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Instituto Superior Técnico
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Abstract. In this paper we discuss a weak version of KAM the-
ory for symplectic maps which arise from the discretization of the
minimal action principle. These maps have certain invariant sets,
the Mather sets, which are the generalization of KAM tori in the
non-differentiable case. These sets support invariant measures,
the Mather measures, which are action minimizing measures. We
generalize viscosity solution methods to study discrete systems.
In particular, we show that, under non-resonance conditions, the
Mather sets can be approximated uniformly, up to any arbitrary
order, by finite perturbative expansions. We also present new re-
sults concerning the approximation of Mather measures.

1. Introduction

In this paper, we discuss perturbation methods for symplectic maps
that arise from the discretization of the minimal action principle. The
motivation for this work is the following: the phase space of close to in-
tegrable Hamiltonian system can be split into regular parts, composed
of invariant tori in which the system displays very simple periodic or
quasi-periodic behaviour, and in another part where the system may
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exhibit irregular behaviour. As the system gets farther from the inte-
grable, the invariant tori do not disappear altogether but shrink to cer-
tain sets which have a characteristic action minimizing property that
allows to prove their existence by a variational argument. In these
sets, one can define certain action minimizing measures, the Mather
measures. To observe these sets and measures numerically one must
do some type of discretization. In this paper, we discuss a time dis-
cretization scheme for autonomous Hamiltonian systems, and study
the stability of the action minimizing sets and measures under small
perturbations.

The Aubry-Mather theory [Mat89a], [Mat89b], studies invariant mea-
sures of Lagrangian systems which have special minimizing properties.
In its origin was the study of discrete systems such as area-preserving
twist diffeomorphisms [Mat79], [Mat81], [Mat82], [Mat91]. Recently,
the techniques of viscosity solutions [Fat97a], [Fat97b], [Fat98a], [Fat98b],
[E99], [EG01] have been used with success to study continuous La-
grangian systems and can be appropriately adapted to study discrete
systems [Gom02].

One motivation to study symplectic maps instead of flows comes
from the fact that by discretizing the minimal action principle from
classical mechanics, one obtains certain maps, which are symplectic,
and have the form

{

pn+1 − pn = hDxH(pn+1,xn)

xn+1 − xn = −hDpH(pn+1,xn),

where h is the time step and H the Hamiltonian. Those maps are
discrete analogs of Hamilton’s equations

{

ṗ = DxH(p,x)

ẋ = −DpH(p,x).

It is very important to notice that this discretization comes from vari-
ational principles, as we discuss in section 2, and has interesting geo-
metric and analytic features as will be pointed out later in the paper.

If the Hamiltonian H only depends on p, the dynamics is very simple
since pn = p0, and xn = x0 − nhDpH(p0). In this case, the system is
called integrable. We would like to study Hamiltonians that are close
to integrable. That is, when H is of the form H(p, x) = H0(p) +O(ε),
for ε a small parameter.

There are certain measures, the Mather measures, characterized by
a variational principle (see section 2), which are invariant under the
discrete Hamilton’s equations. Our main objective is to understand the
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dependence on ε of these measures. In continuous time, this problem
was partially addressed in [Gom03]. A classical result in Mather’s
theory is that the support of these measures (the Mather set) is a
Lipschitz graph. In [Gom03] was proved that this set can be well
approximated by certain smooth functions. In this paper we extend
substantially the results in [Gom03] as we prove new estimates for
the Mather measures of the perturbed problem (see section 7). In
particular we give a new expression for an approximate density for the
Mather measure.

We start section 2 with a discussion of generating functions and
formal integrability methods. These results motivate the methods used
in the remaining sections to study the dependence on ε of the Mather
sets. Without these guiding principles it would be extremely hard to
proceed as the equations are extremely complex.

For each P ∈ R
n, one can construct a Mather measure on T

n × R
n

that is supported on a Lipschitz graph. This graph can be determined
from a solution u of

u(x, P )− u(x̂, P ) + hH(P +Dxu(x̂, P ), x)−(1)

− hDxu(x̂)DpH(P +Dxu(x̂), x) = hH(P ),

in which x̂ is determined implicitly by

x̂− x = −hDpH(P +Dxu(x̂, P ), x).

The existence of smooth solutions to this equation can be addressed
using KAM theory. However, in general, there are no smooth solutions.
Thus one has to consider the class of viscosity solutions. Viscosity
solution methods, in particular, definition, existence, regularity, and
basic properties, are discussed in section 3. Although our results look
similar to KAM, they are valid even after KAM torus cease to exist.

Although viscosity solutions may not be smooth, one can develop
a formal expansion ũ(x, P ) in power series in ε and P − P0 of the
solution u(x, P ), in a neighborhood of ε = 0 and P = P0. There is
a solvability condition in order to construct those expansions, namely
that the rotation vector DPH0(P0) is Diophantine. These expansions
are constructed in section 4, and some technical estimates are proved
in section 5.

When considering the Mather set for ε > 0 one has two choices.
The first one is, given a vector P0 fixed, trying to compare the formal
approximation of the Mather set with the Mather set itself. Unfortu-
nately there are serious problem with this approach as, when ε > 0, the
Diophantine conditions may be destroyed. The approach we consider
is the following: for ε > 0 we construct a vector Pε which keeps an
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approximate rotation vector fixed. Then, in section 6, we prove that
the viscosity solution and its approximation at Pε are close both in
the supremum norm and its derivatives. To prove these estimates we
use a technique similar to the one in [Gom03], which is based in first
proving estimates along trajectories for finite time. Since ergodization
times can be controlled in terms of the Diophantine properties of the
rotation vector (see [BGW98], [DDG96], [Dum99]), we extend this es-
timate for all points using a-priori Lipschitz bounds for the viscosity
solution and its approximation.

The idea of controlling a viscosity solution during a long time and
then extending to nearby points has been used by other authors. For
instance in the paper [Bes], a ergodization times techniques are used
to study Hamilton-Jacobi equations perturbed by an elliptic operator.
This problem is also studied, in a different setting, in [FS86a], and
[FS86b]. We should note that our results are related to the ones in
[BK87], as both imply the stability of Mather sets. However, in this
last paper the problem addressed is the persistence of periodic orbits
and their techniques are quite different, whereas in our paper we study
the non-resonant case.

2. Discrete variational principles and integrability

In the variational formulation of classical mechanics, the trajectories
x(t) of a system are minimizers, or at least critical points, of the action

∫ T

0

L(x, ẋ)dt,

with fixed endpoints, in which L(x, v) : R
2n → R, the Lagrangian, is

the difference between kinetic and potential energy. We assume that
the Lagrangian is smooth, superlinear, strictly convex in v (that is,
D2
vvL is bounded away from 0), D2

vvL is uniformly bounded, and that
it is Z

n-periodic in x, which means that for all k ∈ Z
n,

L(x+ k, v) = L(x, v).

This periodicity makes it convenient to look at the Lagrangian as a
function from T

n × R
n to R (Tn is the n dimensional flat torus).

The minimizing trajectories are solutions to the Euler equation

(2) − d

dt
DvL(x, ẋ) +DxL(x, ẋ) = 0.

In applications, it is important to consider discrete versions of clas-
sical mechanics, for instance, for computational purposes. There are
two alternatives to make this discretization, one is to discretize the
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Euler-Lagrange equations (2), the other is to discretize the variational
principle. They are not equivalent, and this last approach has sev-
eral advantages. In fact, in the continuous setting there are certain
invariant sets, the Mather sets, which are obtained using a variational
principle. Using this discretization of the variational principle, one can
construct Mather measures, see for instance [Gom02]. Furthermore,
the map that is obtained this way has better geometrical properties as
it preserves the symplectic structure.

The discretization of the variational problem can be done by means
of the Euler method for the ODE

ẋ = v(t).

This yields the discrete dynamics

xn+1 = xn + hvn,

in which h is the time-step.
The corresponding variational problem consists in minimizing the

action

h

N
∑

n=0

L(xn,vn),

among all choices of vn, 0 ≤ n ≤ N , with fixed endpoints x0 and xN .
The analog of the Euler-Lagrange equations is

(3) −DvL(xn+1,vn+1)−DvL(xn,vn)

h
+DxL(xn+1,vn+1) = 0.

In the continuous case, (2) can be written in a Hamiltonian form:
{

ṗ = DxH(p,x)

ẋ = −DpH(p,x),

for p = −DvL(x, ẋ), and the Hamiltonian

H(p, x) = sup
v

[−p · v − L(x, v)] .

Similarly, (3) can be written in the equivalent form [Gom02]

(4)

{

pn+1 − pn = hDxH(pn+1,xn)

xn+1 − xn = −hDpH(pn+1,xn),

with

(5) pn+1 = −DvL(xn,vn).

Note that the dynamics (4) is semi-explicit, that is, implicit in p and
explicit in x. This may therefore constraint the size of h for which (4)
defines a discrete flow, depending on bounds for the derivatives of H.
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We consider the case in which the Lagrangian

Lε(x, v) : T
n × R

n → R,

is a perturbation of an integrable one L0(v). More precisely,

(6) Lε = L0(v) + εL1(x, v),

in which ε is a small parameter. When ε = 0, the dynamics (4) is very
simple since vn is constant. The Hamiltonian corresponding to (6) has
an expansion of the form

H(p, x) = H0(p) + εH1(p, x) + ε2H2(p, x) + · · ·
This expression is a straightforward application of the implicit function
theorem for the Legendre transform p = −DvLε.

As in the case of continuous flows (see [Arn89], [AKN97] or [Gol80]),
one can use generating functions to change coordinates, and, in particu-
lar, there is a version of the Hamilton-Jacobi integrability for maps. In
the next proposition we prove the main result on generating functions
and change of coordinates, which serves to motivate our methods.

Theorem 2.1. Let (x, p) ∈ R
2n be the original canonical coordinates

and (X,P ) ∈ R
2n be another coordinate system. Suppose there is a

smooth function S(x, P ) such that

(7) p = DxS(x, P ) X = DPS(x, P )

defines a global change of coordinates (this function is called a gener-
ating function). Additionally, assume that D2

xPS is non-singular, and
suppose there is a smooth function H(P,X) such that, for h sufficiently
small,

S(x, P )− S(x̂, P̂ ) + hH(DxS(x̂, P̂ ), x)−(8)

− hDxS(x̂, P̂ )DpH(DxS(x̂, P̂ ), x)+

+ hDPS(x̂, P̂ )DXH(P,DPS(x̂, P̂ )) =

= hH(P,DPS(x̂, P̂ )),

in which

(9) P̂ −P = hDXH(P,DPS(x̂, P̂ )) x̂−x = −hDpH(DxS(x̂, P̂ ), x).

In the new coordinate system, the equations of motion (4) are

(10)

{

Xn+1 −Xn = −hDPH(Pn,Xn+1)

Pn+1 −Pn = hDXH(Pn,Xn+1)
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In particular, if H does not depend on X, these equations simplify to

(11)

{

Xn+1 −Xn = −hDPH(Pn)

Pn+1 −Pn = 0.

Remark. 1. When we perform this change of coordinates we obtain
a new dynamics that is semi-explicit as (4), but this time is implicit in
X and explicit in P .
Remark. 2. In the continuous case, given a Hamiltonian H and the
generating function S, the new Hamiltonian is fully determined since
H(p, x) = H(P,X). However, in our case, that is not immediate since
(8) is in fact a partial differential equation for H.
Remark. 3. In this paper we will use mostly this theorem when
(x, p) ∈ T

n × R
n. In this case, S is identified with a function in the

tangent space of the universal covering of T
n.

Proof. For simplicity, we will set h = 1 in the proof, by absorbing
it into H (note however that we need h sufficiently small in order

for the implicit expressions to be defined and smooth). Define Ŝ =

S(x̂, P̂ ), and we use the convention DxŜ = (DxS)(x̂, P̂ ), as well as

DP Ŝ = (DPS)(x̂, P̂ ), to simplify the notation. By differentiating (8)
with respect to x we obtain,

DxS −DxŜDxx̂−DP ŜDxP̂ +DpHDx

(

DxŜ
)

+DxH −Dx

(

DxŜ
)

DpH−

−DxŜDx (DpH) +Dx

(

DP Ŝ
)

DXH +DP ŜDx

(

DXH
)

=

= DXHDx

(

DP Ŝ
)

.

Then, by canceling some terms we have

DxS −DxŜDxx̂−DP ŜDxP̂ +DxH−
−DxŜDx (DpH) +DP ŜDx

(

DXH
)

= 0.

Observe that

Dxx̂ = I −Dx(DpH),

and

DP ŜDx

(

−P̂ +DXH
)

= 0.

Therefore

(12) DxS −DxŜ +DxH = 0.
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Differentiating (8) with respect to P we get

DPS −DxŜDP x̂−DP ŜDP P̂ +DpHDP

(

DxŜ
)

−DP

(

DxŜ
)

DpH−

−DxŜDP (DpH) +DP

(

DP Ŝ
)

DXH +DP ŜDP

(

DXH
)

=

= DPH +DXHDP

(

DP Ŝ
)

.

By canceling we get

DPS −DxŜDP x̂−DP ŜDP P̂−
−DxŜDP (DpH) +DP ŜDP

(

DXH
)

= DPH.

Note that
DP x̂ = −DP (DpH) ,

therefore

DPS −DP ŜDP P̂ +DP ŜDP

(

DXH
)

= DPH.

Since
DP P̂ = I +DP

(

DXH
)

we have

(13) DPS −DP Ŝ = DPH.

Define p̂ = DxŜ, and X̂ = DP Ŝ. Now assume that (xn,pn) are solu-
tions to the dynamics (4). If we set x = xn and p = pn, by the change
of coordinates (7) we have, correspondingly, X = Xn and P = Pn.
Therefore, from (12) we get

p̂ = pn+1.

Thus, since p̂ = DxŜ we have x̂ = xn+1 and P̂ = Pn+1. This implies

X̂ = Xn+1, and so (13) reads

Xn −Xn+1 = −DPH(Pn,Xn+1),

and we also have

Pn+1 −Pn = DXH(Pn,Xn+1).

¥

The previous theorem suggests that we should look for a generating
function S(x, P ) = Px+u(x, P ), periodic in x, and a new Hamiltonian
H which only depends on P . If such a solution exist, the equations
of motion reduce to (11) and we say that such a system is integrable.
The function u should then satisfy the equation (1). As we will discuss
later, see section 3, this equation will always admit a viscosity solution,
which, however, may not be smooth.
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3. Viscosity solutions

In general, equation (1) may not admit smooth solutions. However,
see [Gom02], theorem 3.1, one can prove the existence of viscosity so-
lutions, which are the correct notion of weak solution. In this section
we review the main facts and prove some preliminary estimates.

For our purposes, a convenient definition of viscosity solution is the
following: we say that a function u is a viscosity solution of (1) provided
that it satisfies the following fixed point identity:

(14) u(x, P ) = hmin
N−1
∑

j=0

[L(xj ,vj) + Pvj +H(P )] + u(xN , P ),

in which the minimum is taken over trajectories (xn,vn), 0 ≤ n ≤
N , with initial condition x0 = x, and xn+1 = xn + hvn. The next
proposition shows that a smooth viscosity solution is a solution of (1).

Proposition 3.1. Suppose u is smooth, periodic in x and satisfies

(15) u(x, P ) = min
v
h[L(x, v) + Pv +H(P )] + u(x+ hv, P ).

Then, u solves (1).

Proof. Since u is smooth and periodic, and L grows superlinearly
in v, there exists at least one optimal velocity v∗ in (15). v∗ satisfies

DvL(x, v
∗) = −P −Dxu(x+ hv∗, P ).

Using the Legendre transform

L(x, v∗) + (P +Dxu(x+ hv∗, P ))v∗ = −H(P +Dxu(x+ hv∗, P ), x),

and so
v∗ = −DpH(P +Dxu(x+ hv∗, P ), x).

Therefore, with x̂ = x + hv∗ = x− hDpH(P +Dxu(x̂, P ), x),

u(x, P )− u(x̂, P ) + hH(P +Dxu(x̂, P ), x)−
− hDxu(x̂, P )DpH(P +Dxu(x̂, P ), x) = hH(P ).

¥

The optimal trajectory xn and the momentum pn, as given by (5),
are solutions of (4) for n ≥ 0.

Let us start by quoting an existence result whose prove is given in
[Gom02]:

Theorem 3.2. For each P ∈ R
n there exists a unique number H(P )

and a family of solutions u(x, P ), periodic in x, that solves (1) in the
viscosity sense. Furthermore, H(P ) is convex in P , and u(x, P ) is
Lipschitz in x.
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Motivated by the formal change of variables that was discussed in
the previous section, we would like to relate this weak solution with
the dynamics (4) - the next theorem makes this connection.

Theorem 3.3. Let u be a viscosity solution of (1). Then:
- For each P ∈ R

n, there exists at least one subset of T
n×R

n, called
Mather set, which is invariant under the dynamics (4) and is contained
in the graph (x, p) = (x, P +Dxu(x)).
- There exists a probability measure µ(x, p) on T

n × R
n (discrete

Mather measure) invariant under (4) supported on this invariant set.
- This measure minimizes

(16)

∫

L(x, v) + Pvdν,

with v = −DpH(p̂, x), and p̂ − p = hDxH(p̂, x), over all probability
measures ν on T

n × R
n that satisfy
∫

φ(x+ hv)− φ(x)dν = 0,

for all continuous function φ : T
n → R. Furthermore

(17) −H =

∫

L(x, v) + Pvdµ,

where H is the unique number for which (1) admits a periodic viscosity
solution.

One of the main points in the previous theorem is that one can
translate properties of viscosity solutions into properties of Mather sets
or measures and vice-versa.

In the next proposition we discuss some of the properties of viscosity
solutions, and its relations with the dynamics (4).

Proposition 3.4. Suppose (x, p) is a point in the graph

G = {(x, P +Dxu(x)) : u is differentiable at x}.
Then, for all n ≥ 0, the solution (xn,pn) of (4) with initial conditions
(x, p) belongs to G.

A further result that we need, taken also from [Gom02], is a repre-
sentation formula for H as a minimax. This is the discrete analog of
the minimax formula for flows proved in [CIPP98].

Proposition 3.5. For each P ∈ R
n,

(18) H(P ) = inf
ϕ

sup
(x,v)

[

ϕ(x)− ϕ(x + hv)

h
− L(x, v)− Pv

]

,

in which the infimum is taken over continuous periodic functions ϕ.
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Suppose that Lε(x, v) = L0(v) + εL1(x, v). The last estimates in
this section show that, even without non-resonance conditions, the
viscosity solution of (1) has good bounds for the semiconcavity and
semiconvexity constants of u. These estimates should be seen as weak
estimates for the second derivatives of u. Roughly speaking we have
“D2

xxu = O(
√
ε)” in the Mather set.

Proposition 3.6. Suppose Lε is as in (6), with L0(v) smooth, strictly
convex, with bounded second derivative and coercive, and L1(x, v) is
smooth, superlinear, strictly convex in v, periodic in x and with uni-
formly bounded second derivatives. Let u be a viscosity solution of (1).
Then, for any x and y we have

u(x+ y)− 2u(x) + u(x− y) ≤ C
√
ε|y|2.

Proof. Let (xn,vn), with xn+1 = xn + hvn, 0 ≤ n ≤ N − 1 be an
optimal trajectory with x0 = x, such that

u(x) = u(xN) + h

N−1
∑

n=0

[L0(vn) + εL1(xn,vn) + Pvn +H(P )].

Then,

u(x± y) ≤ u(xN) + h

N−1
∑

n=0

[

L0

(

vn ∓
y

Nh

)

+ εL1

(

xn ±
N − n

N
y,vn ∓

y

Nh

)

+

+P
(

vn ∓
y

Nh

)

+H(P )
]

.

Therefore,

u(x+ y)−2u(x) + u(x− y) ≤

≤ h

N−1
∑

n=0

[

L0

(

vn −
y

Nh

)

− 2L0(vn) + L0

(

vn +
y

Nh

)]

+

+ hε

N−1
∑

n=0

[

L1

(

xn +
N − n

N
y,vn −

y

Nh

)

− 2L1(xn,vn)+

+L1

(

xn −
N − n

N
y,vn +

y

Nh

)]

.

Note that, since D2L0 is bounded,

L0

(

vn −
y

Nh

)

− 2L0(vn) + L0

(

vn +
y

Nh

)

≤ C
|y|2
N2h2

.
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Also

L1

(

xn +
N − n

N
y,vn −

y

Nh

)

− 2L1(xn,vn)+

+ L1

(

xn −
N − n

N
y,vn +

y

Nh

)

≤ C

(

1 +
1

N2h2

)

|y|2.

Consequently, for h small,

u(x+ y)− 2u(x) + u(x− y) ≤ C

[

1

Nh
+ εhN +

ε

hN

]

|y|2.

By choosing N = O
(

1
h
√
ε

)

we obtain

u(x+ y)− 2u(x) + u(x− y) ≤ C
√
ε|y|2.

¥

Proposition 3.7. Suppose Lε is as in (6), with L0(v) smooth, strictly
convex, with bounded second derivative and coercive, and L1(x, v) is
smooth, superlinear, strictly convex in v, periodic in x and with uni-
formly bounded second derivatives. Let u be a viscosity solution of (1).
Then, if x is in the Mather set and y is arbitrary, we have

u(x+ y)− 2u(x) + u(x− y) ≥ −C
√
ε|y|2.

Proof. Since x belongs to the Mather set, there is a trajectory
(xn,vn), with xn+1 = xn+hvn, 0 ≤ n ≤ N −1 with xN = x, such that

u(x0) = u(x) + h

N−1
∑

n=0

[L0(vn) + εL1(xn,vn) + Pvn +H(P )].

Note that this identity implies that this trajectory achieves the mini-
mum in (14). Thus,

u(x0) ≤ u(x± y) + h

N−1
∑

n=0

[

L0

(

vn ±
y

Nh

)

+ εL1

(

xn ±
n

N
y,vn ±

y

Nh

)

+

+P
(

vn ±
y

Nh

)

+H(P )
]

,
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hence

u(x+ y)−2u(x) + u(x− y) ≥

≥ −h
N−1
∑

n=0

[

L0

(

vn +
y

Nh

)

− 2L0(vn) + L0

(

vn −
y

Nh

)]

−

− hε

N−1
∑

n=0

[

L1

(

xn +
n

N
y,vn +

y

Nh

)

− 2L1(xn,vn)+

+L1

(

xn −
n

N
y,vn −

y

Nh

)]

.

Note that, since D2L0 is bounded,

L0

(

vn +
y

Nh

)

− 2L0(vn) + L0

(

vn −
y

Nh

)

≤ C
|y|2
h2N2

.

Also

L1

(

xn +
n

N
y,vn +

y

Nh

)

− 2L1(xn,vn)+

+ L1

(

xn −
n

N
y,vn −

y

Nh

)

≤ C

[

1 +
1

N2h2

]

|y|2.

Therefore

u(x+ y)− 2u(x) + u(x− y) ≥ −C
[

1

Nh
+ hεN +

ε

Nh

]

|y|2.

By choosing N = O
(

1
h
√
ε

)

we obtain

u(x+ y)− 2u(x) + u(x− y) ≥ −C
√
ε|y|2.

¥

Theorem 3.8. Suppose Lε is as in (6), with L0(v) smooth, strictly
convex, with bounded second derivative and coercive, and L1(x, v) is
smooth, superlinear, strictly convex in v, periodic in x and with uni-
formly bounded second derivatives. Let u be a viscosity solution of (1).
Then, if x is in the Mather set and y is arbitrary then

|u(x)− u(y)−Dxu(x)(y − x)| ≤ C
√
ε|x− y|2.

Proof. This follows from the proof of a similar theorem in [Gom02]
by replacing the semiconcavity and (local) semiconvexity constants by
C
√
ε which result from the two previous propositions. Note that the

derivative in the formula makes sense since u is differentiable in the
Mather set. ¥
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4. Formal Perturbation Theory

In this section we discuss formal perturbation methods using an ana-
log of Linstead series. We outline the construction of formal expansions
for the solutions uε(x, P ) and H

ε
(P ) of (1) that we denote, respectively,

by ũεN(x, P ) and H̃ε
N(P ). Those functions are given in power series of

ε and P − P0, and satisfy (1) up to order O(εN + |P − P0|N) in a
neighborhood of ε = 0 and P = P0. More precisely,

ũεN(x, P )− ũεN(x̃, P ) + hH(P +Dxũ
ε
N(x̃, P ), x)−(19)

− hDxũ
ε
N(x̃, P )DpH(P +Dxũ

ε
N(x̃, P ), x) = hH̃ε

N(P )

+O(εN + |P − P0|N),
in which the point x̃ is defined implicitly by

(20) x̃− x = −hDpH(P +Dxũ
ε
N(x̃, P ), x).

The main difficulty is that an approximate generating function may
not yield a Hamiltonian H(P,X). However, by setting S = Px +
ũεN(x, P ), and performing the change of coordinates given by (7) the
dynamics can still be written in a simpler Hamiltonian form, up to high
order terms.

Proposition 4.1. Suppose ũεN(x, P ) is a solution of (19) for P ∈ R
n

and x ∈ T
n. Let

S = Px+ ũεN(x, P ),

and define new coordinates (X,P ) by (7). Then

(21)

{

Xn+1 −Xn = −hDP H̃
ε
N(Pn) +O(εN + |Pn − P0|N−1)

Pn+1 −Pn = O(εN + |Pn − P0|N).

Proof. For simplicity, as in the proof of theorem 2.1, we set h = 1.
By differentiating (19) with respect to x, and canceling the terms, as
in theorem 2.1, we get

(22) DxS −DxŜ +DxH = O(εN + |P − P0|N),
in which Ŝ = S(x̂, P ). Differentiating now with respect to P , and
simplifying, we obtain

(23) DPS −DP Ŝ = DP H̃
ε
N(P ) +O(εN + |P − P0|N−1).

Define p̂ = DxŜ and X̂ = DP Ŝ. If we assume that (xn,pn) are solutions
to the dynamics (4), and set x = xn and p = pn, in the new coordinates
the corresponding points are X = Xn and P = Pn. Then, from (22),
we get

p̂ = pn+1 +O(εN + |Pn − P0|N).
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Therefore, the inverse function theorem implies

Pn+1 −Pn = O(εN + |Pn − P0|N).
Then X̂ = Xn+1 +O(εN + |Pn − P0|N−1). So, equation (23) reads

Xn −Xn+1 = DP H̃
ε
N(Pn) +O(εN + |Pn − P0|N−1).

¥

The Linstead method consists in constructing solutions of (1) by
using an iterative procedure that yields an expansion ũεN of the solution
uε and H̃ε

N of the Hamiltonian H
ε
, as a power series in ε and (P −P0).

Then, ũεN and H̃ε
N satisfy (19).

Of course, there are some conditions that have to be satisfied in
order to construct the approximated solution. These can be expressed
in terms of the Diophantine properties of the vector P0.

We say that a vector ω ∈ R
n is Diophantine if

(24) ∀k ∈ Z
n\{0}, m ∈ Z, |ω · k −m| ≥ C

|k|s , for some C, s > 0.

We will assume that the vector ω0 = DPH0(P0) is Diophantine.
We look for an expansion of the form

ũεN(x, P ) = εv1(x, P0) + ε(P − P0)DPv1(x, P0) + ε2v2(x, P0)

+
1

2
ε(P − P0)

2D2
PPv1(x, P0) + ε2(P − P0)DPv2(x, P0) + . . .

=
N−1
∑

j=1

j
∑

i=1

1

(j − i)!
εi(P − P0)

j−iD
j−i
P j−ivi(x, P0),

(25)

with the notation that, for N = 1, ũε1(x, P ) = 0. Furthermore,

H̃ε
N(P ) =H̃0(P0) + εH̃1(P0) + (P − P0)DP H̃0(P0)+

+ ε2H̃2(P0) + ε(P − P0)DP H̃1(P0) +
(P − P0)

2

2
D2
PP H̃0(P0) + · · ·

We will try to choose the functions vj in such a way that, formally,

uε(x, P )− ũεN(x, P ) = O(εN + |P − P0|N),
by matching powers ε and (P − P0) in both sides of (19). The first
term arises from taking ε = 0, and P = P0 in (19). Then,

H̃0(P0) = H0(P0),

and the solution ũε0 = 0. The first order terms in ε yield

v1(x, P0)− v1(x− hDpH0(P0), P0) + hH1(P0, x) = hH̃1(P0),
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and this equation determines v1(x, P0) and H̃1(P0). Furthermore

DP H̃0(P0) = DPH0(P0).

The function v2(x, P0) and H̃2(P0) are determined by solving the equa-
tion

v2(x, P0)− v2(x− hDpH0(P0), P0)+

+
h

2
(Dxv1(x− hDpH0(P0), P0))

2D2
ppH0(P0)+

+ hDpH1(P0)Dxv1(x− hDpH0(P0), P0)+

+ hH2(P0, x) = hH̃2(P0).

To obtain DPv1(x, P0) and DP H̃1(P0) we consider the equation

DPv1(x, P0)−DPv1(x− hDpH0(P0), P0)+

+ hDpH1(P0, x) = hDP H̃1(P0).

In general, we will have to solve equations of the form

Gω0
u = f + λ,

in which the operator G is given by

(26) Gω0
u = u(x)− u(x− ω0),

the function f can be computed in terms of functions that are already
known, λ is the unique constant for which (26) has a solution, and
ω0 = DPH0(P0).

This operator can be analyzed by using Fourier coefficients. Note
that,

Gw0
e2πikx = e2πikx(1− e2πikw0).

Thus, if η(x) =
∑

k

ηke
2πikx and u(x) =

∑

k

uke
2πikx, the equation

(27) Gω0
u(x) = η(x),

reduces formally to

uk =
ηke

−2πikx

1− e2πikω0
.

If ω0 is non-resonant, the equation in (27) can be solved formally in
Fourier coefficients, since no denominator vanishes, except for k = 0.
Moreover, in order for (27) to have a solution, we need η0 = 0. So this
implies

(28) λ =

∫

f(x)dx.
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Furthermore, under Diophantine conditions on ω0, the series for the
solution u converges, in appropriate function spaces, as long as η is
smooth enough.

From (28) we have

H̃1(P0) =

∫

H1(P0, x)dx,

DP H̃1(P0) =

∫

DPH1(P0, x)dx,

and

H̃2(P0) =

∫

1

2
(Dxv1(x− hDpH0(P0), P0))

2D2
ppH0(P0)dx+

+

∫

DpH1(P0)Dxv1(x− hDpH0(P0), P0) +H2(P0, x)dx.

Therefore, by computing these expansions we obtain, formally, that

H
ε
(P ) = H̃ε

N(P ) +O(εN + |P − P0|N ).
This identity will be made rigorous in the next section.

5. Estimates for the Effective Hamiltonian

In this section we prove that H̃ε
N(P ) is an asymptotic expansion

to Hε(P ), therefore proving rigorously some of the results from the
previous section.

Proposition 5.1. Let uε and H
ε
be solutions of (1). Assume that

there is an approximate solution ũεN of u
ε and H̃ε

N of H
ε
satisfying

(19). Then,

(29) H
ε
(P ) ≤ H̃ε

N(P ) +O(εN + |P − P0|N).

Proof. We set h = 1 for simplicity. The inf sup formula (18) implies
that

H
ε
(P ) ≤ sup

(x,v)

[ũεN(x, P )− ũεN(x+ v, P )− L(x, v)− Pv] .

So, the optimal point v∗ is given by

Dxũ
ε
N(x + v∗, P ) = −Lv(x, v∗)− P,

and so

L(x, v∗) = −H(P +Dxũ
ε
N(x+ v∗, P ), x)− (P +Dxũ

ε
N(x + v∗, P ))v∗.
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Therefore,

sup
v

[ũεN(x, P )− ũεN(x + v, P )− L(x, v)− Pv] =

= ũεN(x, P )− ũεN(x̂, P ) +H(P +Dxũ
ε
N(x̂, P ), x)−

−Dxũ
ε
N(x̂, P )DpH(P +Dxũ

ε
N(x̂, P ), x) =

= H̃ε
N(P ) +O(εN + |P − P0|N).

Thus by taking the supremum, we obtain the result. ¥

Proposition 5.2. Let uε and H
ε
be solutions of (1). Assume that

there is an approximate solution ũεN of u
ε and H̃ε

N of H
ε
satisfying

(19). Then,

H
ε
(P ) ≥ H̃N

ε (P ) +O(εN + |P − P0|N).
Remark. This proposition and the previous one, together, imply

(30) H
ε
(P ) = H̃N

ε (P ) +O(εN + |P − P0|N ).
Proof. Suppose ũεN(x, P ) and H̃ε

N(P ) solve (19). Using a compact-
ness argument, we can construct a measure µ̃ on T

n×R
n such that for

all continuous function φ with compact support
∫

φ(x, v)dµ̃ = lim
M→∞

1

M

M
∑

n=1

φ(x̃n, ṽn),

in which (x̃n, ṽn) are given by

x̃n+1 − x̃n = hṽn = −hDpH(P +Dxũ
ε
N(x̃n+1, P ),xn),

and the limit is taken through an appropriate subsequence. Note that
µ̃ is a probability measure, and for all continuous function φ(x) we have

∫

φ(x + hv)− φ(x)dµ̃ = 0,

and
v = −DpH(P +Dxũ

ε
N(x + hv, P ), x),

on the support of µ̃. Note that

ũεN(x, P )− ũεN(x + hv, P )− L0(v)− εL1(x, v)− Pv =(31)

= H̃ε
N(P ) +O(εN + |P − P0|N),

for v = −DpH(P +Dxũ
ε
N(x+hv, P ), x), by an argument similar to the

one in the previous proposition. Therefore, by integrating (31) with
respect to µ̃, we obtain

∫

L0(v) + εL1(x, v) + Pvdµ̃ = −H̃ε
N(P ) +O(εN + |P − P0|N).
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Then, equation (17) implies

H
ε
(P ) ≥ H̃ε

N(P ) +O(εN + |P − P0|N).
¥

Finally, we prove a very simple result which will be essential in the
following section.

Lemma 5.3. Let uε and H
ε
be solutions of (1). Assume that there is

an approximate solution ũεN of u
ε and H̃ε

N of H
ε
satisfying (19). Then

there exists a point x0 at which

Dxu
ε(x0, P ) = Dxũ

ε
N(x0, P ).

Proof. Since uε(x, P )−ũεN(x, P ) is a periodic semiconcave function of
x, then it has a minimum at some point x0. Thus, at x0, the derivative
of uε(x, P )− ũεN(x, P ) with respect to x, exits and is zero. ¥

6. Uniform estimates

This section is dedicated to prove two main results. One is that
the solution of (19) approximates uniformly the viscosity solution of
(1). The other is that the derivatives of the approximate solution are
uniformly close to the ones of the viscosity solution. Since the Mather
set is supported on the graph (x, v(x)), with v given by

v(x) = −DpH(P +Dxu
ε(x+ hv(x), P ), x),

this implies stability of Mather sets.
These result should be though of as the discrete analogs to the ones

in [Gom03] for the continuous problem. The main idea is that the
approximated solution, built using the formal expansion, is very close to
the viscosity solution along an optimal trajectory. Under non-resonance
conditions, these trajectories get close to any point in the torus in finite
time. Therefore, since uε and ũεN are Lipschitz functions, we can extend
the estimate to every point. Then we bootstrap these estimates for
estimates on the derivatives.

Theorem 6.1. Suppose the rotation vector

ω0 = DPH0(P0)

satisfies the Diophantine property (24). Assume that ε is small enough.
Then, for every M there exists a vector

Pε = P0 +O(ε)

and N such that

DP H̃
ε
N(Pε) = ω0.
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Furthermore,

sup
x
|uε(x, Pε)− ũεN(x, Pε)| = O(εM),

in which uε(x, Pε) is any viscosity solution of

uε(x, Pε)− uε(x̂, Pε) + hH(Pε +Dxu
ε(x̂, Pε), x)−(32)

− hDxu
ε(x̂, Pε)DpH(Pε +Dxu

ε(x̂, Pε), x) = hH
ε
(Pε),

with
x̂− x = −hDpH(Pε +Dxu

ε(x̂, Pε), x),

and ũεN(x, Pε), H̃
ε
N(Pε) satisfy (19), to which an appropriate constant

has been added for normalization.

Remark. Note that this theorem is still valid even if there is no
uniqueness for viscosity solution of (32).
Proof. Define Pε by solving the equation

ω0 = DP H̃
ε
N(Pε),

that is

ω0 = DP H̃0(P0) + εDP H̃1(P0) + (Pε − P0)D
2
PP H̃0(P0) + · · · ,

in which the expansion in terms of P − P0 and ε is taken up to order
N − 1. Under the strict convexity assumption for H0(P ) = H̃0(P ) =
H0(P ), we have

detD2
PP H̃0(P0) 6= 0,

and so, the implicit function theorem yields a unique solution of the
form

Pε = P0 + εP1 + · · · ,
for ε small enough, and

P1 = −
[

D2
PP H̃0(P0)

]−1

DP H̃1(P0).

Define the new coordinates (P,X) by (7), that is

(33)

{

p = P +Dxũ
ε
N(x, P )

X = x +DP ũ
ε
N(x, P ).

To simplify the notation we denote X = φ(x, P ). Let x0 be the point
given by Lemma 5.3. Let

(x0,p0) = (x0, Pε +Dxu
ε(x0, P ))

be the initial conditions for a trajectory (xn,pn) of (4). In the new
coordinates, we have

P0 = Pε.
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Also the dynamics is transformed into

(34)

{

Xn+1 −Xn = −hDP H̃
ε
N(Pn) +O(εN + |Pn − P0|N−1)

Pn+1 −Pn = O(εN + |Pn − P0|N).
From this equation, it is clear that Pn stays close to Pε for long times.
The next lemma proves a quantitative estimate that reflects this idea.

Lemma 6.2.

sup
0≤n≤ 1

εN/4

|Pn − Pε| ≤ O(εN/8).

Proof. Note that for any δ > 0, we have

|Pn+1 − Pε|2 − |Pn − Pε|2 = |Pn+1 + Pn − 2Pε||Pn+1 −Pn| ≤

≤ δ|Pn+1 + Pn − 2Pε|2 +
1

δ
|Pn+1 −Pn|2 ≤

≤ 2δ
[

|Pn+1 − Pε|2 + |Pn − Pε|2
]

+
1

δ
|Pn+1 −Pn|2.

Moreover,
|Pn+1 −Pn|2 ≤ Cε2N + Cε2N |Pn − Pε|2,

as long as

(35) |Pn − Pε|2N−2 ≤ Cε2N .

We will show that this inequality is always satisfied for large N , and
for the range of values n that will be used in our estimates.

By choosing δ = εN and setting

an = |Pn − Pε|2,
we have

an+1 − an ≤ CεN (an+1 + an) + CεN .

To obtain the final estimate, we need an auxiliary lemma:

Lemma 6.3. Suppose an is a sequence such that a0 = 0, and

(1− CεN )an+1 ≤ (1 + CεN)an + CεN .

Then, for all 0 ≤ n ≤ 1
3CεN

and ε small enough, we have

an ≤
√
CεN/2ne2n

√
CεN/2

.

Proof. Set α = CεN . We will proceed by induction over n. For
n = 0, the estimate is clear. Therefore, we assume it holds for some n
and we will prove it for n+ 1. We have

an+1 ≤
1 + α

1− α
an +

α

1− α
≤ (1 + 3α)an + 2α,
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for α sufficiently small. Then, by the induction hypothesis,

an+1 ≤ (1+3α)
√
αne2

√
αn+2α ≤

√
αe2

√
α(n+1)+

√
α(ne2

√
αn+2

√
αne2

√
αn).

Since 1 + 2
√
α ≤ e2

√
α, we get

an+1 ≤
√
α(n+ 1)e2

√
α(n+1).

We should note that both the proof and the result of the previous
lemma are not sharp, however they are sufficient for our purposes. In
fact, this previous lemma implies that

|Pn − Pε| ≤ CεN/8,

for all 0 ≤ n ≤ C
εN/4 , and therefore (35) is also satisfied.

Observe that X = ψ(x) ≡ φ(x, Pε) is a diffeomorphism, for small ε.
Let

U(X) = uε(ψ−1(X), Pε)− ũεN(ψ
−1(X), Pε).

Define X̃n = ψ(xn). Then, we have

U(X̃n+1)− U(X̃n) =

= uε(xn+1, Pε)− uε(xn, Pε)− ũεN(xn+1, Pε) + ũεN(xn, Pε) =

= −hHε
(Pε) + hH(Pε +Dxu

ε(xn+1, Pε),xn)−
− hDxu

ε(xn+1, Pε)DpH(Pε +Dxu
ε(xn+1, Pε),xn)+

+ hH̃ε
N(Pε)− hH(Pε +Dxũ

ε
N(x̃n+1, Pε),xn)+

+ hDxũ
ε
N(x̃n+1, Pε)DpH(Pε +Dxũ

ε
N(x̃n+1, Pε),xn)+

+ ũεN(x̃n+1, Pε)− ũεN(xn+1, Pε) +O(εN),

in which

x̃n+1 − xn = −hDpH(Pε +Dxũ
ε
N(x̃n+1, Pε),xn).

Therefore

U(X̃n+1)− U(X̃n) ≤
≤ C|Dxu

ε(xn+1, Pε)−Dxũ
ε
N(xn+1, Pε)|+ C|x̃n+1 − xn+1|+O(εN).

Now, observe that

pn+1 = Pn+1 +Dxũ
ε
N(xn+1,Pn+1),

together with

pn+1 = Pε +Dxu
ε(xn+1, Pε),
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yields

|Dxu
ε(xn+1, Pε)−Dxũ

ε
N(xn+1, Pε)| ≤

≤ |Dxu
ε(xn+1, Pε)−Dxũ

ε
N(xn+1,Pn+1)|+

+ |Dxũ
ε
N(xn+1,Pn+1)−Dxũ

ε
N(xn+1, Pε)| ≤

≤ C|Pn+1 − Pε|.
Moreover, the equation

y − xn = −hDpH(P +Dxũ
ε
N(y, P ),xn)

defines y as smooth function of xn and P . Therefore,

|x̃n+1 − xn+1| ≤ C|Pn+1 − Pε|.
Thus, by using Lemma 6.2 we have

U(X̃n+1)− U(X̃n) ≤ O(εN/8),

for all 0 ≤ n ≤ C
εN/4 . We may add a constant to uε in such a way that

U(X̃0) = 0, and thus

sup
0≤n≤ C

εN/16

U(X̃n) = O(εN/16).

The Diophantine property implies that the map

Yn+1 −Yn = −hDPH0(P0)

has an ergodization time of order O
(

C
δr

)

, for some exponent r depend-
ing on the Diophantine exponent s in (24). That is, given δ and any
Y , there exists 0 ≤ n ≤ O

(

C
δr

)

such that |Y −Yn| ≤ δ. Consider the
map given by the Hamiltonian dynamics which, in the new coordinates
for 0 ≤ n ≤ C

εN/16 , reads

Xn+1 −Xn = −hDPH0(P0) +O(εN−1).

Then given ε and any X, there is a 0 ≤ n ≤ C
εrM

such that

|Xn −X| ≤ εM ,

provided M < N
16r

. Furthermore, we have

Xn = φ(xn,Pn),

and

X̃n = φ(xn, Pε).

So, for 0 ≤ n ≤ C
εN/16 , Lemma 6.2 implies

|Xn − X̃n| ≤ O(εN/8).
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Consequently, the sequence X̃n satisfies that, given ε and any X, there
is 0 ≤ n ≤ C

εrM
such that

|X̃n −X| ≤ CεM .

Since U is a Lipschitz function, by choosing X̃n as in the previous
formula

|U(X)| ≤ |U(X)− U(X̃n)|+ |U(X̃n)| ≤ CεM .

The same estimate carries over to uε(x, Pε) − ũεN(x, Pε), as ψ is a dif-
feomorphism. ¥

Remark. One should observe that

sup
x
|uε(x, Pε)− ũεN(x, Pε)| = O(εM)

implies
sup
x
|uε(x, Pε)− ũεM(x, Pε)| = O(εM),

although this last estimate requires the existence of ũεN .

Theorem 6.4. Let M > 0 and uε, H
ε
be solutions of (1). Suppose

ω0 = DpH0(P0) is Diophantine, ε is sufficiently small and there is an

approximate solution ũεN of u
ε and H̃ε

N of H
ε
satisfying (19) for N

sufficiently large so that Theorem 6.1 holds. Then,

esssup
x
|Dxu

ε(x̂, Pε)−Dxũ
ε
N(x̃, Pε)| ≤ CεM/2,

in which x̂ and x̃ are defined, respectively by (9) and (20).

Proof. Subtracting (1) to (19), and using (30), we have

O(εN) =ũεN(x, Pε)− ũεN(x̃, Pε)− uε(x, Pε) + uε(x̂, Pε)+

+ hH(Pε +Dxũ
ε
N(x̃, Pε), x)− hH(Pε +Dxu

ε(x̂, Pε), x)−
− hDxũ

ε
N(x̃, Pε)DpH(Pε +Dxũ

ε
N(x̃, Pε), x)+

+ hDxu
ε(x̂, Pε)DpH(Pε +Dxu

ε(x̂, Pε), x).

Moreover, by strict convexity, we have

H(Pε +Dxũ
ε
N(x̃, Pε), x) ≥ H(Pε +Dxu

ε(x̂, Pε), x)+

+DpH(Pε +Dxu
ε(x̂, Pε), x)(Dxũ

ε
N(x̃, Pε)−Dxu

ε(x̂, Pε))+

+ γ|Dxũ
ε
N(x̃, Pε)−Dxu

ε(x̂, Pε)|2.
Therefore, we get

O(εN) ≥ ũεN(x, Pε)− ũεN(x̃, Pε)− uε(x, Pε) + uε(x̂, Pε)+

+ hDxũ
ε
N(x̃, Pε) [DpH(Pε +Dxu

ε(x̂, Pε), x)−DpH(Pε +Dxũ
ε
N(x̃, Pε), x)]+

+ γ|Dxũ
ε
N(x̃, Pε)−Dxu

ε(x̂, Pε)|2.
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Since

h [DpH(Pε +Dxu
ε(x̂, Pε), x)−DpH(Pε +Dxũ

ε
N(x̃, Pε), x)] = x̃− x̂,

and

−ũεN(x̃, Pε)−Dxũ
ε
N(x̃, Pε)(x̂− x̃) ≥ −ũεN (x̂, Pε)− Cε|x̃− x̂|2,

with

|x̃− x̂|2 ≤ C|Dxũ
ε
N(x̃, Pε)−Dxu

ε(x̂, Pε)|2,
we obtain,

O(εN) ≥ ũεN(x, Pε)− ũεN(x̂, Pε)− uε(x, Pε) + uε(x̂, Pε)+

+ γ̃|Dxũ
ε
N(x̃, Pε)−Dxu

ε(x̂, Pε)|2,
for some constant γ̃, as long as ε is small enough. Therefore, the
previous theorem yields

|Dxũ
ε
N(x̃, Pε)−Dxu

ε(x̂, Pε)|2 ≤ O(εM).

¥

We should point out that this last theorem shows that the Mather
sets can be approximated through a perturbative method. In fact, since
the Mather set is supported in

(x,−DpH(Pε +Dxu
ε(x̂, Pε), x),

the result implies that this graph is approximated uniformly by

(x,−DpH(Pε +Dxũ
ε
N(x̃, Pε), x).

7. Approximate Mather measures

For integrable Hamiltonian systems, as discussed in Theorem 2.1, one
can change coordinates by (7). In these new coordinates, the Lebesgue
measure dX is invariant by the flow. Thus, by the change of coordinates
formula, the measure

det(I +D2
xPu)dx

is invariant for the original dynamics. The objective of this section is
to show that Mather measures can be approximated by

det(I +D2
xP ũ

ε
N)dx.

As the Mather measure in general is singular, we do not assert that it
has a density approximated by the above expression but we claim that
the mass in small boxes are comparable.
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Theorem 7.1. Let M > 0. Assume ω0 = DpH0(P0) is Diophan-

tine, and there exists functions ũεN and H̃
ε satisfying (19) for N large

enough. Let µε be any Mather measure corresponding to Pε (see theo-
rem 6.1) . Consider push-forward νε of µε by the map (33).
Let k be an arbitrary integer and ε sufficiently small. Then, there

exists a partition of T
n in boxes {B+

η } of size 1
k
such that

νε(B
+
η ) ≥

kn

(k + 1)n
|B+

η |,

for all η.
Additionally, there exists another partition of T

n in boxes {B−η } of
size 1

k
such that

νε(B
−
η ) ≤

kn

(k − 1)n
|B−η |,

for all η.
In both cases, k can be taken polynomially large in ε.

Proof. To prove the first estimate, let k be an integer and consider
a partition of T

n in boxes of size 1
k+1

(for the partition we use semi-
open boxes, in such a way that they are pairwise disjoint). Obviously,
for some box B, we have νε(B) ≥ |B|. Now consider an additional
partition of T

n in boxes {B+
η } of size 1

k
such that the center of one of

the boxes coincides with the center of B. As in Theorem 6.1, consider
the ergodization time for the linear flow associated with a covering of
T
n of radius smaller that 1

2k2 . For ε sufficiently small and every η, there
exists a time Tη, smaller than the ergodization time T , such that the
image of B under the map (34) lies in the interior of the corresponding
box B+

η . Therefore, by the invariance of the Mather measure under
this map, we have

νε(B
+
η ) ≥ |B| =

kn

(k + 1)n
|B+

η |.

To justify that k can be taken polynomially large in ε, suppose k =
ε−α. The ergodization time for the linear flow corresponding to ε2α is
of order T = O(ε−2αr). For sufficiently large N and small ε, the image
of the box B under time Tη < T lies in the interior of B+

η .
The proof of the second estimate is similar: one considers a cover

of T
n in boxes of size 1

k−1
. One of these boxes B has νε(B) ≤ |B|.

Consider an additional partition of T
n in boxes {B−η } of size 1

k
such

that the center of one of the boxes coincides with the center of B. As
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before, we obtain

νε(B
−
η ) ≤ |B| =

kn

(k − 1)n
|B−η |.

¥

As a corollary to this theorem we can state:

Corollary 7.2. Let M > 0, J be a positive integer and f be a Lipschitz
function on T

n. Assume ω0 = DpH0(P0) is Diophantine, and there

exists functions ũεN and H̃
ε satisfying (19) for N large enough. Let µε

be any Mather measure corresponding to Pε (see theorem 6.1). Consider
push-forward νε of µε by the map (33). Then,

∫

Tn

f(X)dX =

∫

Tn

f(X)dνε +O(εJ).

Proof. We can assume f to be a positive function. Consider a
partition in boxes B+

η as in the previous theorem. Then we have
∫

fdνε ≥
∑

η

νε(B
+
η )min

B+
η

f

≥ kn

(k + 1)n

∑

η

|B+
η |min

B+
η

f

≥ O(
1

k
) +

kn

(k + 1)n

∑

η

∫

B+
η

f,

since f is Lipschitz. Therefore
∫

fdνε ≥ O(
1

k
) +

kn

(k + 1)n

∫

Tn

f ≥
∫

f +O(εJ),

taking k = ε−J , and using the fact that f is bounded.
The other inequality is similar, using the partition B−η given by the

previous theorem. ¥

From this corollary we conclude that for any Lipschitz function
f(x, p) and any positive J we can choose N large enough such that
∫

Tn

f(x, Pε+Dxu
ε)dµε =

∫

Tn

f(x, Pε+Dxũ
ε
N) det(I+D

2
xP ũ

ε
N)dx+O(εJ),

as ε→ 0.

References

[AKN97] V. I. Arnold, V. V. Kozlov, and A. I. Neishtadt. Mathematical aspects of
classical and celestial mechanics. Springer-Verlag, Berlin, 1997. Trans-
lated from the 1985 Russian original by A. Iacob, Reprint of the original



28 D. Gomes, C. Valls

English edition from the series Encyclopaedia of Mathematical Sciences
[Dynamical systems. III, Encyclopaedia Math. Sci., 3, Springer, Berlin,
1993; MR 95d:58043a].

[Arn89] V. I. Arnold. Mathematical methods of classical mechanics. Springer-
Verlag, New York, 1989. Translated from the 1974 Russian original by
K. Vogtmann and A. Weinstein.

[Bes] U Bessi. Smooth approximation of Mather sets. Preprint.
[BGW98] Jean Bourgain, François Golse, and Bernt Wennberg. On the distribution

of free path lengths for the periodic Lorentz gas. Comm. Math. Phys.,
190(3):491–508, 1998.

[BK87] David Bernstein and Anatole Katok. Birkhoff periodic orbits for small
perturbations of completely integrable Hamiltonian systems with convex
Hamiltonians. Invent. Math., 88(2):225–241, 1987.

[CIPP98] G. Contreras, R. Iturriaga, G. P. Paternain, and M. Paternain. La-
grangian graphs, minimizing measures and Mañé’s critical values. Geom.
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