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CENTRAL LIMIT THEOREMS FOR THE POTTS MODEL

OLIVIER GARET

Abstract. We prove various q-dimensional Central Limit Theorems for the
occurring of the colors in the q-state Potts model on Zd at inverse temperature
β, provided that β is sufficiently far from the critical point βc. When (d = 2)
and (q = 2 or q ≥ 26), the theorems apply for each β 6= βc. In the uniqueness
region, a classical Gaussian limit is obtained. In the phase transition regime,
the situation is more complex: when (q ≥ 3), the limit may be Gaussian or not,

depending on the Gibbs measure which is considered. Particularly, we show
that free boundary conditions lead to a non-Gaussian limit. Some particular
properties of the Ising model are also discussed. The limits that are obtained
are identified relatively to FK-percolation models.

1. Introduction

The aim of this study is to answer a natural question relative to Gibbs measures
in the q-state Potts model: take a finite box in Zd and consider the frequencies of
each of the q states in the box. By the ergodic theorem, the vector of empirical
frequencies obviously converges to a constant when the considered Gibbs measure
is ergodic. Then, it is natural to ask whether we can have a central limit theorem
with a standard renormalization.

Three decades after the seminal paper by Fortuin and Kasteleyn [FK72], it has
become obvious that most problems related to the Potts model encounter the road of
the Fortuin-Kasteleyn random cluster measure – see for example Häggström [Häg98]
for a self-contained introduction to the relations between these models.

Roughly speaking, we can say that a realization of the q-state Potts model with
free boundary conditions in a finite box is a random coloring of the vertices of
a realization of a free random-cluster measure in the box Λ, with the constraint
that connected components are mono-color. Actually, we can consider the Potts
model as the restriction to its vertices of a measure on “colored graphs”: there is
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2 OLIVIER GARET

randomness on the set of open bonds and also on the color of vertices, with the
condition that connected components are mono-color.

Then, it is not difficult to guess that in the supercritical regime, the presence of an
infinite cluster strongly modifies the fluctuation of the empiric repartitions. Thus,
our first step is the study of the normal fluctuations of the density of the infinite
cluster in large boxes. Since Fortuin-Kasteleyn random cluster measures enjoy the
FKG property, there is a tool that is particularly appropriate to show central limit
theorems; it is Newman’s theorem [New80], which reduces the problem to proving
the convergence of a series. Newman and Schulman noticed [NS81a, NS81b] that
this could be useful for the study of the fluctuations of the density of the infinite
cluster for some percolation models, but time passed without anybody using it for
a precise model, not even for standard percolation. Thus we give in this paper a
theorem that explains how to obtain a CLT for the density of the infinite clusters in
the case of a percolation model satisfying FKG: it suffices to bound the probability
of large finite clusters and the correlation of some local events.

This leads to a simple proof of the CLT in the case of Bernoulli percolation.
The case of FK percolation appears to be more intricate, and there are values of
the parameters for which one did not succeed in obtaining the desired estimates.
Naturally, these gaps are reflected on the subsequent theorems relative to the Potts
model.

The paper is organized as follows:

• The first part begins with the general CLT theorem for the density of the
infinite cluster(s) announced above. Then, we prove that for each q ≥ 1,
there exists pr(q) < 1 such that for p > pr(q), the number of points in large
boxes (Λn)n≥1 which belongs to the infinite cluster has a normal central
limit behaviour under the random cluster measure φp,q :

|Λn ∩ C∞| − φp,q(0 ∈ C∞)|Λn|
|Λn|1/2

=⇒ N (0, σ2p,q),

where C∞ is the infinite cluster for FK percolation and

σ2p,q =
∑

k∈Zd

(

φp,q(0↔∞ and k ↔∞)− φp,q(0 ∈ C∞)2
)

.

The result is much better on the square lattice: when q = 1, 2 or q ≥ 26,
pr(q) is equal to the classical critical value pc(q), so the result applies in
the whole supercritical zone.

• In the second part, we prove a q-dimensional central limit theorem for the
fluctuation of the empiric repartitions of colors in a coloring model, that is a
model where the connected components of a random graph (not necessarily
satisfying the FKG inequalities) are painted independently, provided that
the fluctuations of the number of points in large boxes which belong to an
infinite cluster satisfy a central limit theorem.

• In the third part, we combine these results to obtain q-dimensional cent-
ral limit theorems for the fluctuation of the empiric repartitions of the q
colors in the q-state Potts model: when the inverse temperature β is small
enough, the unique Gibbs measure for the q-state Potts model at inverse
temperature β satisfy the following result for the empirical distributions:
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there exists a constant χβ > 0 such that

n(Λt)− |Λt|ν
√

|Λt|
=⇒ N (0,

χβ
q2

(qI − J)),

where J is the q×q matrix each of whose entries is equal to 1, ν = ( 1q , . . . ,
1
q ),

and the vector n(Λt) = (n1(Λt), n2(Λt), . . . , nq(Λt)) consists of the numbers
of occurring of each of the q states.

In the region of phase transition, the situation is more complex. For
example, under the Gibbs measure which is obtained as the limit of finite
size Gibbs measures with a constant boundary condition “1”, we have,
provided that β is large enough:

n(Λt)− |Λt|(1, 1− θ, 1− θ, . . . , 1− θ)
√

|Λt|
=⇒ N (0, C)

for some matrix C and some constant θ. For the Gibbs measure which is
obtained as the limit of finite size Gibbs measures with free boundary con-
dition, a central limit theorem is also proved, but the limit is not Gaussian
(except in the case of the Ising model).

As in the first part, the region of validity of the theorems is optimal
when d = 2: the results hold for each β 6= βc as soon as q = 2 or q ≥ 26.

Actually, when d = 2, the results of the first part (and, consequently,
the results on the last one) need an exponential inequality relative to FK-
percolation which has been proved to hold in the whole subcritical zone
when q = 1, 2 or q ≥ 26. In fact, it is widely believed that this holds in
the whole subcritical zone for each q ≥ 1. If this challenge were performed,
this would automatically give the optimality of the results presented here
for each value of q.

2. Notations and preliminaries

Graph theoretical notations

For x ∈ Zd, let us denote ‖x‖ =
∑d

i=1 |xi| and consider the graph Ld = (Zd,Ed),
with

Ed = {{x, y};x, y ∈ Zd and ‖x− y‖ = 1}.
For x ∈ Zd and r ∈ [0,+∞), we note B(x, r) = {y ∈ Zd; ‖x − y‖ ≤ r}. If

e = {x, y} ∈ Ed, then x and y are called neighbours.
In the following, the expression ”subgraph of Ld” will always be employed for

each graph of the form G = (Zd, E) where E is a subset of Ed. We denote by S(Ld)
the set of all subgraphs of Ld.

Set Ω = {0, 1}Ed. An edge e ∈ Ed is said to be open in the configuration ω if
ω(e) = 1, and closed otherwise.

There is a natural bijection between S(Ld) and Ω, that is E 7→ (11e∈E)e∈Ed .
Consequently, we sometimes identify S(Ld) and Ω and say “random graph measure”
rather than “measure on Ω”.

A path is a sequence γ = (x1, e1, x2, e2, . . . , xn, en, xn+1) such that xi and xi+1
are neighbours and ei is the edge between xi and xi+1. We will also sometimes
describe γ only by the vertices it visits γ = (x1, x2, . . . , xn, xn+1) or by its edges
γ = (e1, e2, . . . , en). The number n of edges in γ is called the length of γ and is
denoted by |γ|. We will also consider cycles, that are paths for which the visited
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vertices are all distinct, except that x1 = xn+1. A path is said to be open in the
configuration ω if all its edges are open in ω. If Λ1 and Λ2 are two subsets of Zd,
we denote by d(Λ1,Λ2) the length of the shortest path from Λ1 to Λ2.

The clusters of a configuration ω are the connected components of the graph
induced on Zd by the open edges in ω. For x in Zd, we denote by C(x) the cluster
containing x. In other words, C(x) is the set of points in Zd that are linked to x
by an open path.

We note x ↔ ∞ to say that |C(x)| = +∞. In the whole paper, we will note
C∞ = {x ∈ Zd;x↔∞}.

We say that two bonds e and e′ of Ed are neighbours if e∩ e′ is not empty. This
also gives a notion of connectedness in Ed in the usual way.

For each subset Λ of Zd, we denote by ∂Λ the boundary of Λ:

∂Λ = {y ∈ Λc; ∃x ∈ Λ with ‖x− y‖ = 1}
and by EΛ the set of inner bonds of Λ:

EΛ = {e ∈ Ed; e ⊂ Λ}.
Note that if Λ and Λ′ are disjoint sets, then EΛ and EΛ′ are disjoint too.

For each E ⊂ Ed, we denote by σ(E) the σ-field generated by the projections
(ωe)e∈E . A subset A of Ω is said to be a local event if there exists a finite subset
E of Ed such that A is σ(E)-measurable.

When Λ ⊂ Zd, we also use the notation σ(Λ) instead of σ(EΛ).
We sometimes consider another set of bonds on Zd, that is

Fd = {{x, y};x, y ∈ Zd and ‖x− y‖∞ = 1},
where ‖x‖∞ = max(|xi|; 1 ≤ i ≤ d). If e = {x, y} ∈ Fd then x and y are called
∗-neighbours. Similarly, we define the notion of ∗-paths, ∗-cycles, ∗ connected
sets,. . . exactly in the same way as for the graph Ld.

A subset Λ of Zd is said to be a box if it can be written in the following form:
Λ =

(

[a1, . . . b1]× . . . . . . [ad, . . . bd]
)

∩Zd for some real numbers a1, . . . , ad, b1, . . . bd.
For our central limit theorems, we will use boxes (Λt)t≥1, with

Λt = {x ∈ Zd; ‖x‖∞ ≤ t}.
Let X and S be arbitrary sets. Each ω ∈ XS can be considered as a map from S

to X . We will denote ωΛ its restriction to Λ. Then, when A and B are two disjoint
subsets of S and (ω, η) ∈ XA×XB, ωη denotes the concatenation of ω and η, that
is the element z ∈ XA∪B such that

zi =

{

ωi if i ∈ A
ηi if i ∈ B.

2.1. FK Random cluster measures. Let 0 ≤ p ≤ 1 and q > 0.
For each configuration η ∈ Ω and each connected subset E of Ed we define the

random-cluster measure φηE,p,q with boundary condition η on (Ω,B(Ω)) by

φηE,p,q(ω) =











1

ZηE,p,q

{

∏

e∈E
pω(e)(1− p)1−ω(e)

}

qkE(ωEηEc ) if ωEc = ηEc ,

0 otherwise,
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where kE(ω) is the number of components of the graph ω which intersect ∪e∈Ee.
ZηE,p,q is the renormalizing constant

ZηE,p,q =
∑

ω∈{0,1}E

{

∏

e∈E
pω(e)(1− p)1−ω(e)

}

qkE(ωEηEc ).

For each b ∈ {0, 1}, we will simply denote by φbE,p,q the measure φηE,p,q corres-

ponding to the configuration η which is such that ηe = b for each e ∈ Ed.
When Λ is a finite subset of Zd, we also use the notation φΛ,p,q instead of φEΛ,p,q
A probability measure φ on (Ω,B(Ω)) is called a random-cluster measure with

parameters p and q if for each measurable set A and each finite subset Λ of Zd, we
have the D.L.R. condition:

φ(A) =

∫

Ω

φηΛ,p,q(A) dφ(η)

The set of such measures is denoted by Rp,q .
Let b ∈ {0, 1}. If (Λn)n≥1 is an increasing sequence of volumes tending to Zd,

it is known that the sequence φbΛn,p,q has a weak limit which does not depend on

the sequence (Λn)n≥1. We denote by φbp,q this limit. The following facts are well
known; refer to the recent summary of Grimmett [Gri03] for complete references.

• φbp,q is a translation invariant ergodic measure.

• φbp,q ∈ Rp,q .

• Let us note θb(p, q) = φbp,q(0 ↔ ∞). There exists pc(q) ∈ (0, 1), such that

for each b ∈ {0, 1} we have θb(p, q) = 0 for p < pc(q) and θb(p, q) > 0 for
p > pc(q). Moreover, Rp,q is a singleton as soon as p < pc(q).

FKG inequalities and stochastic comparison

There is a natural partial order ≺ on Ω = {0, 1}Ed: for ω and ω′ in Ω, we say that
ω ≺ ω′ holds if and only if ωe ≤ ω′e for each e ∈ Ed. Consequently, we say that
a function f : ω → R is increasing if f(ω) ≤ (ω′) as soon as ω ≺ ω′. If φ is a
probability measure and f, g two bounded measurable functions, we note

Covφ(f, g) =

∫

fg dφ−
(

∫

f dφ
)(

∫

g dφ
)

.

If A and B are measurable events, we also note Covφ(A,B) = Covφ(11A, 11B) =
φ(A ∩ B)− φ(A)φ(B).

We say that a measure φ on (Ω,B(Ω)) satisfies the FKG inequalities if for each
pair of increasing bounded functions f and g, we have Covφ(f, g) ≥ 0.

It is well known that φbp,q satisfies the FKG inequalities if q ≥ 1.
An event A is said to be increasing (resp. decreasing) if 11A (resp. 1 − 11A) is an

increasing function. Of course, if φ satisfies the FKG inequalities and A and B are
increasing events, we have Covφ(A,B) ≥ 0.

Let us first recall the concept of stochastic domination: we say that a probability
measure µ dominates a probability measure ν, if

∫

f dν ≤
∫

f dµ

holds whenever f is an increasing function. Thus, we write ν ≺ µ.
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The following stochastic comparison for random cluster measures is well known:

for q′ ≥ q, q′ ≥ 1 and p′

q′(1−p′) ≥
p

q(1−p) , we have φ0p,q ≺ φ0p′,q′ .

Exponential bounds

Grimmett and Piza [GP97] also introduced another critical probability: Let us
define

Y (p, q) = lim sup
n→∞

{

nd−1φ0p,q
(

0↔ ∂B(0, n)
)

}

and pg(q) = sup
{

p : Y (p, q) <∞
}

. We have 0 < pg(q) ≤ pc(q).
Grimmett and Piza proved the following exponential bound:

Proposition 1. Let q ≥ 1, d ≥ 2. For p < pg(q), there exists a constant γ =
γ(p, q) > 0 with

(1) φp,q(0↔ ∂B(0, n)) ≤ e−γn for large n.

(Note that we can write φp,q instead of φ0p,q because of the uniqueness of the random
cluster measure for p < pc.)

It is conjectured that pg(q) = pc(q) for each q ≥ 1.
When d = 2, this widely believed conjecture has already be proved for q = 1, q =

2 and q ≥ 26 – see the Saint-Flour notes by Grimmett ([Gri97]).

2.2. The Potts model. Let us recall the definition of Gibbs measure in the context
of the Potts model. Let q ≥ 2 and β > 0. We denote by Sq a set of cardinality q.

For a finite subset Λ of Zd, the Hamiltonian on the volume Λ is defined by

HΛ = 2
∑

e={x,y}∈Ed
e∩Λ6=∅

11{ω(x)6=ω(y)}.

Then, we can define for each bounded measurable function f and for each ω ∈
SZd
q ,

ΠΛf(ω) =
1

ZΛ(ω)

∑

η∈SΛq
exp(−βHΛ(ηΛωΛc))f(ηΛωΛc),

where

ZΛ(ω) =
∑

η∈SΛq

exp(−βHΛ(ηΛωΛc)).

For each ω, we will denote by ΠΛ(ω) the measure on SZd
q which is associated to

the map f 7→ ΠΛf(ω). A measure µ on SZd
q is said to be a Gibbs measure for the

q-state Potts model at inverse temperature β when for each bounded measurable
function f and each finite subset Λ of Zd, we have

Eµ(f |(Xi)i∈Λc ) = ΠΛf µ a.s.

For each z ∈ Sq , let us denote by ΠΛ(z) the measure ΠΛ(ω) where ω is the

element of SZd
q with ωx = z for each x ∈ Zd. It is known that for each β > 0

and each z ∈ Sq , the sequence (ΠΛ(z))Λ converges when Λ tends to Zd. Let us
denote by WPtq,β,z this limit. By the general theory of Gibbs measures, this limit
is necessarily a Gibbs measure – see for example Georgii’s book [Geo88].

Note that although each WPtq,β,z is a pure phase (i.e. an extremal Gibbs meas-
ure), the converse is not necessarily true.
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Those Gibbs measures can be characterized by the fact that they can be obtained
from a random-cluster measure by a procedure described below:

Proposition 2. Let q ∈ {2, 3, . . .}, p ∈ [0, 1], Sq be a finite set with |Sq| = q

and z ∈ Sq. Pick a random edge configuration X ∈ {0, 1}Ed according to the
random-cluster measure φ1p,q. Then, for each finite connected component C of X
independently, pick a spin uniformly from Sq, and assign this spin to all vertices of
C. Finally assign the value z to all vertices of infinite connected components. The

SZd
q -valued random spin configuration arising from this procedure is then distributed

according to the Gibbs measure WPtq,β,z for the q-state Potts model at inverse
temperature β := − 1

2 log(1− p).

3. Central Limit Theorem for the random cluster measure

The aim of this section is to prove the following theorem:

Theorem 1. For each q ≥ 1, there exists pr(q) < 1 such that, for p > pr(q), Rp,q

consists of a unique measure φp,q which satisfies the following: if C∞ denotes the
infinite cluster for FK percolation, then

|Λn ∩ C∞| − θ(p, q)|Λn|
|Λn|1/2

=⇒ N (0, σ2p,q),

where θ(p, q) = φp,q(0 ∈ C∞) and

σ2p,q =
∑

k∈Zd

(

φp,q(0↔∞ and k ↔∞)− θ(p, q)2
)

.

Particularly, we have

• pr(1) = pc(Zd)
• pr(q) =

q(1−pg)
pg+q(1−pg) for d = 2.

• pr(q) =
√
q

1+
√
q for d = 2 and (q = 1, q = 2 or q ≥ 26).

We begin with a general theorem which gives sufficient conditions for having a
central limit theorem for the fluctuations of the size of the intersection of large boxes
with the infinite clusters. This will tell us what sort of estimates about random
cluster measures can help us.

Theorem 2. Let φ be a translation-invariant ergodic measure on S(Ld). We sup-
pose that φ satisfies the FKG inequalities and that we have θφ = φ(0↔∞) > 0.

For each n ∈ Zd and r > 0, let us note the event Dn,r = {|C(n)| > r}. We sup-
pose also that there exists a sequence (rn)n∈Zd such that the following assumptions
together hold:

• (m)
∑

n∈Zd
φ(+∞ > |C(0)| ≥ rn) < +∞

• (c)
∑

n∈Zd
Covφ(D0,rn , Dn,rn) < +∞.

Then, we have
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• (S∗)

σ2φ =
∑

k∈Zd

(

φ(0↔∞ and k ↔∞)− θ2φ
)

< +∞.

• (CLT )
|Λn ∩ C∞| − θφ|Λn|

|Λn|1/2
=⇒ N (0, σ2φ).

Proof.

|Λn ∩ C∞(ω)| − θφ|Λn| =
∑

k∈Λn
f(T kω),

where T k is the translation operator defined by T k(ω) = (ωk+e)e∈Ed and f =
11{|C(0)|=+∞}− θφ. Moreover, f is an increasing function and φ satisfies the F.K.G.

inequalities. Then, (f(T kω))k∈Zd) is a stationary random field of square integrable
variables satisfying the F.K.G. inequalities. Therefore, according to Newman’s
theorem [New80], the Central Limit Theorem is true if we prove that the quantity

(2)
∑

k∈Zd
Cov(f, f ◦ T k)

is finite, which is just proving (S∗).
Let us define B = {|C(0)| = +∞}, and for each n ∈ Zd, An = {|C(n)| = +∞},

Ãn = {|C(n)| ≥ rn} and B̃n = {|C(0)| ≥ rn} Since B ⊂ B̃n and An ⊂ Ãn, one has
11B̃n = 11B + 11B̃n\B and 11Ãn = 11An + 11Ãn\An . It follows that

Cov(11Ãn , 11B̃n)− Cov(11An , 11B) = Cov(11Ãn\An , 11B̃n) + Cov(11B̃n\B , 11An),

and hence that

|Cov(11Ãn , 11B̃n)− Cov(11An , 11B)| ≤ P (Ãn\An) + P (B̃n\B)

≤ 2P (+∞ > |C(0)| ≥ rn)

It follows that

σ2φ ≤ 2
∑

n∈Zd
P (+∞ > |C(0)| ≥ rn) +

∑

n∈Zd
|Cov(D0,rn , Dn,rn)| < +∞.

¤

As we mentioned in the introduction, the idea of using Newman’s theorem to
prove Central Limit Theorems for the density of infinite clusters in percolation
models satisfying the F.K.G. inequalities is not new; indeed it has already been
pointed out by Newman and Schulman [NS81a, NS81b] that (S∗) + (FKG) =⇒
(CLT ). The interest of our theorem is that it gives a concrete way to prove that
assumption (S∗) is satisfied; basically, it splits a problem about infinite clusters
into two problems relative to finite clusters:

• The existence of sufficiently high moments
• A control of the correlation for the appearance of reasonably large clusters
in two points which are separated by a large distance – note that we can
rewrite Cov(D0,rn , Dn,rn) as Cov(D

c
0,rn , D

c
n,rn).

This method gives an alternative proof of a recent result that Zhang [Zha01]
obtained by martingale techniques.

Corollary 1. In the case of Bernoulli percolation, the density of the infinite cluster
in large boxes satisfies a central limit theorem for each p > pc.
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Proof. Simply take rn = ‖n‖/3. The convergence (m) follows for example from
Kesten and Zhang[KZ90]: there exists η(p) > 0 such that

∀n ∈ Z+ P (|C(0)| = n) ≤ exp(−η(p)n(d−1)/d).
Of course, such a sharp estimate is not necessary for our purpose. Estimates derived
from [CCN87] or [CCG+89] would have been sufficient. The convergence of (c) is
an evidence since D0,rn and Dn,rn are independent for ‖n‖ > 12.

¤

3.1. The case of the square lattice. Let Z2∗ = Z2+(1/2, 1/2), E2∗ = {{a, b}; a, b ∈
Z2∗ and ‖a− b‖ = 1} and L2∗ = (Z2∗,E2∗). It is easy to see that L2∗ is isomorphic to
L2.

For each bond e = {a, b} of L2 (resp. L2∗), let us denote by s(e) the only subset
{i, j} of Z2∗ (resp. Z2) such that the quadrangle aibj is a square in R2. s is clearly
an involution.

For finite A ⊂ Z2∗, we denote by Peierls(A) the Peierls contour associated to A,
that is

Peierls(A) = {e ∈ E2; 11Ais not constant on s(e)}.
If on the plane R2 we draw the edges which are in Peierls(A), we obtain a family

of curves – the so-called Peierls contours – which are exactly the boundary of the
subset of R2: A+ ([−1/2, 1/2]× [−1/2, 1/2]).

It is known that, provided that A ⊂ Z2∗ is a bounded connected subset of L2∗,
there exists a unique set of bonds Γ(A) ⊂ Peierls(A) ⊂ E2 which form a cycle
surrounding A, in the following sense that every infinite connected subset of bonds
D ⊂ E2∗ satisfying D ∩ A 6= ∅ also satisfies D ∩ s(Γ(A)) 6= ∅.

Now consider the map

{0, 1}E2 → {0, 1}E2∗

ω 7→ ω∗ = (1− ωs(e))e∈E2∗

For η ∈ {0, 1}E2∗, we also denote by η∗ the only ω ∈ {0, 1}E2 such that ω∗ = η.

For each subset A of {0, 1}E2 (resp. {0, 1}E2∗), we denote by A∗ the set {ω∗;ω ∈
A}.

The following planar duality between planar random cluster measures is now well
known: let us define p∗ to be the unique element of [0, 1] which satisfies F (p)F (p∗) =
1, with F (x) = 1√

q
x
1−x . and also define a map t by

{0, 1}E2 → {0, 1}E2∗

ω 7→ (ωe+(1/2,1/2))e∈E2∗

Then, for each p ∈ [0, 1], b ∈ {0, 1} and each event A, we have

φbp,q(A) = tφ1−bp∗,q(A
∗).

Let us define

(3) pr(q) = pg(q)
∗.

Since pg(q) > 0, we have pr(q) < 1. Note that it is believed that pg(q) = pc(q). As
was noted by Grimmett and Piza [GP97], the fact that pg(q) = pc(q) would imply

that pc is the solution of the equation x = x∗, i.e. pc =
√
q

1+
√
q . So, it follows that
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we have pr(q) = pc(q) provided that pg(q) = pc(q). We recall that when d = 2, this
conjecture has already be proved for q = 1, 2 and q ≥ 26.

Lemma 1. Let d = 2 and p < pg(q). There exists K ∈ (0,+∞) and γ(p, q) > 0
with

∀n ∈ Z+ φp,q(|C(0)| ≥ n) ≤ K exp(−γ(p, q)
√

n/2).

Proof. Suppose that n ≥ 16 and denote by r the integer part of
√

n/2 − 1. Let
T = {k ∈ Z+;C(0) ∩ ∂B(0, k) 6= ∅} and R = maxT .
Suppose |C(0)| ≥ n: we have C(0) ⊂ B(0, R), so

n ≤ |C(0)| ≤ |B(0, R)| = 1 + 2R(R+ 1).

It follows that r ≤ R. Since C(0) is connected, we have 0 ↔ ∂B(0, r). Then
φp,q(|C(0)| ≥ n) ≤ φp,q(0↔ ∂B(0, r)). The result follows then from Proposition 1.

¤

When d = 2, it is known that pg ≤ pc ≤
√
q

1+
√
q . It follows that p∗g ≥ p∗c ≥

√
q

1+
√
q .

Then (p > p∗g) =⇒ (p > p∗c). By a duality argument, the uniqueness of the random
cluster measure for p < pc implies the uniqueness of the random cluster measure for
p > p∗c , and then for p > pr(q). Then, we simply write φp,q without any superscript.

Lemma 2. Let d = 2 and p > pr(q). There exists K ∈ (0,+∞) with

∀n ≥ 1 φp,q(|C(0)| = n) ≤ Kne−γ(p
∗,q)

√
n.

Note that γ(p∗, q) > 0.

Proof. Here we use a duality argument. Let p > pr(q) and note A = {|C(0)| = n}.
We have φp,q(A) = tφp∗,q(A

∗). In this case

t−1(A∗) =
{

there exists at least one open cycle surrounding (0, 1/2)
Those of these cycles which minimizes the distance to (0, 1/2)

surrounds exactly n closed bonds.

}

.

The number of bonds used by this cycle is at least 2n+ 2. Moreover, the position
of the first intersection of this cycle with the positive x-axis is at most n. So

t−1(A∗) ⊂
n∪
k=1

{|C((k, 0))| ≥ 2n}.

It follows then from lemma 1 that

φp(A) = tφp∗,q(A
∗) ≤ Kne−γ(p

∗,q)
√
n.

¤

We must also recall a decoupling property of the random cluster measure which
will be very useful.

Lemma 3. Decoupling lemma

Let F be a finite connected subset of Ed such that Ed\F has two connected com-
ponents in Ld. We denote by Int(F ) ( resp. Ext(F )) the bounded ( resp. unboun-
ded) connected component of Ed\F and Int(F ) = Int(F ) ∪ F ( resp. Ext(F ) =
Ext(F ) ∪ F ).

Now consider the event WF = {∀e ∈ F ;ωe = 1}.
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Then, for each σ(Int(F )) measurable local event M1 and each each σ(Ext(F ))
measurable local event M2, we have the decoupling property:

(4) ∀b ∈ {0, 1} φbp,q(M1 ∩M2|WF ) = φbp,q(M1|WF )φ
b
p,q(M2|WF )

Proof. Let E′ = EΛt be a large box such that M1 and M2 are σ(E′)-measurable:
for each ω ∈ WF with ωe = b for e outside of E′ , we have

ZbE′,p,qφ
b
E′,p,q =

{

∏

e∈E′
pω(e)(1− p)1−ω(e)

}

qkE′ (ωE′ηE′c )

For such an ω, we can write

kE′(ωE′ηE′c) = kInt(F )(ωInt(F )1Ext(F )) + kE′\Int(F )(ωE′\Int(F )1Int(F )bExt(E′))− 1

It follows that, conditioning by WF , ωInt(F ) and ωE′\Int(F ) are independent under

φbE′,p,q :

φbE′,p,q(M1 ∩M2|WF ) = φbE′,p,q(M1|WF )φ
b
E′,p,q(M2|WF ).

Letting t tend to infinity, we obtain equation (4). ¤

Note that in the two-dimensional lattice, the set of bonds of a cycle satisfies the
assumptions of the decoupling lemma.

The goal of the next lemma is to bound the covariance of two decreasing events
that are defined by the state of the bonds in two boxes separated by a large distance.
It is clear that it does not pretend to originality and that its use could have been
replaced by those of an analogous result of the literature, e.g. Theorem 3.4 of
Alexander [Ale98] joined to its Remark 3.5. Nevertheless, we preferred to present
our lemma because its proof is rather short and allows an instructive comparison
with the case of a higher dimension which will be studied later.

Lemma 4. Let q ≥ 1. For each p > pr(q), there exists C > 0 and α > 0 such that
for each couple of boxes Λ1,Λ2 ⊂ Z2 and each pair of monotone events A and B,
with A ( resp. B) σ(Λ1) ( resp. σ(Λ2) ) measurable, we have

|Covφ(A,B)| = |φp,q(A ∩B)− φp,q(A)φp,q(B)| ≤ C|∂Λ1|e−αd(Λ1,Λ2).
Proof. Since Covφ(A,B) = −Covφ(Ac, B) = Covφ(A

c, Bc) = −Covφ(A,Bc), we
can assume that A and B are decreasing events. We can also assume without loss
of generality that Λ1 = {−n, . . . , n} × {−p, . . . , p}. Put Λ∗1 = {−n + 1/2, . . . , n −
1/2}×{−p+1/2, . . . , p−1/2}. For x ∈ Z2∗ and ω ∈ Ω, let us define C∗(x)(ω) to be
the connected component of x in the configuration ω∗. Let now be F the random
subset of E2 defined by

F (ω) = Γ( ∪
y∈Λ∗1

C∗(y)(ω))

and consider the event V = {Int(F )∩Λ2 = ∅}. The following facts are elementary,
but relevant:

• For every cycle γ ⊂ E2 surrounding the origin, the event {F = γ} is
σ(Int(γ))-measurable.

• For any subset γ of E2, {F = γ} ⊂Wγ = {∀e ∈ γ;ωe = 1}.
By the decoupling lemma, we know that if T is a σ(Ext(γ))-measurable event and
R a σ(Int(γ))-measurable local event, we have the decoupling property:

φp,q(R ∩ T |Wγ) = φp,q(R|Wγ)φp,q(T |Wγ).
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So, if Int(γ) ∩ Λ2 = ∅ we have

φp,q(A ∩ B ∩ {F = γ}) = φp,q(A ∩ B ∩ {F = γ} ∩Wγ)

= φp,q(Wγ)φp,q(A ∩ {F = γ}) ∩B|Wγ)

= φp,q(Wγ)φp,q(A ∩ {F = γ})|Wγ)φp,q(B|Wγ)

= φp,q(A ∩ {F = γ}) ∩Wγ)φp,q(B|Wγ)

= φp,q(A ∩ {F = γ})φp,q(B|Wγ)

≤ φp,q(A ∩ {F = γ})φp,q(B).

The last inequality follows from the fact that B is a decreasing event, whereas
Wγ is an increasing one.

If we sum over suitable values of γ, we get

φp,q(A ∩ B ∩ V ) ≤ φp,q(A ∩ V )φp,q(B) ≤ φp,q(A)φp,q(B).

Since A and B are decreasing events, they are positively correlated, then

0 ≤ φp,q(A ∩ B)− φp,q(A)φp,q(B) ≤ φp,q(A ∩B ∩ V c) ≤ φp,q(V
c).

Since

V c ⊂ ∪
y∈∂Λ∗1

{y ↔ ∂B(y, d(Λ1,Λ2))},

the result follows from the inequality of Grimmett and Piza. ¤

3.2. The general case. The goal of the next lemma consists in bounding the
covariance of two monotone events that are defined by the state of the bonds in
two boxes separated by a large distance.

Its proof, unlike the one of lemma 4, can not use duality arguments. We never-
theless attempt to present this proof in a form which is as close as possible to those
of lemma 4 to highlight the differences and the similarities between them.

Note that the proof is inspired by the proof of Grimmett [Gri95] for the unique-
ness of the random-cluster when p is large.

Lemma 5. Let q ≥ 1. There exists p′(q) < 1 such that for each p > p′(q), there
exists α(p, q) > 0 such that for each couple of finite connected volumes Λ1 ⊂ Zd
and Λ2 ⊂ Zd and each pair of monotone events A and B, with A ( resp. B) σ(Λ1)
( resp. σ(Λ2) ) measurable, we have

|Covφ(A,B)| = |φp,q(A ∩B)− φp,q(A)φp,q(B)| ≤ C|∂Λ1|e−αd(Λ1,Λ2).
Proof. We begin by a topological remark: let D be a finite connected subset of Zd.
Since D is bounded, Dc has only finitely many connected components and exactly
one of them is unbounded.

We denote by Fill(D) the reunion of D with the finite connected components of
Dc. Clearly, Fill(D) is connected, too. Let us note D′ = ∂Fill(D). It is easy to see
that D′ surrounds D, in the following sense that every infinite path starting in D
must meet D′. It is important to note that D′ is ∗-connected. Although it seems
to be evident, the proof of this fact is rather arduous, see lemma 2.1 in Deuschel
and Pisztora [DP96].

Let us now defineW (D) = {e ∈ Ed; e∩D′ 6= ∅}. Since D′ is ∗-connected,W (D)
is connected in Ld; W (D) also surrounds D. Note that W (D) is analogous to a
surrounding Peierls contour in the two dimensional lattice.
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As before, suppose now that A and B are decreasing events. Given a configura-
tion ω, say that a point x ∈ Zd is wired if every bond e = {a, b} with ‖x−a‖∞ ≤ 1
and ‖x − b‖∞ ≤ 1 satisfies ωe = 1. Otherwise, say that x is free. Let us define
D(ω) to be the set of points in Zd\Λ1 which can be connected to Λ1 using only free
vertices – the origin of the path in Λ1 does not need to be free. By definition of D,
(Λ1 ∪D) is a connected set.

Let us consider the random set F = W (D) and define the event V = {Λ2 ∩
Fill(F ) = ∅}.

Note that V is an increasing event.
The following facts are elementary, but relevant:

• For any set γ satisfying the decoupling lemma and surrounding Λ1, the
event {F = γ} is σ(Int(γ))-measurable.

• For any subset γ of Ed, {F = γ} ⊂Wγ = {∀e ∈ γ;ωe = 1}.
As previously, if T is a σ(Ext(γ))-measurable event and R a σ(Int(γ))-measurable
local event, then we have the following decoupling property:

φ0p,q(R ∩ T |Wγ) = φ0p,q(R|Wγ)φ
0
p,q(T |Wγ).

So, if γ does neither touch nor surround Λ2, we have

φ0p,q(A ∩ B ∩ {F = γ}) = φ0p,q(A ∩ B ∩ {F = γ} ∩Wγ)

= φ0p,q(Wγ)φ
0
p,q(A ∩ {F = γ}) ∩B|Wγ)

= φ0p,q(Wγ)φ
0
p,q(A ∩ {F = γ})|Wγ)φ

0
p,q(B|Wγ)

= φ0p,q(A ∩ {F = γ}) ∩Wγ)φ
0
p,q(B|Wγ)

= φ0p,q(A ∩ {F = γ})φ0p,q(B|Wγ)

≤ φ0p,q(A ∩ {F = γ})φ0p,q(B).

If we sum over suitable values of γ, we get

φ0p,q(A ∩ B ∩ V ) ≤ φ0p,q(A ∩ V )φ0p,q(B) ≤ φ0p,q(A)φ
0
p,q(B).

Since A and B are decreasing events, they are positively correlated, then

0 ≤ φ0p,q(A ∩ B)− φ0p,q(A)φ
0
p,q(B) ≤ φ0p,q(A ∩B ∩ V c) ≤ φ0p,q(V

c).

Since V is an increasing event, we can use the stochastic domination of a product
measure by φ0p,q : φ

0
r,1 ≺ φ0p,q , with r = p/(p+ (1− p)q), thus φ0p,q(V

c) ≤ φ0r,1(V
c).

It remains to prove, for large p, the existence of C and α > 0 such that φ0r,1(V
c) ≤

C|∂Λ1|e−αn, where n = d(Λ1,Λ2)− 2.
Since the random field (11x is free)x∈Zd isM -dependent with limr→1 φ0r,1(0 is free) =

0, it follows from a theorem of Liggett, Schonmann and Stacey [LSS97] that the
field (11x is free)x∈Zd is stochastically dominated by a product of Bernoulli measures
of parameter 1

2d as soon as p is large enough.
Now, a counting argument gives

φ0r,1(V
c)| ≤ |∂Λ1|(2d)(2d− 1)n(1/(2d))n,

where n = d(Λ1,Λ2)− 1, which completes the proof. ¤

We can now prove Theorem 1.
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Proof. The uniqueness of the random cluster measure for p close to 1 has been
proved by Grimmett [Gri95]. To prove that the uniqueness holds for p > pr(q) in
the cases where we have announced a convenient value for pr(q), simply note that
when q = 1, the uniqueness is obvious and that we have already remarked that
there was uniqueness for d = 2 and p > p∗g.

Let us now prove the Central Limit Theorem. We will apply Theorem 2 to the
sequence rn = ‖n‖/4.

Let us show that
∑

n∈Zd
P (+∞ > |C(0)| ≥ ‖n‖

4
)

converges.

• For d ≥ 3 and p sufficiently close to 1, this follows from the estimate of
Pisztora [Pis96]: for each b ∈ {0, 1} and each p > pslab, there exists a
constant a = a(p, q) with

(5) ∀n ≥ 0 φbp,q(|C| = n) ≤ exp
(

− an(d−1)/d
)

.

• For d = 2 and p > pg(q)
∗, it follows from our lemma 2.

Now, it remains to prove that

(6)
∑

n∈Zd
Cov(11Ãn , 11B̃n) < +∞,

with Ãn = {|C(0)| ≥ rn} and B̃n = {|C(n)| ≥ rn}.
Put Λn = B(n, ‖n‖/3) and Λ′n = B(0, ‖n‖/3). It is clear that Ãn ( resp. B̃n) is

σ(Λn)− (resp. σ(Λ′n)−) measurable. It is obvious that Ãn and B̃n are increasing
events. Then, we can apply lemma 5. Since d(Λn,Λ

′
n) ≥ n/3, it follows that

0 ≤ Cov(11Ãn , 11B̃n) ≤ Knd−1e−
α(p,q)
3 n,

which forms a convergent series as soon as p > p′(q). When d = 2, the result follows
similarly from lemma 4. ¤

Before considering applications of our theorem 1, we try to highlight the nature
of the gap between our theorem and our natural wish (that is pr(q) = pc(q) or at
least pslab(q)). Actually, we need a substitute for lemma 5 for p > pc. The main
tool for proving our lemma 5 was to exhibit sets satisfying the assumptions of the
decoupling lemma. Is it always possible to produce with large probability such sets?
An affirmative answer could also lead to a proof of the famous conjecture about
the uniqueness of the random cluster measure. This clearly shows the difficulty of
the task.

4. Random coloring of clusters

If G is a subgraph of Ld, s ∈ R and if ν is a probability measure on R, we
define the color-probability PG,ν,s as follows: PG,ν,s is the unique measure on

(RZd ,B(RZd)) under which the canonical projections Xi – defined, as usual by
Xi(ω) = ωi – satisfy

• For each i ∈ Zd, the law of Xi is
– ν if |C(i)| < +∞.
– δs otherwise.

• For each independent set S ⊂ Zd, the variables (Xi)i∈S are independent.
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• For each connected set S ⊂ Zd, the variables (Xi)i∈S are identical.

Let φ be a measure on S(Ld) which satisfies the following assumptions:

• (E): φ is a translation-invariant ergodic measure on S(Ld).
• (M): ∃α > d

∑+∞
k=1 k

αP (|C(0)| = k) < +∞.

In this case, we define

(7) χf (φ) =

+∞
∑

k=1

kP (|C(0)| = k).

When θφ = φ(0↔∞) > 0, the following assumption will also be considered:

(CLT ) : ∃σ2φ > 0,
|Λn ∩ C∞| − θφ|Λn|

|Λn|1/2
=⇒ N (0, σ2φ).

The randomized color-measure associated to φ is defined by

P φ,ν,s =

∫

S(Ld)
PG,ν,s dφ(G).

We emphasize that the results which will be proved here are not restricted to the
case where φ is a random cluster measure. Nevertheless, to motivate this amount
of generality, let us give at once some examples of models covered by randomized
color-measures when φ = φbp,q .

• The case q = 1 is a generalization of the divide and color model of Hägg-
ström [Häg01], which has already been studied in a earlier paper of the
author [Gar01].

• The most celebrated of the randomized color-measure is obtained when
q ≥ 2 is an integer and ν = 1

q (δ1 + δ2 + · · · + δq). In this case P φ,ν,s is

the Gibbs measure WPtq,β,s for the q-state Potts model on Zd at inverse
temperature β := − 1

2 log(1− p), according to Proposition 2. It includes of
course the case of the Ising model.

• If n1, n2, . . . nk are positive integers with n1 + n2 + · · · + nk = q and we
take ν = 1

q (n1δ1 + n2δ2 + . . . nkδk), we obtain a fuzzy Potts model. It

obviously follows from the previous example and the definition of a fuzzy
Potts model, see [MVV95, Häg99, Häg03].

We begin with a general property of randomized color-measures.

Theorem 3. P φ,ν,s is translation invariant and the action of Zd on P φ,ν,s is er-
godic.

Proof. Let Ω = {0, 1}Ed, Ωt = [0, 1]Z
d

, Ωc = RZd , Ω3 = Ω×Ωt×Ωc. As usually, Zd
acts on Ω3 by translation, with for each k, n, p ∈ Zd, (ω, ωt, ωc) ∈ Ω3, {x, y} ∈ Ed:

k.(ω, ωt, ωc)({x, y}, n, p) = (ω, ωt, ωc)({k + x, k + y}, k + n, k + p).

Let us denote by U [0, 1] the uniform distribution on [0, 1] and consider the action

of Zd on (Ω3,B(Ω3), φ⊗U [0, 1]⊗Zd ⊗ ν⊗Zd). Since φ⊗U [0, 1]⊗Zd ⊗ ν⊗Zd is a direct
product of an ergodic measure by two mixing measures, it follows that the action
of Zd on Ω3 is ergodic – see Brown [Bro76] for instance.

Let us define f : Ω3 → R by f(ω, ωt, ωc) = s if |C(0)(ω)| = +∞ or if there
exist x, y ∈ C(0)(ω), with x 6= y and ωt(y) = ωt(x). (Note that the second

case actually not happens under φ ⊗ U [0, 1]⊗Zd ⊗ ν⊗Zd .) Otherwise, we define
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f(ω, ωt, ωc) to be equal to ωc(x), where x is the unique element of C(0)(ω) such
that (ωt)(x) = max{ωt(y); y ∈ C(0)}.

Now, if we define (Xk)k∈Zd , by Xk(ω, ωt, ωc) = f(k.(ω, ωt, ωc)), it is not difficult

to see that the law of (Xk)k∈Zd under φ⊗U [0, 1]⊗Zd⊗ν⊗Zd is P φ,ν,s. Since a factor
of an ergodic system is an ergodic system – see also Brown [Bro76] – , it follows
that P φ,ν,s is ergodic under the action of Zd. ¤

4.1. Normal fluctuations of sums for color-measures. We will first present
a “quenched” central limit theorem:

Theorem 4. Suppose that ν is a probability measure on R with a second moment
ant that φ satisfies (E) and (M). We putm =

∫

R x dν(x) and σ
2 =

∫

R(x−m)2 dν(x).

For φ-almost all subgraphs G of Ld, the following holds:

1

|Λn|1/2
(

∑

x∈Λn\C∞

(X(x)−m)
)

=⇒ N (0, χf (φ)σ2)

where C∞(G) = {x ∈ Zd;x↔∞}.
The following lemma will be very useful.

Lemma 6. For each subgraph G of Ld, let us denote by (Ai)i∈J the partition of G
into connected components.

Suppose that φ satisfies (E) and (M). Then, we have for φ-almost all G:

lim
n→∞

1

|Λn|
∑

i∈J;|Ai|<+∞
|Ai ∩ Λn|2 = χf (φ),

where

χf (φ) =

+∞
∑

k=1

kφ(|C(0)| = k).

Proof. Let us define C ′(x) by

C ′(x) =

{

C(x) if |C(x)| < +∞
∅ otherwise

and C ′n(x) = C ′(x) ∩ Λn.
It is easy to see that

(8)
∑

i∈J;|Ai|<+∞
|Ai ∩ Λn|2 =

∑

x∈Λn
|C ′n(x)|.

We have |C ′n(x)| ≤ |C(x)|, and the equality holds if and only if C ′(x) ⊂ Λn.
The quantity residing in connected components intersecting the boundary of Λn

can be controlled using the conditions on the moments of the size of finite clusters.
We have
+∞
∑

k=1

nd−1φ(+∞ > |C(0)| ≥ nd/α) ≤
∫ +∞

0

xd−1φ(+∞ > |C(0)| ≥ nd/α)

=
1

d

∫

|C(0)|<+∞
|C(0)|α dφ.
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It follows from a standard Borel-Cantelli argument that for φ-almost all G, there
exists a (random) N such that

(9) ∀n ≥ N (‖x‖∞ = n) =⇒ (|C ′(x)| ≤ nd/α).

Thus, for large n and for each x ∈ Λn−nd/α , C
′(x) is completely inside Λn, which

means that C ′(x) = C ′n(x). Then,
∑

x∈Λ
n−nd/α

|C ′(x)| ≤
∑

x∈Λn
|C ′n(x)| ≤

∑

x∈Λn
|C ′(x)|

1

|Λn|
∑

x∈Λ
n−nd/α

|C ′(x)| ≤ 1

|Λn|
∑

x∈Λn
|C ′n(x)| ≤

1

|Λn|
∑

x∈Λn
|C ′(x)|.

By the ergodic Theorem, we have φ-almost surely:

lim
n→+∞

1

|Λn|
∑

x∈Λn
|C ′(x)| =

∫

|C ′(0)| dφ = χf (φ).

Since lim
n→+∞

|Λn−nd/α |
|Λn|

= 1 , the result follows.

¤

Remark: Besides technical details, the key point of this proof is the identity (8). It
is interesting to note that Grimmett [Gri99] used an analogous trick to prove that

lim
n→+∞

k(n)/|Λn| = κ(p) almost surely, when k(n) is the number of open clusters

in Λn.
We can now prove Theorem 4.

Proof. Let (ai)i≥1 be a family of elements of Zd which represent the connected
components of the graph G.

∑

x∈Λn\C∞

(X(x)−m) =
+∞
∑

i=1
|C ′n(ai)|(X(ai)−m)

Then

1

|Λn|1/2
∑

x∈Λn\C∞

(X(x)−m) =
( s2n
|Λn|

)1/2 1

sn

+∞
∑

i=1
|C ′n(ai)|(X(ai)−m),

with

s2n =
+∞
∑

i=1
|C ′n(ai)|2.

By lemma 6, we have for φ-almost all G lim
n→+∞

s2n
|Λn|

= χf (φ).

Now, it remains to prove that

(10)
1

sn

+∞
∑

i=1
|C ′n(ai)|(X(ai)−m) =⇒ N (0, σ2).
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Therefore, we will prove that for φ-almost allG, the sequence Yn,k = |C ′n(ai)|(X(ai)−
m) satisfies the Lindeberg condition. For each ε > 0, we have

+∞
∑

k=1

1

s2n

∫

|Yn,k|≥εsn
Y 2n,k dP

G,ν =

+∞
∑

k=1

|C ′n(ak)|2
s2n

∫

|C′n(ak)||x|≥εsn
(x−m)2 dν(x)

≤
∫

|x|≥ ε
ηn

(x−m)2 dν(x),

with ηn =
supk≥1 |C′n(ak)|

sn
. Thus, the Lindeberg condition is fulfilled if lim ηn = 0.

But we have already seen that sn ∼ (χf (φ)|Λn|)1/2, whereas equation (9) gives
supk≥1 |C ′n(ak)| = O(nd/α) = o(nd/2). This concludes the proof.

¤

We can now pass to the “annealed” central limit theorem.

Theorem 5. Let φ be a measure on S(Ld) that satisfies (E) and (M). Let ν be
a probability measure on R with a second moment. We put m =

∫

R x dν(x) and

σ2 =
∫

R(x−m)2 dν(x). Let also s ∈ R.

• If θφ = 0, then we have under P φ,ν,s

1

|Λn|1/2
∑

x∈Λn
(X(x)−m) =⇒ N (0, χf (φ)σ2)

• If (θφ > 0) and (CLT ) hold , then we have under P φ,ν,s

1

|Λn|1/2

Ã

∑

x∈Λn
X(x)− ((1− θφ)m+ θφs)|Λn|

!

=⇒N (0, χf (φ)σ2 + (s−m)2σ2φ).

Proof. When θφ = 0, the result easily follows from Theorem 4. So, let us suppose
that (θφ > 0) and (CLT ) hold. In this proof, it will be useful to consider G

as a random variable. Let Ω′ = S(Ld) × RZd and define the probability P on

B(Ω′) as a skew-product: for measurable A × B ∈ B(S(Ld)) × B(RZd), we have
P(A × B) =

∫

A
PG,ν,s(B) dφ(G). Then, the law of the marginals G and X are

PG = φ and PX = P φ,ν,s. As usually, the letter E will be used to denote an
expectation – or a conditional expectation – under P.

Rearranging the terms of the sum, we easily obtain
∑

x∈Λn
X(x)−((1−θφ)m+θφs)|Λn| =

∑

x∈Λn\C∞

(X(x)−m)+(s−m)(|C∞∩Λn|−|Λn|θφ)

We will now put

Qn =
1

|Λn|1/2

Ã

∑

x∈Λn
X(x)− ((1− θφ)m+ θφs)|Λn|

!

,

and define

∀t ∈ R φn,s(t) = E exp(iQnt).

Thereby, we have

φn,s(t) = E exp(− it

|Λn|1/2
∑

x∈Λn\C∞

(X(x)−m) + (s−m)(|C∞ ∩ Λn| − |Λn|θφ))
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Conditioning by σ(G) and using the fact that C∞ is σ(G)-measurable, we get
φn,s(t) = E fn(t, .)gn((s−m)t, .), with

fn(t, ω) = E exp(− it

|Λn|1/2
∑

x∈Λn\C∞

(X(x)−m)|σ(G)

=

∫

exp(− it

|Λn|1/2
∑

x∈Λn\C∞(ω)
(X(x)−m) dPG(ω),ν

and

gn(t, ω) = exp(− it

|Λn|1/2
(|C∞(ω) ∩ Λn| − |Λn|θφ)).

By Theorem 4 we have for each t ∈ R and P φ,ν,s-almost all ω: lim
n→+∞

fn(t, ω) =

exp(− t2

2 χ
f (φ)σ2) Then, by dominated convergence

lim
n→+∞

E (fn(t, .)− exp(− t
2

2
χf (φ)σ2))gn((s−m)t, .) = 0.

Next

lim
n→+∞

E fn(t, .)gn((s−m)t, .) = lim
n→+∞

exp(− t
2

2
χf (φ)σ2)E gn((s−m)t, .)

= exp(− t
2

2
χf (φ)σ2) exp(− t

2

2
(s−m)2σ2φ)

where the last equality follows from Proposition 1. We have just proved that

lim
n→∞

φn,s(t) = exp(− t
2

2
(χf (φ)σ2 + (s−m)2σ2φ)).

The result now follows from the Theorem of Levy. ¤

4.2. Fluctuation of the empirical vector associated to coloring models.

We now specialize to the case where ν has a finite support (in other words, there is
only a finite number of colors) and obtain theorems on the frequencies of occurring
of each of the states in large boxes.
Definition Let q be an integer with q ≥ 2 and consider a finite set Sq =

{a1, a2, . . . , aq}. For every z ∈ Sq and each vector ν ∈ Rq
+ with ν1 + · · · + νq = 1,

we denote by Colorzφ,ν the measure P φ,ν′,z, with ν′ =
∑q

i=1 νiδai .

For ω ∈ SZd
q , and Λ ⊂ Zd, we note n(Λ)(ω) = (n1(Λ)(ω), . . . , nq(Λ)(ω)), with

nk(Λ)(ω) = |{x ∈ Λ;ωx = k}|. We also denote by (e1, . . . , eq) the canonical basis
of Rq .

Theorem 6. Let φ be a measure on S(Ld) that satisfies (E),(M) and moreover
θφ = 0 or (CLT ). Let q be an integer with q ≥ 2, z ∈ Sq, and ν ∈ Rq

+ with
ν1 + · · ·+ νq = 1. Then, under Colorzφ,ν , we have

n(Λt)− |Λt|((1− θφ)ν + θφez)
√

|Λt|
=⇒N (0, C),

where C is the matrix associated to the quadratic form

Q(b) = χf (φ)(〈Dνb, b〉 − 〈ν, b〉2) + σ2φ〈ez − ν, b〉2,
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with Dν = diag(ν1, . . . , νq). In other words, C is the matrix of the map

b 7→ χf (φ)(Dνb− 〈ν, b〉ν) + σ2φ〈ez − ν, b〉(ez − ν).

Proof. Let us note Qt =
n(Λt)−|Λt|((1−θφ)ν+θφez)√

|Λt|
and let L be a random vector

following N (0, C), where C is the covariance matrix denoted above.
We will prove

∀b ∈ Rd 〈Qt, b〉 =⇒ 〈L, b〉.
Using the theorem of Levy, it is easy to see that it is equivalent to say that Qt =⇒ L.

Let now b ∈ Rd. For x ∈ Zd, let us note Yx = bXx . We have

〈n(Λt), q〉 =

q
∑

k=1

nk(Λt)bk =

q
∑

k=1

∑

x∈Λt
δXx(k)bk

=
∑

x∈Λt

q
∑

k=1

δXx(k)bk =
∑

x∈Λt
bXx

=
∑

x∈Λt
Yx

Now put m = 〈ν, b〉 and s = br = 〈ez, b〉. We have

〈Qn, b〉 =

(
∑

x∈Λt
Yx
)

− |Λt|((1− θφ)m+ θφs)

√

|Λt|
.

Now if we define µ to be the image of ν by k 7→ bk, it is not difficult to see that
the mean of µ is m and that the law of (Yk)k∈Zd under Colorzφ,ν is P φ,µ,s. Then, it

follows from Theorem 5 that 〈Qn, b〉 =⇒ N (0, Q(b)), with Q(b) = χf (φ)σ2 + (s −
m)2σ2φ), where σ

2 is the variance of ν. Finally, we get the explicit form

Q(b) = χf (φ)(〈Dνb, b〉 − 〈ν, b〉2) + σ2φ〈ez − ν, b〉2,
with Dν = diag(ν1, . . . , νq). This concludes the proof.

¤

We are now interested in having, when θφ > 0, a version of theorem 6 in which
the observed quantity does not depend on r. There are several reasons to motivate
such a theorem: if we want to use this central limit theorem to test if a concrete
physical system conforms to this model (have in mind an Ising or a Potts model
for instance), we have a priori no reason to guess the r phase of the underlying
theoretical system. There is also a theoretical motivation for such a theorem: if
we get a theorem which does not depend on r, it will be easy to transfer it to any
measure which resides in the convex hull of the measures (Colorzφ,ν)z∈Sq .

Theorem 7. Let φ be a measure on S(Ld) that satisfies (E), (M) , θφ > 0 and
(CLT ). Let q be an integer with q ≥ 2, z ∈ Sq, and ν ∈ Rq

+ with ν1 + · · ·+ νq = 1.

For Λ ⊂ Zd, we denote by RΛ an element of Sq which realizes the maximum of
(nΛ(k)− |Λ|(1− θφ)ν(k))k∈Sq . Then, under Colorzφ,ν , we have

n(Λt)− |Λt|((1− θφ)ν + θφeRΛt )
√

|Λt|
=⇒ N (0, C),
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where C is the matrix associated to the quadratic form

Q(b) = χf (φ)(〈Dνb, b〉 − 〈ν, b〉2) + σ2φ〈ez − ν, b〉2,
with Dν = diag(ν1, . . . , νq). In other words, C is the matrix of the map

b 7→ χf (φ)(Dνb− 〈ν, b〉ν) + σ2φ〈ez − ν, b〉(ez − ν).

Proof. Since Colorzφ,ν is ergodic, n(Λt)|Λt| = 1
|Λt|
∑

x∈Λteωx almost surely converges to

the mean value of eω0 , that is (1− θφ)ν + θφez.
Asymptotically, we have n(Λt)− |Λt|(1− θφ)ν ∼ |Λt|θφez. It follows that
(11) RΛt = z for large t Colorzφ,ν − almost surely.

Now let g be a bounded continuous function on Rd:

E g(
n(Λt)− |Λt|((1− θφ)ν + θφeRΛt )

√

|Λt|
) =

E g(
n(Λt)− |Λt|((1− θφ)ν + θφez)

√

|Λt|
)

+ E

Ã

g(
n(Λt)− |Λt|((1− θφ)ν + θφeRΛt )

√

|Λt|
)

− g(
n(Λt)− |Λt|((1− θφ)ν + θφez)

√

|Λt|
)

!

.

The first term of the sum converges to the integral of g under N (0, C) by Theorem 6
and the second one converges to 0 by dominated convergence. It follows that

E g(
n(Λt)−|Λt|((1−θφ)ν+θφeRΛt )√

|Λt|
) converges to the integral of g under N (0, C) for any

bounded continuous function g, which is exactly the weak convergence to N (0, C).
¤

We can now pass to the case where the color which is used to paint the infinite
cluster is also randomized.

Theorem 8. Let φ be a measure on S(Ld) that satisfies (E),(M),θφ > 0 and
(CLT ). Let q be an integer with q ≥ 2, z ∈ Sq, and ν ∈ Rq

+ with ν1 + · · ·+ νq = 1.

For Λ ⊂ Zd, we denote by RΛ an element of Sq which realizes the maximum of
(nΛ(k)− |Λ|(1− θφ)ν(k))k∈Sq .

Let γ be a measure on Sq and Φγ =
∫

Colorzφ,ν dγ(z). Then, under Φγ , we have

n(Λt)− |Λt|((1− θφ)ν + θφeRΛt )
√

|Λt|
=⇒ µ,

where µ is the law of X + S(eZ − ν), where X,S and Z are independent, with
X ∼ N (0, C ′), S ∼ N (0, σ2φ) and Z ∼ γ. C ′ is the matrix associated to the quadratic
form

Q(b) = χf (φ)(〈Dνb, b〉 − 〈ν, b〉2)
with Dν = diag(ν1, . . . , νq). In other words, C ′ is the matrix of the map

b 7→ χf (φ)(Dνb− 〈ν, b〉ν).
Proof. The theorem just follows from Levy’s theorem and a straightforward com-
putation of characteristic functions. ¤
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5. Applications to Potts and Ising models

Let q be an integer with q ≥ 2 and note ν = 1
q (e1 + e2 + · · ·+ eq) =

1
q (1, . . . , 1).

According to Proposition 2, Colorzφ,ν is the Gibbs measure WPtq,β,s for the q-state

Potts model on Zd at inverse temperature β := − 1
2 log(1− p),

Thus, we will note βc = − 1
2 ln(1 − pc), βg = − 1

2 ln(1 − pg) and βr = − 1
2 ln(1 −

pr(q)).
By Aizenman, Chayes, Chayes and Newman [ACCN88], the Gibbs measure at in-

verse temperature β is unique if and only if φ1p,q(0↔∞) = 0, so there is uniqueness
of the Gibbs measure for β < βc and phase transition for β > βc.

5.1. Central limit theorems for Potts models. In the uniqueness zone, we
obtain a simple result:

Theorem 9. Let β < βg. There is a unique Gibbs measure for the q-state Potts
model at inverse temperature β. If we note p = 1− exp(−2β) and ν = 1

q (e1 + e2 +

· · ·+ eq), we have the following results for the empirical distributions:

n(Λt)− |Λt|ν
√

|Λt|
=⇒ N (0,

χ(p, q)

q2
(qI − J)),

where J is the q × q matrix whose each entry is equal to 1, and

χ(p, q) =

+∞
∑

k=1

kφ1p,q(|C(0)| = k).

We will apply Theorem 6. Since φ1p,q(0 ↔ ∞) = 0, WPtq,β,z does not depends

on z. The assumption of ergodicity (E) is satisfied by φ1p,q . In this case, θφ =

θ1(p, q) = 0, so we just have to check assumption (M), which here is a consequence
of the exponential inequality of Grimmett and Piza, which is satisfied as soon as
p < pg, or equivalently β < βg = − 1

2 ln(1− pg). Then, Theorem 8 applies.
If p > pc, then the Gibbs measures (WPtq,β,z)z∈Sq are all distinct – this can be

seen as a consequence of Equation (11). Since they are ergodic by theorem 3, they
are affinely independent.

Then, in the case β > βr, we will obtain central limit theorems relative to the
empirical distribution for a q-dimensional convex set of Gibbs measures:

Theorem 10. Let β > βr and let Φγ be a Gibbs measure for the q states Potts
model at inverse temperature β which can be written in the form

Φγ =

∫

WPtq,β,z dγ(z).

For Λ ⊂ Zd, we denote by RΛ an element of Sq which realizes the maximum of
(nΛ(k))k∈Sq . Let us note p = 1− exp(−2β) and ν = 1

q (e1 + e2 + · · · + eq). Then,

under Φγ , we have

n(Λt)− |Λt|((1− θφ)ν + θφeRΛt )
√

|Λt|
=⇒ µ,

where µ is the law of X + S(eZ − ν), when X,S and Z are independent, with

X ∼ N (0, χ
f (p,q)
q2 (qI − J)), S ∼ N (0, σ2p,q) and Z ∼ γ.
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J is the q × q matrix whose each entry is equal to 1,

χf (p, q) =

+∞
∑

k=1

kφ1p,q(|C(0)| = k),

and σ2p,q =
∑

k∈Zd

(

φp,q(0↔∞ and k ↔∞)− θ(p, q)2
)

.

When φ = WPtq,β,z, the limit µ is Gaussian and

n(Λt)− |Λt|((1− θφ)ν + θφez)
√

|Λt|
=⇒ µ.

We will apply Theorems 7 and 8. The assumption of ergodicity (E) is again
satisfied by φ1p,q . By the inequality of Pisztora and lemma 2, (M) holds when

p > pr(q) or, equivalently, when β > βr. Since φ1p,q(0 ↔ ∞) > 0, we must also
check (CLT ). By Theorem 1, (CLT ) holds when p > pr(q), or, equivalently, when
β > βr. Then, Theorems 7 and 8 apply.

When γ is a Dirac measure, Z is constant, so µ is Gaussian.

Corollary 2. For β > βr, the Gibbs measure which is obtained as the limit of finite
volume Gibbs measures with free boundary condition satisfies the conclusion of the
preceding theorem where we take γ = 1

q (
∑

k∈Sq δk).

Since we have uniqueness of the infinite cluster in the random cluster model,
we can consider that the law of Φν =

∫

WPtq,β,z dν(z) is obtained by coloring the

connected components of the random cluster independently. Then, Φν is just FPt
Zd
q,β

in the terminology of Proposition 2.3 of [HJL02], i.e. the Gibbs measure which is
obtained as the limit of finite size Gibbs measures with free boundary condition.

5.2. Normal fluctuations of the magnetization in Ising models. In spite
of the fact that µ is in general not Gaussian, we can observe an intriguing fact

when q = 2, i.e. for the Ising model. In this case S(eZ − ν) = εS

(

− 1
2
1
2

)

, with

ε = (−1)11{Z=1}S. But εS has the same law than S. It follows that µ does not depend
on γ and is always Gaussian.

Note also that it is known that we have an exponential decay of the covariance
in the Ising model at high temperature – the exact Ornstein-Zernike directional
speed of decay has even be established by Campanino, Ioffe and Velenik [CIV03].
It follows that we have pc = pg or equivalently βc = βg. Since the value of the
critical point when d = 2 is the fixed point of x 7→ x∗, we have even βr = βc when
d = 2.

In this model, it is most relevant to formulate the result in term of the magnet-
ization mΛ = n(Λ).(1− 1) rather than in terms of n(Λ).

In this case, Theorem 10 admits the following reformulation.

Theorem 11. Let β > βr and let Φγ be a Gibbs measure for the Ising model

on {−1,+1}Zd at inverse temperature β which can be written in the form Φγ =

γWPt2,β,1+(1−γ)WPt2,β,−1. Let us note p = 1−exp(−2β) and mΛ = 1
|Λ|

∑

x∈Λ
ωx.

Then, under Φγ , we have
√

|Λt|
(

mΛt − sign(mΛ)θ(p, 2)
)

=⇒ N (0, χf (p, 2) + σ2p,2),
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where χf (p, q) =

+∞
∑

k=1

kφ1p,q(|C(0)| = k)

and σ2p,q =
∑

k∈Zd

(

φp,q(0↔∞ and k ↔∞)− θ(p, q)2
)

.

Note that βr = βc when d = 2.

Note that for d = 2, Theorem 11 covers the whole set of Gibbs measure at
temperature β > βc. Indeed, WPtq,β,1 and WPtq,β,−1 are known to be the only
two extremal Gibbs measures when d = 2. (This celebrated result is due to Higu-
chi [Hig81] and Aizenman [Aiz80]. See also Georgii and Higuchi [GH00] for a
modern proof.)

It follows that every Gibbs measure is a convex combination of WPtq,β,1 and
WPtq,β,−1. We also note that θ(p, 2) appears as the spontaneous magnetization in
the “+” phase of the Ising model. Since the explicit expression of the spontaneous
magnetization is known when d = 2 – see Abraham and Martin-Löf [AML73],
Aizenman [Aiz80], and also the bibliographical notes in Georgii [Geo88] for the
whole long story of this result – , we get for d = 2 and p ≥ pc the formula θ(p, 2) =
(

1− (sinh 2β)−4
)1/8

=
(

1− 16 (1−p)4
p4(2−p)4

)1/8
.

Of course we also have a reformulation of Theorem 9 in the high temperature
regime β < βg = βc.

Theorem 12. Let β < βc and let Φ be the unique Gibbs measure for the Ising

model on {−1,+1}Zd at inverse temperature β. We note p = 1 − exp(−2β) and

mΛ = 1
|Λ|

∑

x∈Λ
ωx.

Then, under Φ, we have

√

|Λt|mΛt =⇒ N (0, χf (p, 2)),

where

χf (p, q) =
+∞
∑

k=1

kφ1p,q(|C(0)| = k).

Note that for the Gibbs measures WPt2,β,1 or WPt2,β,−1, the central limit the-
orems could be proved without the machinery of the above section: since the Ising
model satisfies the F.K.G. inequalities, it follows from the theorem of Newman that
is sufficient to prove that

(12)
∑

k∈Zd
Cov(σ0, σk) < +∞.

Of course, this last result can be obtained independently from the present work –
it is for example a consequence of Campanino, Ioffe and Velenik [CIV03].

Nevertheless, let us see how it can be obtained from the random cluster estimates
of this paper:

It is not difficult to see that under WPt2,β,1 or WPt2,β,−1, we have Cov(σ0, σk) =
φp,2(0↔ k)− φp,2(0↔∞)2.
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Now, φp,2(0↔ k) = φp,2(0↔ k by a finite cluster) + φp,2(0↔∞, k ↔∞). Then
∑

k∈Zd
Cov(σ0, σk) =

∑

k∈Zd
φp,2(0↔ k by a finite cluster)

+
∑

k∈Zd
φp,2(0↔∞, k ↔∞)− φp,2(0↔∞)2

= χf (p, 2) + σ2p,2.

Nevertheless, when β > βr, the Gibbs measure “with free boundary conditions”

FPtZd
2,β – which satisfies the assumptions of theorem 11 – does not have finite sus-

ceptibility: in this case

Cov(σ0, σk) = E σ0σk = φp,2(0↔ k) ≥ φp,2(0↔∞, k ↔∞)

≥ φp,2(0↔∞)2 > 0,

so the series
∑

k∈Zd Cov(σ0, σk) diverges.
These results can be compared with a result of Martin-Löf [ML73]: he also

proved a central limit theorem for the magnetization in Ising Models at very low
temperature. Particularly, he relays the variance of the limiting normal measure
to the second derivative at 0 of the thermodynamical function F . Nevertheless, his
result is slightly different from ours, since he considers Gibbs measures in large boxes
with boundary condition “+”, whereas we consider here infinite Gibbs measures
under the “+” phase.
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[ML73] Anders Martin-Löf. Mixing properties, differentiability of the free energy
and the central limit theorem for a pure phase in the Ising model at low



CENTRAL LIMIT THEOREMS FOR THE POTTS MODEL 27

temperature. Comm. Math. Phys., 32:75–92, 1973.
[MVV95] Christian Maes and Koen Vande Velde. The fuzzy Potts model. J. Phys.

A, 28(15):4261–4270, 1995.
[New80] C. M. Newman. Normal fluctuations and the FKG inequalities. Comm.

Math. Phys., 74(2):119–128, 1980.
[NS81a] C. M. Newman and L. S. Schulman. Infinite clusters in percolation

models. J. Statist. Phys., 26(3):613–628, 1981.
[NS81b] C. M. Newman and L. S. Schulman. Number and density of percolating

clusters. J. Phys. A, 14(7):1735–1743, 1981.
[Pis96] Agoston Pisztora. Surface order large deviations for Ising, Potts and per-

colation models. Probab. Theory Related Fields, 104(4):427–466, 1996.
[Zha01] Yu Zhang. A martingale approach in the study of percolation clusters

on the Zd lattice. J. Theor. Probab., 14(1):165–187, 2001.
E-mail address: Olivier.Garet@univ-orleans.fr
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