S
x is a Cr−3 manifold.

Remark 4.13. The regularity we have claimed in the theorem is not op-
timal. It will follow from the proof that we can give the space of curves
stronger topologies and still conclude that the mapping is differentiable. It
is also possible to get better regularity results by extending the techniques
we presented here. Since the main concern of this paper is to obtain the
geometric results on existence of invariant sets, we have relegated these
questions to remarks sketching the proofs or pointing to references in the
literature where the extra techniques are used.

Proof. The proof will be done in a specific system of coordinates to simplify
the calculations. It will be useful to take a system of coordinates with special
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properties. We will also adopt some notational conventions that will simplify
the exposition of the proof.

We can perform a Cr change of variables in a neighborhood of Ω that
allows us to identify this neighborhood with Td×Is×In+u, where I = [−1, 1]
and s,n,u are the dimensions of S,N ,U ). We can construct the change of
variables in such a way that:

(i) Ω is identified with the set of points of the form (φ, 0, 0). When there
is no danger of confusion we will talk of the point φ ∈ Ω.

(ii) Φt acting on Ω is given by φ 7→ φ+ωt. We will adopt the convention
that φ refers to variables in Td, σ will refer to variables in Is, τ will refer to
variables in In+u and γ will refer to variables in Td × In+u.

(iii) Φt can then be written as

(37) Φt(σ, γ) = (Asσ +Ns(σ, γ), Aγγ + (φ+ ωt, 0, 0) +Nγ(σ, γ)).

Where As,Aγ are linear operators acting respectively on S and N+U respec-
tively. Aγ may depend on σ but As is a constant matrix. We furthermore
have that Nγ

∣∣
Ω
= 0, Ns

∣∣
Ω
= 0, DNγ

∣∣
Ω
= 0, DNs

∣∣
Ω
= 0. (iv) By adjusting

the choice of scales, we can also assume that ||Ns||C1 , ||Nγ ||C1 are arbitrarily
small.

Once this system of coordinates is chosen, we will construct the stable
manifold going though φ as the graph of a function wφ. That is, as the set
of points of the form:

(38) (σ,wφ(σ))

for a suitably chosen function wφ : ntervals 7→ Td × Tn+u.
Proceeding formally, we will derive a functional equation for wφ. Then,

we will show that this equation has a solutions and that the graph of this
function indeed is invariant.

Applying (37) to a point in the graph of wφ we obtain:

Φt(σ,wφ(σ)) =
(
Asσ+Ns(σ,wφ(σ)), Aγwφ(σ)+(φ+ωt, 0, 0)+Nγ (σ,wφ(σ))

)
.

Since we want that Φt(W
S
φ ) ⊂W S

φ+ωt we should have:

wφ+ωt (Asσ +Ns (σ,wφ(σ))) = Aγwφ(σ) +Nγ(σ,wφ(σ))).

This can be conveniently written as:

wφ (σ, γ) = A−1
γ [wφ+ωt (Asσ +Ns (σ,wφ (σ)))−Nγ (σ,wφ (σ))](39)

Conversely, once we check that the domains make sense, by reading the
derivation above backwards, it is possible to show that if (39) is satisfied,
the set (38) satisfies the condition of invariance. Moreover, all sets which are
graphs which get mapped into each other are graphs of functions satisfying
(39). The condition that W S

φ passes though φ is equivalent to wφ(0) = 0.

We will show that there are solutions to (39) by considering it as a fixed
point problem. We will consider the right hand side of (39) as the definition
of an operator T acting on wφ and will show that T is a contraction in a
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carefully chosen space of functions. A more careful analysis of the operator
and the spaces will establish the regularity claimed in the lemma. Another
geometric argument – which is also an ingredient in the proof of the char-
acterization of the stable manifolds by rates of convergence of orbits that
we gave in Lemma 4.4 will allow us to conclude that the manifolds we con-
structed are the invariant manifolds of Lemma 4.4 we cannot assume that
||N ||Cr is small – the possibility of choosing such a system of coordinates
requires , in general, non–resonance conditions on the eigenvalues – we will
have to pay a lot of attention to the norms we choose in such a way as to
be able to use the advantages of the smooth norms.

Notice that T is – in some sense that will be made precise later – a
perturbation of T̃ [wφ](σ) ≡ A−1

γ wφ+ωt(Asσ). This operator is not a con-

traction in C0, but it is a contraction in a norm which is the supremum
of the derivative, because the derivative picks up an extra contractive fac-
tor As. Unfortunately, if we took the norm given by the supremum of the
derivative, one could only make sense of the smallness of the perturbation
by requiring C2 estimates since w appears among the arguments of w. A
possible compromise, between the desire of getting T̃ to be a contraction
and not using many derivatives is the following definition. This definition
appears in the context of analytic spaces in [Zeh76] (7.28). The justification
we use and some generalizations are discussed in [dlL97].

Definition 4.14.

(40) ||wφ||β ≡ sup
φ

sup
σ
||wφ(σ)||/||σ||

The following propositions make the previously outlined strategy precise.

Proposition 4.15. Provided that N ’s are C r and small enough in C1 it is
possible to find ε1, . . . , εr > 0 in such a way that

χε1,...,εr ={wφ : Td × Is 7→ Td × In+s s. t.

a) C0 in φ,Cr in s

b) wφ(0) = 0

c) sup
φ∈Td

sup
s∈Is

||Diwφ(s)|| < εi i = 1, . . . r}

satisfies T (χε1,...,εr) ⊂ χε1,...,εr .

Proof. It is easy to check that if wφ satisfies conditions a) and b), so will
T (wφ). If we take ` ( 1 ≤ ` ≤ r) derivatives with respect to σ in the
expression of T and apply the chain rule and the rule for derivatives of the
product as often as possible, we obtain a sum of terms one of which is

A−1
γ D`wφ+ωt (Asσ +Ns (σ,wφ (σ)))A

⊗`
s .

All the other terms in the sum are the product of derivatives of N of order
between 1 and ` and derivatives of w of order between 1 and `. The impor-
tant fact to notice is, that every term containing an ε`, must also contain at
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least one factor of the C1 norm of N , and hence can be made small. If we
now apply the triangle inequality as often as possible, we obtain bounds of
the form

(41) sup
φ

sup
σ
||D`wφ(σ)|| ≤ ||A−1

γ || · ||As||`ε` +R`(ε1, . . . , ε`),

where R` is a polynomial expression involving the ε’s and the supremum
of the derivatives of N . For ε in a bounded set, R` can be made as small
as desired by assuming bounds on the norm of the derivatives of N . Since
||A−1

γ || · ||As||` < 1, we can recursively choose ε`+1 = 2R`(ε1, . . . , ε`)/(1 −
||A−1

γ || · ||As||`+1) by imposing smallness conditions on N and its derivatives,
we can ensure that the R.H.S. of (41) is smaller than ε`+1. Moreover, it is
clear that, by imposing further smallness conditions in DN , we can obtain
that the ε’s are small. 2

Proposition 4.16. Assume that the N ’s that enter in the definition of T
have sufficiently small C1 norm. Then, T will be a contraction in χε1,...,εr
when the wφ are topologized with the norm || ||β we introduced above.

Proof. By the mean value theorem we have:

||Nγ (σ,wφ (σ))−Nγ

(
σ,w′φ (σ)

)
|| ≤ ||N ||C1 ||wφ(σ) −w′φ(σ)||.

Dividing by ||σ|| and taking suprema, we obtain that wφ 7→ Nγ(., wφ) is a
contraction in || ||β by a factor that can be made as small as we wish. In
effect:

||wφ+ωt(Asσ +Ns(σ,wφ(σ))) − w′φ+ωt(Asσ +Ns(σ,w
′
φ(σ)))|| ≤

||wφ+ωt(Asσ,+Ns(σ,wφ(σ))) − w′φ+ωt(Asσ +Ns(σ,wφ(σ)))||
+ ||w′φ+ωt(Asσ +Ns(σ,w

′
φ(σ))) − w′φ+ωt(Asσ +Ns(σ,wφ(σ)))||

The first term of the inequalities of the right hand side can be bounded
by

||w − w′||β ||Asσ +Ns(σ,wφ(σ))||
which, in turn, can be bounded by

||w − w′||β(||As||+ ||w′||C1 ||Ns||C1 ||σ||).
Putting all these estimates together, dividing by ||σ|| and taking sups, we

obtain that T has a Lipschitz constant which is ||A−1
γ || · · · ||As|| plus terms

that can be made arbitrarily small by assuming that ||N || is sufficiently
small in C1. 2

Proposition 4.17. If, under the same hypotheses as all the theorems before,
the N ’s are Cr, the mappings wφ solving (39) are Cr−1+Lipschitz.
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Proof. It suffices to show that the closure of χε1,...,εr in the || ||β norm is

contained in Cr−1+Lipschitz. This is an easy consequence of Ascoli–Arzelá
theorem. A much stronger theorem, valid even in infinite dimensional spaces,
is proved as Lemma 2.5 in [LI73]. 2

Remark 4.18. By carrying along in the proof estimates on the modulus
of continuity of the derivatives of higher order it is possible to obtain that
the function is Cr. This would allow us to improve the results claimed in
Theorem 4.12 Notice that in the statement of Theorem 4.12 we only claimed
Cr−1 for wφ even if we have proved Cr−1+Lipschitz.

Our next step is to show that the mapping φ 7→ wφ is differentiable when
the space of mappings wφ is given the topology induced by the || ||β norm.

What we would like to do is to apply the implicit function theorem to T
entering in (39). Unfortunately, this is not possible since the operator that
to two functions associates their composite – which is an important ingre-
dient in the construction of T – is not differentiable in the spaces of norm
Cr. The key observation is that the operator T is differentiable at the fixed
points since Proposition 4.17 shows that the fixed points are more differen-
tiable than a straightforward application of a contraction mapping principle
would imply. This observation can be exploited by first finding a candidate
for a derivative and then, showing that these formal candidates are indeed
derivatives. Here we give all the details for the case we are considering. In
Appendix A we show how this circle of ideas can be transformed into an
abstract implicit function theorem with smooth dependence on parameters.

Proceeding formally, if we take ` derivatives with respect to φ in (39) we
obtain:

D`
φwφ(σ, γ) = A−1

γ [D`
φwφ+ωt(Asσ +Ns(σ,wφ(σ)))

+Dσwφ+ωt(Asσ +Ns(σ,wφ(σ)))DγNs(σ,wφ(σ))D
`
φwφ(σ)

−DγNγ(σ,wφ(σ))D
`
φwφ(σ)] +R`

(42)

where R` is an expression that involves only derivatives of w with respect
to φ of order strictly less than `.

Proposition 4.19. It is possible to find recursively functions D`
φwφ, ` =

1, . . . , r − 1 that satisfy the equations (42).

Proof. Proceeding by induction we can assume that all the D`
φwφ of order

less than ` have been found, hence R` is a fixed function. If we call T`
[
D`
φwφ

]

all the terms that involve D`
φwφ in the right hand side of (42) we see that

we are considering a fixed point problem of the form

D`
φwφ = T`

[
D`
φwφ

]
+R`.
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Proceeding as in in the proof of Proposition 4.16, we can obtain that T` is
a contraction, hence there is a fixed point. 2

Proposition 4.20. The function w solving (39) constructed in Proposition
4.16 is Cr−1 with respect to φ and the derivatives are given by the functions
D`
φwφ constructed in Proposition 4.19 solving (42).

Proof. Fix ∆ a vector in the torus – which we will assume to be small –
We consider the function w̃ defined by:

(43) w̃φ(σ) =

r−1∑

`=0

1

`!
D`
φwφ−∆(σ)∆⊗`

We claim that

(44) ||T [w̃]− w̃||β∆−(r−1) = O(||∆||)
Then, by uniqueness of the fixed point solving (39) we get that ||w −
w̃||β∆−(r−1) tends to zero with ∆. This is well known to imply that wφ

is differentiable with respect to φ ( See e.g. [AR67] ).
In order to establish (44) we observe that if we take ` derivatives with

respect to ∆ in T [w̃]−w̃ and evaluate at ∆ = 0 they vanish for ` = 1, . . . , r−
1. We also observe that the expression T [w̃] − w̃ is uniformly C r in ∆ for
||∆|| small enough. We, therefore, have bounds ||T [w̃] − w̃|| ≤ O(||∆||r)
where C depends on the Cr norm of the expression we are differentiating
and can be chosen uniformly for all ∆ small enough. It is also easy to see
that T [w̃]− w̃ vanishes up to first order in σ since all of the terms do. We
therefore have bounds : ||T [w̃]− w̃|| ≤ C||∆||r||σ|| 2

Remark 4.21. We have also shown that the mapping φ 7→ wφ is differen-
tiable when the w’s are given the topology induced by || ||β. The fact that
the derivatives are given by the formulas (42) shows that that they are also
differentiable at zero.

In order to conclude that WΩ is a differentiable manifold we need that
wφ(s) is a differentiable function of (φ, s). The previous argument shows
that wφ(s) is a differentiable function of φ when s is kept fixed and a differ-
entiable function of s when φ is kept fixed. The fact that having continuous
partial derivatives is the same as being C1 is classic. Nevertheless, for higher
derivatives the situation is unpleasantly different. There are functions which
are C2 when restricted to any coordinate line, but fail to be C 2 because they
have no mixed partial derivatives. (See [Kra83] for one such example due to
Yudovich).

The theory of when functions which are smooth when restricted to co-
ordinate lines are smooth has natural answers in the so–called Λα spaces.
See [Ste70, Kra83] for some equivalent definitions. We just point out that,
for α not an integer, these spaces are the same as the usual Cα spaces.
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When α is an integer, the spaces are different from the usual Cα and from
Cα−1+Lipschitz.

The following theorem can be found in [Ste70, Kra83].

Theorem 4.22. Let f be a continuous function in [−1, 1]N with the property
that,for every j = 1, . . . , N the one variable function that we obtain by fixing
x1, . . . ,xj−1,xj+1,. . . ,xN satisfies:

(45) ||f(x1, . . . , xj−1, ·, xj+1, . . . , xN )||Λα([−1,1]) ≤ C

where C is a constant independent of x1, . . . , xj−1, xj+1, . . . , xN and of j.
Then, f ∈ Λα([−1, 1]N ). Moreover Cf , the best C that can be used in (45)
defines a norm, which is equivalent to the Λα norm.

Proof. [Kra83] has two very nice proofs. One uses a characterization of the
Λα spaces by the properties of approximation by complex analytic functions
and another one based on real variable methods. The proof of [Ste70] is
based on estimates of the Poisson kernel acting on functions in Λα. 2

This finishes the proof of Theorem 4.12 2

We now proceed to point out different possible extensions of the tech-
niques and to refer to related papers in the literature.

Remark 4.23. It is possible to improve the regularity conclusions in Propo-
sition 4.17 to Cr by using an argument very similar to the one we used in
the proof of Proposition 4.20.

Remark 4.24. Notice that in order to get the contraction argument work-
ing, we have only used that ||A−1

γ || · ||As|| < 1.
This suggests that we can generalize the argument for all the bundles that

include some kind of separation between rates of growth. In particular, the
bundles N , S ⊕N and U ⊕N .

The argument to conclude that the bundle was smooth on the invariant
torus only used the existence of a gap in the spectrum of the action on
vectors and that the motion on the torus was a rotation.

We have used that ||As|| < 1 to get the mapping T defined on a space
of functions on an interval. We can eliminate this requirement if we cut–off
the nonlinearity as was done in the proof of the pseudo–stable manifold and
then use w’s that are defined everywhere. As in the case of the pseudo–
stable manifold, this can lead to non–uniqueness, since the fixed point could
depend on the cut–off used.

Remark 4.25. Theorems of the type Theorem 4.22 have have been gener-
alized to situations in which we assume regularity of restrictions to less well
behaved sets than coordinate planes. ([dlLMM86, HK90, Jou86, Jou88]).
The method of proof in [Jou86] is very general and it is remarked in [dlL92]
that it applies to Cantor sets for which every point in the set is the limit of
a sequence of points also in the set converging not faster than exponentially.
This happens very frequently for invariant hyperbolic sets. In that case,
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applying a theory like the one we have developed it is possible to show that
if the bundle S is smooth when restricted to a set Ω with this property then
W S

Ω is a subset of a smooth manifold.

Remark 4.26. An alternative theory of invariant manifolds for analytic
tori on which the flow is analytically conjugate to a rotation is presented in
[Zeh76] Section 7.

The reduction of the existence of the invariant manifold theorem to a fixed
point problem is the same as the one presented here. The analytic theory
is considerably simpler because T is differentiable when acting on a space
of analytic functions satisfying smallness assumptions. The key observation
is that we can choose analyticity domains that get mapped strictly into
themselves by z → Asz + Ns(z, wφ(z)) provided that ||w|| is sufficiently
small. In that case, T [w](z) = w(Asz + Ns(z, wφ(z))) is differentiable and
even compact as can be checked using Cauchy estimates.

Since Λα functions can be characterized by speed of the approximation
by analytic functions, it is possible very often to develop a theory of finitely
differentiable regularity by systematically approximating the differentiable
problem by analytic ones: The regularity of the data in the original prob-
lem gets translated as the possibility of approximating them by analytic
functions which are not very big. By applying a quantitative version of
the contraction mapping theorem, it is possible to conclude that there is
a sequence of analytic solutions which are not very big either. One can
deduce, using the characterization of differentiable functions by the ease of
approximation that the solution is differentiable.

Such an approach is discussed systematically in [Zeh75] and in some re-
marks in [Zeh76].

Some results among the ones we presented here can indeed be obtained
using the approach based on analytic regularity outlined above. Never-
theless, we believe that the real variable method outlined here has some
advantages that justify our writing it in detail: (i) Even for the case of sta-
ble and unstable manifolds near a fixed point, the method based in analytic
smoothing seems to lose more derivatives. (ii) Since cutting off is impossi-
ble for analytic functions, the theory based on analytic regularity can only
produce stable manifolds and not the center manifolds whose construction
we have sketched. (iii) The real variable method can deal with invariant
Cantor sets provided that the motion on them satisfies certain properties of
expansiveness.

The last result we consider is due to Zehnder [Zeh76], whose proof we
reproduce for the sake of completeness.

Theorem 4.27. If Ω is a torus such as those in Theorem 3.8 then W S
Ω ,

WU
Ω are Lagrangian submanifolds.

Proof. Since the dimension is N , it suffices to show that the symplectic
form – which we denote by ω – vanishes.
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To show that the symplectic form vanishes it suffices to show that for
every pair of vectors v1, v2 tangent to W S

Ω we have that ω(v1, v2) = 0.
By the conservation of the symplectic form under hamiltonian evolution

we have that ω(v1, v2) = ω(Φ∗t v1,Φ
∗
t v2).

Using the fact that ||Φ∗t v|| ≤ Ce−µt||v|| we see that the component along
S is smaller than Ce−λt||ΠSv||. Thus Φ∗t v1 and Φ∗t v2 are vectors of length
not bigger than Ce−µt Since the manifolds are differentiable, they differ from
vectors tangent to the torus by an amount not bigger than Ce−λt.

Since the symplectic form vanishes on the torus, we see that
|ω(Φ∗t v1,Φ

∗
t v2)| ≤ Ce(µ−λ)t. Since t is arbitrary, we have proved the theorem.

2
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170, 1985. Seminar Bourbaki, Vol. 1983/84.

[DdlLMS03] A. Delshams, R. de la Llave, and T. M.-Seara. A geometric mechanism for
diffusion in hamiltonian systems overcoming the large gap problem: heuris-
tics and rigorous verification on a model. MP ARC # 03-182, 2003.
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[Pös82] J. Pöschel. Integrability of Hamiltonian systems on Cantor sets. Comm. Pure
Appl. Math., 35(5):653–696, 1982.



WHISKERED TORI 45
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