RELATIONSHIPS BETWEEN USUAL AND APPROXIMATE INVERSE SYSTEMS

Ivan Lončar

Abstract. We shall prove that if $\mathbf{X}=\{X_a,p_{ab},A\}$ is an approximate inverse system of compact non-metric spaces with surjective bonding mappings p_{ab} such that each X_a is a limit of a usual τ -directed inverse system $X(a)=\{X_{(a,\gamma)},\,f_{(a,\gamma)(a,\delta)},\,\Gamma_a\}$ of metric compact spaces, then there exist: 1) a usual τ -directed inverse system $X_D=\{X_d,F_{dc},D\}$ whose inverse limit X_D is homeomorphic to $X=\lim \mathbf{X},\,2$) every X_d is a limit of an approximate inverse system $\{X_{(a,\gamma_a)},\,g_{(a,\gamma_a)(b,\gamma_b)},A\}$ of compact metric spaces $X_{(a,\gamma_a)},\,3$) if the mappings p_{ab} and $f_{(a,\gamma)(a,\delta)}$ are monotone, then $g_{(a,\gamma_a)(b,\gamma_b)}$ and F_{dc} are monotone.

1. Introduction

In this paper we shall use the notion of inverse systems $\mathbf{X} = \{X_a, p_{ab}, A\}$ and their limits in the usual sense [1, p. 135].

The cardinality of a set X will be denoted by $\operatorname{card}(X)$. The cofinality of a cardinal number m will be denoted by $\operatorname{cf}(m)$. $\operatorname{Cov}(X)$ is the set of all normal coverings of a topological space X. If $\mathcal{U}, \ \mathcal{V} \in \operatorname{Cov}(X)$ and \mathcal{V} refines \mathcal{U} , we write $\mathcal{V} \leq \mathcal{U}$. For two mappings $f,g\colon Y\to X$ which are \mathcal{U} -near (for every $g\in Y$ there exists a $U\in\mathcal{U}$ with $f(g),g(g)\in U$), we write $(f,g)\leq \mathcal{U}$. A basis of (open) normal coverings of a space X is a collection \mathcal{C} of normal coverings such that every normal covering $\mathcal{U}\in\operatorname{Cov}(X)$ admits a refinement $\mathcal{V}\in\mathcal{C}$. We denote by $\operatorname{cw}(X)$ (covering weight) the minimal cardinal of a basis of normal coverings of X [9, p. 181].

Lemma 1. [9, Example 2.2] If X is a compact Hausdorff space, then cw(X) = w(X).

The notion of approximate inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ will be used in the sense of S. Mardešić [11].

DEFINITION 1. An approximate inverse system is a collection $\mathbf{X} = \{X_a, p_{ab}, A\}$, where (A, \leq) is a directed preordered set, X_a , $a \in A$, is a topological space and $p_{ab} \colon X_b \to X_a$, $a \leq b$, are mappings such that $p_{aa} = \mathrm{id}$ and the following condition (A2) is satisfied:

AMS Subject Classification: 54 C 10, 54 F 15, 54 B 35

Keywords and phrases: Approximate inverse system, usual inverse system.

(A2) For each $a \in A$ and each normal cover $\mathcal{U} \in Cov(X_a)$ there is an index $b \geq a$ such that $(p_{ac}p_{cd}, p_{ad}) \leq \mathcal{U}$, whenever $a \leq b \leq c \leq d$.

An approximate map $p = \{p_a : a \in A\}: X \to \mathbf{X}$ into an approximate system $\mathbf{X} = \{X_a, p_{ab}, A\}$ is a collection of maps $p_a : X \to X_a$, $a \in A$, such that the following condition holds

(AS) For any $a \in A$ and any $U \in Cov(X_a)$ there is $b \ge a$ such that $(p_{ac}p_c, p_a) \le U$ for each $c \ge b$. (See [10]).

Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an approximate system and let $\mathbf{p} = \{p_a : a \in A\}: X \to \mathbf{X}$ be an approximate map. We say that \mathbf{p} is a *limit* of \mathbf{X} provided it has the following universal property:

(UL) For any approximate map $\mathbf{q}=\{q_a:a\in A\}\colon Y\to \mathbf{X}$ of a space Y there exists a unique map $g\colon Y\to X$ such that $p_ag=q_a$.

Let $X = \{X_a, p_{ab}, A\}$ be an approximate system. A point $x = (x_a) \in \prod \{X_a : a \in A\}$ is called a *thread* of X provided it satisfies the following condition:

(L) $(\forall a \in A)(\forall U \in Cov(X_a))(\exists b \geq a)(\forall c \geq b) p_{ac}(x_c) \in st(x_a, U).$

If X_a is a $T_{3.5}$ space, then the sets $st(x_a, \mathcal{U})$, $\mathcal{U} \in Cov(X_a)$, form a basis of the topology at the point x_a . Therefore, for an approximate system of Tychonoff spaces condition (L) is equivalent to the following condition:

 $(L)^* (\forall a \in A) \lim \{ p_{ac}(x_c) : c \ge a \} = x_a.$

Let τ be an infinite cardinal. We say that a partially ordered set A is τ -directed if for each $B \subseteq A$ with $\operatorname{card}(B) \leq \tau$ there is an $a \in A$ such that $a \geq b$ for each $b \in B$. If A is \aleph_0 -directed, then we will say that A is σ -directed. An inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ is said to be τ -directed if A is τ -directed. An inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ is said to be σ -directed if A is σ -directed.

The proof of the following theorem is similar to the proof of Theorem 1.1 of [4].

Theorem 1. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be a σ -directed approximate inverse system of compact spaces with surjective bonding mappings and limit X. Let Y be a metric compact space. For each surjective mapping $f \colon X \to Y$ there exists an $a \in A$ such that for each $b \geq a$ there exists a mapping $g_b \colon X_b \to Y$ such that $f = g_b p_b$.

Theorem 2. Let X be a compact space. There exists a σ -directed inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ of compact metric spaces X_a and surjective bonding mappings p_{ab} such that X is homeomorphic to $\lim \mathbf{X}$.

Proof. It is well-known that there exists a usual inverse system $\mathbf{Y} = \{Y_{\alpha}, q_{\alpha\beta}, \Sigma\}$ of metric spaces Y_{α} and surjective bonding mappings such that X is homeomorphic to $\lim \mathbf{Y}$. By Theorem 9.5 of [12] there exists a σ -directed inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ such that $\lim \mathbf{X}$ is homeomorphic to $\lim \mathbf{Y}$ and each X_a is the limit of a countable inverse subsystem of \mathbf{Y} . This means that each X_a is a metric compact space. \blacksquare

Theorem 3. [8, p. 163, Theorem 2.] If X is a locally connected compact space, then there exists an inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ such that each X_a is a

metric locally connected compact space, each p_{ab} is a monotone surjection and X is homeomorphic to $\lim \mathbf{X}$. Conversely, the inverse limit of such system is always a locally connected compact space.

REMARK 1. We may assume that $\mathbf{X} = \{X_a, p_{ab}, A\}$ in Theorem 3 is σ -directed [12, Theorem 9.5].

Theorem 4. [13, Corollary 2.9] If X is a hereditarily locally connected continuum, then there exists a σ -directed inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ such that each X_a is a metrizable hereditarily locally connected continuum, each p_{ab} is a monotone surjection and X is homeomorphic to $\lim \mathbf{X}$.

Theorem 5. [3, Corollary 3] Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be a σ -directed inverse system of hereditarily locally connected continua X_a . Then $X = \lim \mathbf{X}$ is hereditarily locally connected.

The following theorem is Theorem 1.7 from [5].

Theorem 6. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be a σ -directed inverse system of compact metrizable spaces and surjective bonding mappings. Then $X = \lim \mathbf{X}$ is metrizable if and only if there exists an $a \in A$ such that $p_b \colon X \to X_b$ is a homeomorphism for each $b \geq a$.

2. Approximate subsystems

In this Section we investigate the approximate subsystem of an approximate system $\mathbf{X} = \{X_a, p_{ab}, A\}$. We start with the following definition.

DEFINITION 2. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an approximate inverse system and let B be a directed subset of A such that $\{X_b, p_{bc}, B\}$ is an approximate inverse system. We say that $\{X_b, p_{bc}, B\}$ is an approximate subsystem of $\mathbf{X} = \{X_a, p_{ab}, A\}$ if there exists a mapping $q \colon \lim \mathbf{X} \to \lim \{X_b, p_{bc}, B\}$ such that

$$p_b q = P_b, \quad b \in B,$$

where p_b : $\lim\{X_b, p_{bc}, B\} \to X_b$ and P_b : $\lim \mathbf{X} \to X_b$, $b \in B$, are natural projections.

We say that an approximate system $\mathbf{X} = \{X_a, p_{ab}, A\}$ is *irreducible* if for each $B \subset A$ with $\operatorname{card}(B) < \operatorname{card}(A)$ it follows that B is not cofinal in A.

Lemma 2. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an approximate inverse system. There exists a cofinal subset B of A such $\mathbf{X} = \{X_a, p_{ab}, B\}$ is irreducible.

Proof. Consider the family $\mathcal B$ of all cofinal subsets of B of A. The set $\{\operatorname{card}(B): B \in \mathcal B\}$ has the minimal element b since each $\operatorname{card}(B)$ is some initial ordinal number. Let $B \in \mathcal B$ be such that $\operatorname{card}(B) = b$. It is clear that $\{X_a, p_{ab}, B\}$ is irreducible.

In the sequel we will assume that $\mathbf{X} = \{X_a, p_{ab}, A\}$ is irreducible.

Lemma 3. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an approximate inverse system of compact spaces such that $\operatorname{card}(A) = \aleph_0$. Then there exists a countable well-ordered subset B

of A such that the collection $\{X_b, p_{bc}, B\}$ is an approximate inverse sequence and $\lim \mathbf{X}$ is homeomorphic to $\lim \{X_b, p_{bc}, B\}$.

Proof. Let ν be any finite subset of A. There exists a $\delta(\nu) \in A$ such that $\delta \leq \delta(\nu)$ for each $\delta \in \nu$. Since A is infinite, there exists a sequence $\{\nu_n : n \in \mathbb{N}\}$ such that $\nu_1 \subseteq \ldots \subseteq \nu_n \subseteq \cdots$ and $A = \bigcup \{\nu_n : n \in \mathbb{N}\}$. Recursively, we define the sets A_1, \ldots, A_n, \ldots by

$$A_1 = \nu_1 \cup \{\delta(\nu_1)\},\$$

and

$$A_{n+1} = A_n \cup \nu_{n+1} \cup \{\delta(A_n \cup \nu_{n+1})\}.$$

It follows that there exists a sequence

$$A_1 \subseteq A_2 \subseteq \ldots \subseteq A_n \subseteq \cdots$$

of finite sets A_n such that $A = \bigcup \{A_n : n \in \mathbb{N}\}$. Let $b_1 = \delta(A_1)$ and $b_n \geq \delta(A_n)$, b_{n-1} if $n \geq 2$. We obtain a sequence $B = \{b_n : n \in \mathbb{N}\}$ such that B is cofinal in A. By virtue of [10, Theorem (1.19)] it follows that $\lim \mathbf{X}$ is homeomorphic to $\lim \{X_b, p_{bc}, B\}$.

Now we consider irreducible approximate inverse systems $\mathbf{X} = \{X_a, p_{ab}, A\}$ with $\operatorname{card}(A) \geq \aleph_1$.

LEMMA 4. Let A be a directed set. For each subset B of A there exists a directed set $F_{\infty}(B)$ such that $\operatorname{card}(F_{\infty}(B)) = \operatorname{card}(B)$.

Proof. For each $B \subseteq A$ there exists a set $F_1(B) = B \bigcup \{\delta(\nu) : \nu \in B\}$, where ν is a finite subset of B and $\delta(\nu)$ is defined as in the proof of Lemma 3. Put

$$F_{n+1} = F_1(F_n(B),$$

and

$$F_{\infty}(B) = \bigcup \{F_n(B) : n \in \mathbb{N}\}.$$

It is clear that

$$F_1(B) \subseteq F_2(B) \subseteq \ldots \subseteq F_n(B) \subseteq \cdots$$

The set $F_{\infty}(B)$ is directed since each finite subset ν of $F_{\infty}(B)$ is contained in some $F_n(B)$ and, consequently, $\delta(\nu)$ is contained in $F_{\infty}(B)$.

If B is finite, then $\operatorname{card}(F_{\infty}(B)) = \aleph_0$. If $\operatorname{card}(B) \geq \aleph_0$, then we have $\operatorname{card}(\{\delta(\nu) : \nu \in B\}) \leq \operatorname{card}(B)\aleph_0$. We infer that $\operatorname{card}(F_1(B)) \leq \operatorname{card}(B)\aleph_0$. Similarly, $\operatorname{card}(F_n(B)) \leq \operatorname{card}(B)\aleph_0$. This means that $\operatorname{card}(F_{\infty}(B)) \leq \operatorname{card}(B)\aleph_0$. Thus

$$\operatorname{card}(F_{\infty}(B)) \leq \operatorname{card}(B) \aleph_0, \quad \text{if} \quad \operatorname{card}(B) < \operatorname{card}(A).$$

The proof is completed. ■

LEMMA 5. Let $\{X_a, p_{ab}, A\}$ be an approximate inverse system such that $cw(X_a) < \operatorname{card}(A), \ a \in A$. For each subset B of A with $\operatorname{card}(B) < \operatorname{card}(A)$, there exists a directed set $G_{\infty}(B) \supseteq B$ such that the collection $\{X_a, p_{ab}, G_{\infty}(B)\}$ is an approximate system and $\operatorname{card}(G_{\infty}(B)) = \operatorname{card}(B)$.

Proof. Let \mathcal{B}_a be a base of normal coverings of X_a . Let $\mathcal{U}_a \in \mathcal{B}_a$. By virtue of (A2) there exists an $a(\mathcal{U}_a) \in A$ such that $(p_{ad}, p_{ac}p_{cd}) \leq \mathcal{U}_a$, $a \leq a(\mathcal{U}_a) \leq c \leq d$. For each subset B of A we define $G_{\infty}(B)$ by induction as follows:

- a) Let $G_1(B) = F_{\infty}(B)$. From Lemma 4 it follows that $\operatorname{card}(G_1(B)) = \operatorname{card}(F_{\infty}(B)) = \operatorname{card}(B)$.
 - **b)** For each n > 1 we define $G_n(B)$ as follows:
 - 1) If n is odd then $G_n(B) = F_{\infty}(G_{n-1}(B)),$
- 2) If n is even, then $G_n(B) = G_{n-1}(B) \cup \{a(\mathcal{U}_a) : \mathcal{U}_a \in \mathcal{B}_a, a \in G_{n-1}(B)\}$. Since $\operatorname{card}(\mathcal{B}_a) < \operatorname{card}(A)$ the set $G_n(B)$ has the cardinality $< \operatorname{card}(A)$. Now we define $G_{\infty}(B) = \bigcup \{G_n(B) : n \in \mathbb{N}\}$. It is obvious that $\operatorname{card}(G_{\infty}(B)) < \operatorname{card}(A)$.

The set $G_{\infty}(B)$ is directed. Let a,b be a pair of elements of $G_{\infty}(B)$. There exists an $n \in \mathbb{N}$ such that $a,b \in G_n(B)$. We may assume that n is odd. Then $a,b \in F_{\infty}(G_{n-1}(B))$. Thus there exists a $c \in F_{\infty}(G_{n-1}(B))$ such that $c \geq a,b$. It is clear that $c \in G_{\infty}(B)$. The proof of directedness of $G_{\infty}(B)$ is completed.

The collection $\{X_a, p_{ab}, G_{\infty}(B)\}$ is an approximate system. It suffices to prove that the condition (A2) is satisfied. Let a be any member of $G_{\infty}(B)$. There exists an $n \in \mathbb{N}$ such that $a \in G_n(B)$. We have two cases.

- 1) If n is odd then $G_n(B) = F_{\infty}(G_{n-1}(B))$. This means that $a \in F_{\infty}(G_{n-1}(B))$. By definition of $F_{\infty}(G_{n-1}(B))$ we infer that $a(\mathcal{U}_a) \in F_{\infty}(G_{n-1}(B))$. Thus (A2) is satisfied.
- 2) If n is even, then $G_n(B) = G_{n-1}(B) \cup \{a(\mathcal{U}_a) : \mathcal{U}_a \in Cov(X_a), a \in G_{n-1}(B)\}$. In this case $a \in G_{n+1}(B) \subseteq G_{\infty}(B)$. Arguing as in the case 1, we infer that (A2) is satisfied.

THEOREM 7. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an approximate inverse system of compact spaces. If $\lambda \leq w(X_a) \leq \tau < \operatorname{card}(A)$ for each $a \in A$, then $\lim \mathbf{X}$ is homeomorphic to a limit of a λ -directed usual inverse system $\{X_{\alpha}, q_{\alpha\beta}, T\}$, where each X_{α} is a limit of an approximate inverse subsystem $\{X_{\gamma}, p_{\alpha\beta}, \Phi\}$, $\operatorname{card}(\Phi) = \lambda$.

Proof. The proof consists of several steps.

- Step 1. Let $\mathcal{B} = \{B_{\mu} : \mu \in M\}$ be a family of all subsets of A with $\operatorname{card}(B_{\alpha}) = \lambda$. Put $A_{\mu} = G_{\infty}(B_{\mu})$ (Lemma 5) and let $\Delta = \{A_{\mu} : \mu \in M\}$ be ordered by inclusion \subseteq .
- **Step 2.** If Φ and Ψ are in Δ such that $\Phi \subset \Psi$, then there exists a mapping $q_{\Phi\Psi} \colon \lim\{X_{\alpha}, p_{\alpha\beta}, \Psi\} \to \lim\{X_{\gamma}, p_{\alpha\beta}, \Phi\}.$

Namely, if $x=(x_{\alpha},\alpha\in\Psi)\in\lim\{X_{\alpha},p_{\alpha\beta},\Psi\}$, then by definition of the threads of $\{X_{\alpha},p_{\alpha\beta},\Psi\}$ the condition (L) is satisfied. If (L) is satisfied for $x=(x_{\alpha},\alpha\in\Psi)\in\lim\{X_{\alpha},p_{\alpha\beta},\Psi\}$, then it is satisfied for $(x_{\gamma},\gamma\in\Phi)$ since the required a' in (L) lies—by definition of the set Φ —in the set Φ . This means that $(x_{\gamma},\gamma\in\Phi)\in\lim\{X_{\gamma},p_{\alpha\beta},\Phi\}$. Now we define $q_{\Phi\Psi}(x)=(x_{\gamma},\gamma\in\Phi)$.

Step 3. The collection $\{X_{\Phi}, q_{\Phi\Psi}, \Delta\}$ is a usual inverse system. It suffices to prove transitivity, i.e., if $\Phi \subseteq \Psi \subseteq \Omega$, then $q_{\Phi\Psi}q_{\Psi\Omega} = q_{\Phi\Omega}$. This easily follows from the definition of $q_{\Phi\Psi}$.

Step 4. The space $\lim \mathbf{X}$ is homeomorphic to $\lim \{X_{\Psi}, q_{\Phi\Psi}, \Delta\}$, where $X_{\Phi} =$ $\lim\{X_{\gamma}, p_{\alpha\beta}, \Phi\}$. We shall define a homeomorphism $H : \lim \mathbf{X} \to \lim\{X_{\Psi}, q_{\Phi\Psi}, \Delta\}$. Let $x = (x_a : a \in A)$ be any point of $\lim X$. Each collection $\{x_a : a \in \Phi \in \Delta\}$ is a point x_{Φ} of X_{Φ} since $X_{\Phi} = \lim \{X_a, p_{ab}, \Phi\}$. Moreover, from the definition of $q_{\Phi\Psi}$ (Step 2) it follows that $q_{\Phi\Psi}(x_{\Psi}) = x_{\Phi}, \Psi \supseteq \Phi$. Thus, the collection $\{x_{\Phi} : \Phi \in \Delta\}$ is a point of $\lim \{X_{\Phi}, q_{\Phi\Psi}, \Delta\}$. Let $H(x) = \{x_{\Phi}, \Phi \in \Delta\}$. Thus, H is a continuous mapping of $\lim \mathbf{X}$ to $\lim \{X_{\Psi}, q_{\Phi\Psi}, \Delta\}$. In order to complete the proof it suffices to prove that H is 1-1 and onto. Let us prove that H is 1-1. Let $x = (x_a : a \in A)$ and $y = (y_a : a \in A)$ be a pair of points of $\lim X$. This means that there exists an $a \in A$ such that $y_a \neq x_a$. There exists a $\Phi \in \Delta$ such that $a \in \Phi$. Thus, the collections $\{x_a:a\in\Phi\}$ and $\{y_a:a\in\Phi\}$ are different. From this we conclude that $x_{\Phi} \neq y_{\Phi}, x_{\Phi}, y_{\Phi} \in X_{\Phi} = \lim\{X_a, p_{ab}, \Phi\}$. Hence H is 1-1. Let us prove that H is onto. Let $y = (y_{\Phi} : \Phi \in \Delta)$ be any point of $\lim \{X_{\Psi}, q_{\Phi\Psi}, \Delta\}$. Each y_{Φ} is a collection $\{x_a:a\in\Phi\}$ and if $\Psi\supseteq\Phi$, then the collection $\{x_a:a\in\Phi\}$ is the restriction of the collection $\{x_a:a\in\Psi\}$ on Φ . Let x be the collection which is the union of all collections $\{x_a : a \in \Phi\}, \Phi \in \Delta$. Hence x is a collection $(x_a : a \in A)$ which is a point of $\lim \mathbf{X}$ and H(x) = y.

Step 5. Inverse system $\{X_{\Phi}, q_{\Phi\Psi}, \Delta\}$ is a λ -directed inverse system. Let $\{\{X_{\gamma}, p_{\alpha\beta}, \Phi_{\kappa}\} : \kappa \leq \lambda\}$ be a collection of approximate subsystems $\{X_{\gamma}, p_{\alpha\beta}, \Phi_{\kappa}\}$. The set $\Phi = \bigcup \{\Phi_{\kappa} : \kappa \leq \lambda\}$ has the cardinality $\leq \lambda$ since $\operatorname{card}(\Phi_{\kappa}) \leq \lambda$. By virtue of Steps 1–4 there exists an approximate subsystem $\{X_{\gamma}, p_{\alpha\beta}, \Phi\}$, $\operatorname{card}(\Phi) = \lambda$. This means that $\{X_{\Phi}, q_{\Phi\Psi}, \Delta\}$ is a λ -directed inverse system. \blacksquare

COROLLARY 1. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an approximate inverse system of compact metric spaces. Then $\lim \mathbf{X}$ is homeomorphic to the limit of a σ -directed usual inverse system $\{X_{\alpha}, q_{\alpha\beta}, \Delta\}$, where each X_{α} is a limit of an approximate inverse subsystem $\{X_{\gamma}, p_{\alpha\beta}, \Phi\}$, $\operatorname{card}(\Phi) = \aleph_0$.

LEMMA 6. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an approximate system such that X_a , $a \in A$, are compact locally connected spaces and p_{ab} are monotone surjections. If $\mathbf{Y} = \{X_b, p_{cd}, B\}$ is an approximate subsystem of \mathbf{X} , then the mapping q_{AB} : $\lim \mathbf{X} \to \lim \mathbf{Y}$ (defined in Step 2 of the proof of Theorem 7) is a monotone surjection.

Proof. Let P_a : $\lim \mathbf{X} \to X_a$, $a \in A$, be the natural projection. Similarly, let p_a : $\lim \mathbf{Y} \to X_a$, $a \in B$, be the natural projection. From the definition of q_{AB} (Step 2 of the proof of Theorem 7) it follows that $p_aq_{AB} = P_a$ for each $a \in B$. By virtue of [10, Corollary 4.5] and [7, Corollary 5.6] it follows that P_a and P_a are monotone surjections. Let us prove that q_{AB} is a surjection. Let $y = (y_a : a \in B) \in \lim \mathbf{Y}$. The sets $P_a^{-1}(y_a)$, $a \in B$, are non-empty since P_a is surjective for each $a \in A$. From the compactness of $\lim \mathbf{X}$ it follows that a limit superior $Z = \operatorname{Ls}\{P_a^{-1}(y_a), a \in B\}$ is a non-empty subset of $\lim \mathbf{X}$. We shall prove that for each $z = (z_a : a \in A) \in Z$, $P_a(z) = y_a$. Suppose that $P_a(z) \neq y_a$. There exists a pair U, V of open disjoint subsets of X_a such that $y_a \in U$ and $P_a(z) \in V$. For sufficiently large $b \in B$, $P_a(P_b^{-1}(b))$ is in U because of (AS). This means that $P_a^{-1}(V) \cap P_b^{-1}(y_b) = \emptyset$ for sufficiently large $b \in B$. This contradicts the assumption $z \in \operatorname{Ls}\{P_a^{-1}(y_a), a \in B\}$. Hence q_{AB} is a surjection. In order to complete the proof it suffices to prove that

 q_{AB} is monotone. Take a point $y \in \lim \mathbf{Y}$ and suppose that $q_{AB}^{-1}(y)$ is disconnected. There exists a pair U,V of disjoint open sets in $\lim \mathbf{X}$ such that $q_{AB}^{-1}(y) \subseteq U \cup V$. From the compactness of $\lim \mathbf{X}$ it follows that q_{AB} is closed. This means that there exists an open neighborhood W of y such that $q_{AB}^{-1}(y) \subseteq q_{AB}^{-1}(W) \subseteq U \cup V$. From the definition of the basis in $\lim \mathbf{Y}$ it follows that there exists an open set W_a in some X_a , $a \in B$ such that $y \in p_a^{-1}(W_a) \subseteq W$. Moreover, we may assume that W_a is connected since X_a is locally connected. Then $P_a^{-1}(W_a)$ is connected since P_a is monotone [7, Corollary 5.6]. Moreover, $q_{AB}^{-1}(y) \subseteq P_a^{-1}(W_a)$ and $P_a^{-1}(W_a) \subseteq U \cup V$ since $P_a = p_a q_{AB}$. This is impossible since U and V are disjoint open sets and $P_a^{-1}(W_a)$ is connected. \blacksquare

Theorem 8. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an approximate inverse system of compact spaces. If $\lambda \leq w(X_a) < \operatorname{card}(A)$ for each $a \in A$ and $\operatorname{cf}(\operatorname{card}(A)) \neq \lambda$, then $X = \lim \mathbf{X}$ is homeomorphic to a limit of a λ -directed usual inverse system $\{X_{\alpha}, q_{\alpha\beta}, T\}$, where each X_{α} is a limit of an approximate inverse subsystem $\{X_{\gamma}, p_{\alpha\beta}, \Phi\}$, $\operatorname{card}(\Phi) = \lambda$. Moreover, if $\operatorname{card}(A)$ is a regular cardinal, then $X = \lim \mathbf{X}$ is homeomorphic to a limit of a λ -directed usual inverse system $\{X_{\alpha}, q_{\alpha\beta}, T\}$, where each X_{α} is a limit of an approximate inverse subsystem $\{X_{\gamma}, p_{\alpha\beta}, \Phi\}$, $\operatorname{card}(\Phi) = \lambda$.

A directed preordered set (A, \leq) is said to be *cofinite* provided each $a \in A$ has only finitely many predecessors. If $a \in A$ has exactly n predecessors, we shall write p(a) = n + 1. Hence, $a \in A$ is the first element of (A, \leq) if and only if p(a) = 1.

Lemma 7. If (A, \leq) is cofinite, then it satisfies the following principle of induction:

Let $B \subset A$ be a set such that:

- (i) B contains all the first elements of A,
- (ii) if B contains all the predecessors of $a \in A$, then $a \in B$. Then B = A.

Lemma 8. [15, Lemma 1] Let $q=(q_a)\colon Y\to \mathcal{Y}=\{Y_b,\mathcal{V}_b,q_{ab'},B\}$ be an approximate map (approximate resolution) of a space Y. Then there exists an approximate map (approximate resolution) $q=(q_a)\colon Y\to \mathcal{Y}=\{Y_c',\mathcal{V}_c',q_{cc'},C\}$ of the space Y and an increasing surjection $t\colon C\to B$ satisfying the following conditions:

- (i) C is directed, unbounded, antisymmetric and cofinite set;
- (ii) $(\forall c \in C)(\forall b \in B)(\exists c' > c) t(c') > b;$
- (iii) $(\forall c \in C) Y'_c = Y_{t(c)}, V'_c = V_{t(c)}, q'_c = q_{t(c)} \text{ and } q'_{cc'} = q_{t(c)t(c')}, \text{ whenever } c < c'.$

COROLLARY 2. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an approximate inverse system of compact spaces. Then there exists a cofinite approximate inverse system $\mathbf{Y} = \{Y_c, p_{cc'}, C\}$ such that each Y_c is some X_a , each $p_{cc'}$ is some p_{ab} and $\lim \mathbf{X}$ is homeomorphic to $\lim \mathbf{Y}$.

Proof. By virtue of Theorem (4.2) of [10] an approximate map $p: X \to \mathbf{X}$ is an approximate resolution if and only if it is a limit of $\mathbf{X} = \{X_a, p_{ab}, A\}$. Apply Lemma 8.

Theorem 9. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an approximate inverse system of compact non-metric spaces with surjective bonding mappings p_{ab} . If each X_a is a limit of a usual σ -directed inverse system $\mathbf{X}(a) = \{X_{(a,\gamma)}, f_{(a,\gamma)(a,\delta)}, \Gamma_a\}$ of metric compact spaces, then:

- 1. there exists a usual σ -directed inverse system $\mathbf{X}_D = \{X_d, F_{de}, D\}$ whose inverse limit X_D is homeomorphic to $X = \lim \mathbf{X}$,
- 2. every X_d is a limit of an approximate inverse system $\{X_{(a,\gamma_a)}, g_{(a,\gamma_a)(b,\gamma_b)}, A\}$ of compact metric spaces $X_{(a,\gamma_a)}$,
- 3. if the mappings p_{ab} and $f_{(a,\gamma)(a,\delta)}$ are monotone, then $g_{(a,\gamma_a)(b,\gamma_b)}$ and F_{de} are monotone.

Proof. The proof consists of several steps. In the Steps 0.–11. we shall define a usual inverse system $\mathbf{X}_D = \{X_d, F_{de}, D\}$ whose inverse limit X_D is homeomorphic to $X = \lim \mathbf{X}$.

Step 0. From Corollary 2 it follows that we may assume that A is cofinite.

Step 1. For each X_a there exists a σ -directed inverse system

$$\mathbf{X}(a) = \{X_{(a,\gamma)}, f_{(a,\gamma)(a,\delta)}, \Gamma_a\} \tag{1}$$

such that each $X_{(a,\gamma)}$ is a metric compact space, each $f_{(a,\gamma)(a,\delta)}$ is monotone and surjective and X_a is homeomorphic to $\lim \mathbf{X}(a)$. Now we have the following diagram

$$X_{a} \xleftarrow{p_{ab}} X_{b} \xleftarrow{p_{bc}} X_{c} \xleftarrow{p_{d}} X$$

$$\downarrow f_{(a,\gamma_{a})} \qquad \downarrow f_{(b,\gamma_{b})} \qquad \downarrow f_{(c,\gamma_{c})}$$

$$X_{(a,\gamma_{a})} \qquad X_{(b,\gamma_{b})} \qquad X_{(c,\gamma_{c})}$$

$$\downarrow f_{(a,\gamma_{a})(a,\delta_{a})} \qquad \downarrow f_{(b,\gamma_{b})(b,\delta_{b})} \qquad \downarrow f_{(c,\gamma_{c})(c,\delta_{c})}$$

$$X_{(a,\delta_{a})} \qquad X_{(b,\delta_{b})} \qquad X_{(c,\delta_{c})}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$(2)$$

Step 2. Put $B = \{(a, \gamma_a) : a \in A, \gamma_a \in \Gamma_a\}$ and put C to be the set of all subsets c of B of the form

$$c = \{(a, \gamma_a) : a \in A\},\tag{3}$$

where every γ_a is the fixed element of Γ_a .

Step 3. Let D be a subset of C containing all $c \in C$ for which there exist the mappings

$$g_{(a,\gamma_a)(b,\gamma_b)} \colon X_{(b,\gamma_b)} \to X_{(a,\gamma_a)}, \qquad b \ge a,$$
 (4)

such that

$$\{X_{(a,\gamma_a)}, g_{(a,\gamma_a)(b,\gamma_b)}, A\} \tag{5}$$

is an approximate inverse system and each diagram

$$X_{a} \leftarrow \frac{p_{ab}}{X_{b}} \qquad X_{b}$$

$$\downarrow^{f_{(a,\gamma_{a})}} \downarrow \qquad \qquad \downarrow^{f_{(b,\gamma_{b})}}$$

$$X_{(a,\gamma_{a})} \leftarrow \frac{1}{g_{(a,\gamma_{a})(b,\gamma_{b})}} X_{(b,g_{b})} \qquad (6)$$

commutes, where $f_{(a,\gamma_a)}: X_a \to X_{(a,\gamma_a)}$ is the canonical projection. It is clear that the mapping $g_{(a,\gamma_a)(b,\gamma_b)}$ is unique since $f_{(b,\gamma_b)}$ is a surjection.

Step 4. The set D is non-empty. Moreover, for each subset $S_a \subset \Gamma_a$, $a \in A$, $\operatorname{card}(S_a) \leq \aleph_0$, there exists $a \ d \in D$ such that $d = \{(a, \gamma_a) : a \in A\}$, $\gamma_a \geq \gamma$ for every $\gamma \in S_a$. Let $a \in A$ be some first element of A and let $\gamma_a \in \Gamma_a$ such that $\gamma_a \geq \gamma$ for every $\gamma \in S_a$. The space $X_{(a,\gamma_a)}$ is a metric compact space and there exist mappings $f_{(a,\gamma_a)}p_{ab}: X_b \to X_{(a,\gamma_a)}, \ b \geq a$. By virtue of Theorem 1 for each $b \geq a$ there exists a $\gamma_b^1 \in \Gamma_b$ such that for each $\gamma_b \geq \gamma_b^1, \gamma$, where $\gamma \in S_b$, there exists a monotone surjective mapping $g_{(a,\gamma_a)(b,\gamma_b)}: X_{(b,\gamma_b)} \to X_{(a,\gamma_a)}$ with $f_{(a,\gamma_a)}p_{ab} = g_{(a,\gamma_a)(b,\gamma_b)}f_{(b,\gamma_b)}$, i.e., the diagram

$$X_{a} \leftarrow \frac{p_{ab}}{X_{b}} \qquad X_{b}$$

$$\downarrow f_{(a,\gamma_{a})} \downarrow \qquad \qquad \downarrow f_{(b,\gamma_{b})}$$

$$X_{(a,\gamma_{a})} \leftarrow \frac{g_{(a,\gamma_{a})(b,\gamma_{b})}}{X_{(b,g_{b})}} \qquad (7)$$

commutes. Suppose that $(a,\gamma_b^1), (a,\gamma_b^2), \ldots, (a,\gamma_b^{n-1})$ are defined for each $a \in A$ with $p(a) \leq n-1$ such that the each diagram (6) commutes. Let $a \in A$ be a member of A with p(a) = n. This means that $(a,\gamma_b^1), (a,\gamma_b^2), \ldots, (a,\gamma_b^{n-1})$ are defined. From the cofinitness of A it follows that the set of γ_a^j which are defined in Γ_a is finite. Hence there exists $\gamma_a^n \geq \gamma_a^{n-1}, \ldots, \gamma_a^1$. We define $\gamma_b^n \in \Gamma_b$ considering the space $X_{(a,\gamma_a^n)}$ and the mappings $f_{(a,\gamma_a^n)}p_{ab}\colon X_b \to X_{(a,\gamma_a^n)}$. Again, by Theorem 1 for each $b \geq a$ there exists a $\gamma_b^n \in \Gamma_b$ such that for each $\gamma_b \geq \gamma_b^n, \gamma_b^{n-1}, \ldots, \gamma_b^1$ and there is a mapping $g_{(a,\gamma_b)(b,\gamma_b)}\colon X_{(b,\gamma_b)} \to X_{(a,\gamma_a^n)}$ with $f_{(a,\gamma_a^n)}p_{ab} = g_{(a,\gamma_b)(b,\gamma_b)}f_{(b,\gamma_b)}$, i.e., the diagram

$$X_{a} \leftarrow \xrightarrow{p_{ab}} X_{b}$$

$$f_{(a,\gamma_{a}^{n})} \downarrow \qquad \qquad \downarrow f_{(b,\gamma_{b})}$$

$$X_{(a,\gamma_{a}^{n})} \leftarrow \xrightarrow{g_{(a,\gamma_{a}^{n})(b,\gamma_{b})}} X_{(b,g_{b})}$$

$$(8)$$

commutes. By induction on A (Lemma 7) the set D is defined. It remains to prove that $\{X_{(a,\gamma_a)},g_{(a,\gamma_a)(b,\gamma_b)},A\}$ is an approximate inverse system. Let $\mathcal U$ be a normal cover of $X_{(a,\gamma_a)}$. Then $\mathcal V=f_{(a,\gamma_a)}^{-1}(\mathcal U)$ is a normal cover of X_a . By virtue of (A2) there exists a $b\geq a$ such that for each $c\geq d\geq b$ we have $(p_{ad},p_{ca}p_{cd}\leq \mathcal V)$. By virtue of the commutativity of the diagrams of the form (8) it follows that

$$(g_{(a,\gamma_a)(d,\gamma_d)},g_{(a,\gamma_a)(c,\gamma_c)}g_{(c,\gamma_c)(d,\gamma_d)}) \leq \mathcal{V}.$$

Thus, $\{X_{(a,\gamma_a)},g_{(a,\gamma_a)(b,\gamma_b)},A\}$ is an approximate inverse system.

Step 5. We define a partial order on D as follows. Let d_1, d_2 be a pair of members of D such that $d_1 = \{(a, \gamma_a) : a \in A, \gamma_a \in \Gamma_a\}$ and $d_2 = \{(a, \delta_a) : a \in A, \delta_a \in \Gamma_a\}$. We write $d_2 \leq d_1$ if and only if $\delta_a \leq \gamma_a$ for each $a \in A$. From Step 4. it follows that (D, \leq) is τ -directed. Moreover, X_D is a usual inverse system.

Step 6. For each $d \in D$ the limit space X_d of the inverse system (5) is a compact space. Moreover, there exists a mapping $F_d: X \to X_d$. The existence of F_d follows from the commutativity of the diagram (6). The following diagram illustrates the construction of $d \in D$ and the space X_d .

$$X_{a} \xleftarrow{p_{ab}} X_{b} \xleftarrow{p_{bc}} X_{c} \xleftarrow{p_{d}} X$$

$$\downarrow f_{(a,\delta_{a})} \qquad \downarrow f_{(b,\delta_{b})} \qquad \downarrow f_{(c,\delta_{c})}$$

$$X_{(a,\delta_{a})} \qquad X_{(b,\delta_{b})} \qquad X_{(c,\delta_{c})}$$

$$\downarrow f_{(a,\gamma_{a})(a,\delta_{a})} \qquad \downarrow f_{(b,\gamma_{b})(b,\delta_{b})} \qquad \downarrow f_{(c,\gamma_{c})(c,\delta_{c})}$$

$$X_{(a,\gamma_{a})} \xleftarrow{g_{(a,\gamma_{a})(b,\gamma_{b})}} X_{(b,\gamma_{b})} \xleftarrow{g_{(b,\gamma_{b})(c,\gamma_{c})}} X_{(c,\gamma_{c})} \xleftarrow{g_{(c,\gamma_{c})}} X_{d}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

Step 7. If d_1, d_2 is a pair of members of D such that $d_1 = \{(a, \gamma_a) : a \in A, \gamma_a \in \Gamma_a\}$, $d_2 = \{(a, \delta_a) : a \in A, \delta_a \in \Gamma_a\}$ and $d_2 \geq d_1$, then for each $a \in A$ commutes the diagram

$$X_{(a,\delta_a)} \stackrel{g_{(a,\delta_a)(b,\delta_b)}}{\longleftarrow} X_{(b,\delta_b)}$$

$$f_{(a,\gamma_a)(a,\delta_a)} \downarrow \qquad \qquad \downarrow f_{(b,\gamma_v)(b,\delta_b)}$$

$$X_{(a,\gamma_a)} \stackrel{G_{(a,\gamma_a)(b,\gamma_b)}}{\longleftarrow} X_{(b,\gamma_b)}$$

$$(10)$$

This follows from the surjectivity of the mappings $f_{(b,\gamma_b)}$ and from the commutativity of the diagrams of the form (6) for d_1 and d_2 , i.e., from the commutativity of the diagrams

$$X_{a} \leftarrow \xrightarrow{p_{ab}} X_{b}$$

$$f_{(a,\gamma_{a})} \downarrow \qquad \qquad \downarrow f_{(b,\gamma_{b})}$$

$$X_{(a,\gamma_{a})} \leftarrow \xrightarrow{g_{(a,\gamma_{a})(b,\gamma_{b})}} X_{(b,g_{b})}$$

$$(11)$$

and

$$X_{a} \leftarrow \frac{p_{ab}}{X_{b}} \qquad X_{b}$$

$$\downarrow^{f_{(a,\delta_{a})}} \downarrow \qquad \qquad \downarrow^{f_{(b,\delta_{b})}}$$

$$X_{(a,\delta_{a})} \leftarrow \frac{g_{(a,\delta_{a})(b,\delta_{b})}}{X_{(b,d_{b})}} \qquad (12)$$

Step 8. From Step 7. it follows that for $d_1,d_2\in D$ with $d_2\geq d_1$ there exists a mapping $F_{d_1d_2}\colon X_{d_2}\to X_{d_1}$ (see [1, p. 138]) such that $F_{d_1}=F_{d_1d_2}F_{d_2}$.

Proof of Step 8. Let $d_1, d_2, d_3 \in D$ and let $d_1 \leq d_2 \leq d_3$. Then $F_{d_1d_3} = F_{d_1d_2}F_{d_2d_3}$. This follows from Step 7. and the commutativity condition in each inverse system $\mathbf{X}(a) = \{X_{(a,\gamma)}, f_{(a,\gamma)(a,\delta)}, \Gamma_a\}$ (see (1) of Step 1.).

Step 9. The collection $\{X_d, F_{de}, D\}$ is a usual inverse system of compact spaces.

Apply Steps 1.-8.

Step 10. There is a mapping $F: X \to X_D$ which is 1-1.

By Step 6. and Step 8. for each $d \in D$ there is a mapping $F_d \colon X \to X_d$ such that $F_{d_1} = F_{d_1 d_2} F_{d_2}$ for $d_2 \geq d_1$. This means that there exists a mapping $F \colon X \to X_D$ [1, p. 138]. Let us prove that F is 1–1. Take a pair x,y of distinct points of X. There exists an $a \in A$ such that $x_a = p_a(x)$ and $y_a = p_a(y)$ are distinct points of X_a . Now, there exists an (a, γ_a) such that $f_{(a, \gamma_a)}(x_a)$ and $f_{(a, \gamma_a)}(y_a)$ are distinct points of $X_{(a, \gamma_a)}$. From Step 4. it follows that there is a $d \in D$ such that $F_d(x)$ and $F_d(y)$ are distinct points of X_d . Thus, F is 1–1.

Step 11. The mapping F is a homeomorphism onto X_D . Let y be a point of X_D . Let us prove that there exists a point $x \in X$ such that F(x) = y. For each $d \in D$ we have a point $y_d = F_d(y)$. Now, we have the points $g_{(a,\gamma_a)}F_d(y)$ in $X_{(a,\gamma_a)}$ and the subsets $Y_a = f_{(a,\gamma_a)}^{-1}(g_{(a,\gamma_a)}F_d(y))$ of X_a . Let U be an open neighborhood Y_a . There exists an open neighborhood V of $g_{(a,\gamma_a)}F_d(y)$ such that $f_{(a,\gamma_a)}^{-1}(V) \subseteq U$. We infer that $\operatorname{Ls}\{g_{(b,\gamma_b)}(Y_b):b\geq a\}\subseteq Y_a$ since $g_{(a,\gamma_a)}F_d(y)=\lim\{g_{(a,\gamma_a)(b,\gamma_b)}g_{(b,\gamma_b)}F_d(y):b\geq a\}$ and the diagrams (6) commute. By virtue of [6, Lemma 2.1] it follows that there exists a non-empty closed subset C_d of $\lim X$ such that $p_b(C_d)\subseteq Y_b$. The family $\{C_d:d\in D\}$ has the finite intersection property. This means that $X'=\bigcap\{C_d:d\in D\}$ is non-empty. For each $x\in X'$ we have $F_d(x)=F_d(y),d\in D$. Thus, F(y)=x. The proof is completed.

By the similar method of proof we obtain the following theorem.

Theorem 10. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an approximate inverse system of compact non-metric spaces with surjective bonding mappings p_{ab} . If each X_a is a limit of a usual τ -directed inverse system $\mathbf{X}(a) = \{X_{(a,\gamma)}, f_{(a,\gamma)(a,\delta)}, \Gamma_a\}$ of compact spaces with $w(X_{(a,\gamma)}) \leq \tau$, then:

- 1. there exists a usual τ -directed inverse system $\mathbf{X}_D = \{X_d, F_{de}, D\}$ whose inverse limit X_D is homeomorphic to $X = \lim \mathbf{X}$,
- 2. every X_d is a limit of an approximate inverse system $\{X_{(a,\gamma_a)}, g_{(a,\gamma_a)(b,\gamma_b)}, A\}$ of compact spaces $X_{(a,\gamma_a)}$,
- 3. if the mappings p_{ab} and $f_{(a,\gamma)(a,\delta)}$ are monotone, then $g_{(a,\gamma_a)(b,\gamma_b)}$ and F_{de} are monotone.

COROLLARY 3. Let $\mathbf{X} = \{X_n, p_{nm}, \mathbb{N}\}$ be an approximate inverse sequence of compact non-metric spaces with surjective bonding mappings p_{nm} . If each X_n is a limit of a usual σ -directed inverse system $\mathbf{X}(n) = \{X_{(n,\gamma)}, f_{(n,\gamma)(n,\delta)}, \Gamma_n\}$ of metric compact spaces, then:

- 1. there exists a usual σ -directed inverse system $\mathbf{X}_D = \{X_d, F_{de}, D\}$ whose inverse limit X_D is homeomorphic to $X = \lim \mathbf{X}$,
- 2. every X_d is a limit of an approximate inverse sequence $\{X_{(n,\gamma_n)}, g_{(n,\gamma_n)(m,\gamma_m)}, \mathbb{N}\}$ of compact metric spaces $X_{(n,\gamma_n)}$,
- 3. if the mappings p_{nm} and $f_{(n,\gamma)(n,\delta)}$ are monotone, then $g_{(n,\gamma_n)(m,\gamma_m)}$ and F_{de} are monotone.

Let \mathcal{P} be a topological property of spaces.

Theorem 11. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an approximate inverse system of compact non-metric spaces with surjective bonding mappings p_{ab} and let \mathcal{P} be a topological property of spaces such that:

- 1. each X_a is a limit of a usual σ -directed inverse system $\mathbf{X}(\mathbf{a}) = \{X_{(a,\gamma)}, f_{(a,\gamma)(a,\delta)}, \Gamma_a\}$ of metric compact spaces with property \mathcal{P} ,
- 2. if X_d is a limit of an approximate inverse system $\{X_{(a,\gamma_a)}, g_{(a,\gamma_a)(b,\gamma_b)}, A\}$ of compact metric spaces $X_{(a,\gamma_a)}$ with property \mathcal{P} , then X_d has \mathcal{P} ,
- 3. if Y is a limit of σ -directed usual inverse system of compact spaces with property \mathcal{P} , then Y has \mathcal{P} .

Then $X = \lim \mathbf{X}$ has the property \mathcal{P} .

3. Applications

Lemma 9. Let $\mathbf{X} = \{X_n, p_{nm}, \mathbb{N}\}$ be an approximate inverse sequence of locally connected metric continua. If the bonding mappings are monotone and surjective, then $X = \lim \mathbf{X}$ is locally connected.

Proof. There exists a usual inverse sequence $\mathbf{Y} = \{Y_i, q_{ij}, M\}$ such that $Y_i = X_{n_i}, \ q_{ij} = p_{n_i n_{i+1}} p_{n_{i+1} n_{i+2}} \dots p_{n_{j-1} n_j}$ for each $i, j \in \mathbb{N}$ and a homeomorphism $H \colon \lim \mathbf{X} \to \lim \mathbf{Y}$ [2, Proposition 8]. Each mapping q_{ij} as a composition of the monotone mappings is monotone. This means that \mathbf{Y} is a usual inverse sequence of locally connected continua with monotone bonding mappings q_{ij} . Hence $\lim \mathbf{Y}$ is locally connected. We infer that $X = \lim \mathbf{X}$ is locally connected since there exists a homeomorphism $H \colon \lim \mathbf{X} \to \lim \mathbf{Y}$.

LEMMA 10. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an approximate inverse system of locally connected continua such that $\operatorname{card}(A) = \aleph_0$. Then $X = \lim \mathbf{X}$ is locally connected.

Proof. By virtue of Lemma 3 there exists a countable well-ordered subset B of A such that the collection $\{X_b, p_{bc}, B\}$ is an approximate inverse sequence and $\lim \mathbf{X}$ is homeomorphic to $\lim \{X_b, p_{bc}, B\}$. From Lemma 9 it follows that $\lim \{X_b, p_{bc}, B\}$ is locally connected. Hence $X = \lim \mathbf{X}$ is locally connected.

Lemma 11. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an approximate inverse system of locally connected metric continua and monotone bonding mappings. Then $X = \lim \mathbf{X}$ is locally connected.

Proof. If $card(A) = \aleph_0$ then we apply Lemma 10. If $card(A) \ge \aleph_1$ then from Corollary 1 it follows that $X = \lim \mathbf{X}$ is homeomorphic to the limit of a σ -directed

usual inverse system $\{X_{\alpha},q_{\alpha\beta},\Delta\}$, where each X_{α} is a limit of an approximate inverse subsystem $\{X_{\gamma},p_{\alpha\beta},\Phi\}$, $\operatorname{card}(\Phi)=\aleph_0$. From Lemma 10 it follows that each X_a is locally connected. By Theorem 3 we infer that the limit of $\{X_{\alpha},q_{\alpha\beta},\Delta\}$ is locally connected. Hence, X is locally connected since X is homeomorphic to $\lim\{X_{\alpha},q_{\alpha\beta},\Delta\}$.

Theorem 12. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an approximate inverse system of locally connected continua and monotone bonding mappings. Then $X = \lim \mathbf{X}$ is a locally connected continuum.

Proof. By virtue of Theorem 3 and Remark 1 every X_a is a limit of a usual σ -directed inverse system $X(a) = \{X_{(a,\gamma)}, f_{(a,\gamma)(a,\delta)}, \Gamma_a\}$ of metric locally connected continua with monotone bonding mappings $f_{(a,\gamma)(a,\delta)}$. From Theorem 9 it follows that there exist: 1) a usual σ -directed inverse system $\mathbf{X}_D = \{X_d, F_{de}, D\}$ whose inverse limit X_D is homeomorphic to $X = \lim \mathbf{X}$; 2) every X_d is a limit of an approximate inverse system $\{X_{(a,\gamma_a)}, g_{(a,\gamma_a)(b,\gamma_b)}, A\}$ of compact metric spaces $X_{(a,\gamma_a)}$ and 3) if the mappings p_{ab} and $f_{(a,\gamma)(a,\delta)}$ are monotone, then $g_{(a,\gamma_a)(b,\gamma_b)}$ and F_{de} are monotone. Now, every X_d as the limit of approximate inverse system $\{X_{(a,\gamma_a)}, g_{(a,\gamma_a)(b,\gamma_b)}, A\}$ is locally connected because of Lemma 11. Finally, X is locally connected since X is homeomorphic to $X_D = \lim \mathbf{X}_D$ and X_D is locally connected (Theorem 3).

We shall say that a non-empty compact space is *perfect* if it has no isolated points.

A continuum is said to be totally regular [12, p. 47] if for each $x \neq y$ in X there is a positive integer n and perfect subsets A_1, \ldots, A_n of X such that $x_i \in A_i$ for $i = 1, \ldots, n$ implies that $\{x_1, \ldots, x_n\}$ separates x from y in X.

Lemma 12. [12, Proposition 7.4] Each totally regular continuum is hereditarily locally connected and rim-finite.

The following theorem is a part of [12, Theorem 7.15].

Theorem 13. If X is a continuum then the following conditions are equivalent:

- 1. X is totally regular,
- 2. X is homeomorphic to $\lim\{X_a, f_{ab}, \Gamma\}$ such that each X_a is a totally regular continuum and each f_{ab} is a monotone surjection.

THEOREM 14. [12, Theorem 7.7] Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an inverse system of totally regular continua X_a and monotone surjective mappings p_{ab} . Then $X = \lim \mathbf{X}$ is totally regular.

Theorem 15. Let X be a non-metric totally regular continuum. There exists a σ -directed inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ such that each X_a is totally regular, each f_{ab} is a monotone surjection and X is homeomorphic to $\lim \mathbf{X}$.

Proof. Apply [12, Theorem 9.4], Theorem 14 and Lemma 3.5 of [14]. ■

Now we shall prove the following theorem.

Theorem 16. Let $\mathbf{X} = \{X_n, p_{nm}, \mathbb{N}\}$ be an approximate inverse sequence of totally regular metric continua. If the bonding mappings are monotone and surjective, then $X = \lim \mathbf{X}$ is totally regular.

Proof. There exists a usual inverse sequence $\mathbf{Y} = \{Y_i, q_{ij}, M\}$ such that $Y_i = X_{n_i}, \ q_{ij} = p_{n_i n_{i+1}} p_{n_{i+1} n_{i+2}} \dots p_{n_{j-1} n_j}$ for each $i, j \in \mathbb{N}$ and a homeomorphism $H \colon \lim \mathbf{X} \to \lim \mathbf{Y}$ [2, Proposition 8]. Each mapping q_{ij} as a composition of the monotone mappings is monotone. This means that \mathbf{Y} is a usual inverse sequence of totally regular continua with monotone bonding mappings q_{ij} . By virtue of Theorem 14 $\lim \mathbf{Y}$ is totally regular. We infer that $X = \lim \mathbf{X}$ is totally regular since there exists a homeomorphism $H \colon \lim \mathbf{X} \to \lim \mathbf{Y}$.

THEOREM 17. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an approximate inverse system of totally regular continua such that $\operatorname{card}(A) = \aleph_0$. Then $X = \lim \mathbf{X}$ is totally regular.

Proof. By virtue of Lemma 3 there exists a countable well-ordered subset B of A such that the collection $\{X_b, p_{bc}, B\}$ is an approximate inverse sequence and $\lim \mathbf{X}$ is homeomorphic to $\lim \{X_b, p_{bc}, B\}$. From Theorem 16 it follows that $\lim \{X_b, p_{bc}, B\}$ is totally regular. Hence $X = \lim \mathbf{X}$ is totally regular.

THEOREM 18. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an approximate inverse system of totally regular continua and monotone bonding mappings. If $w(X_a) < \tau < \operatorname{card}(A)$ for each $a \in A$, then $X = \lim \mathbf{X}$ is a totally regular continuum.

Proof. By virtue of Theorem 7 (for $\lambda = \aleph_0$) there exists a σ -directed inverse system $\{X_\alpha, q_{\alpha\beta}, T\}$, where each X_α is a limit of an approximate inverse subsystem $\{X_\gamma, p_{\alpha\beta}, \Phi\}$, card $(\Phi) = \aleph_0$. From Theorem 17 it follows that every X_α is totally regular. Theorem 14 completes the proof. \blacksquare

Theorem 19. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an approximate inverse system of totally regular metric continua and monotone bonding mappings. Then $X = \lim \mathbf{X}$ is totally regular continuum.

Proof. If $\operatorname{card}(A) = \aleph_0$ then we apply Theorem 17. If $\operatorname{card}(A) \ge \aleph_1$ then from Theorem 18 it follows that X is totally regular.

Theorem 20. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an approximate inverse system of totally regular non-metric continua with surjective monotone bonding mappings p_{ab} . Then $X = \lim \mathbf{X}$ is totally regular.

Proof. By virtue of Theorem 15 every X_a is a limit of a usual σ -directed inverse system $X(a) = \{X_{(a,\gamma)}, f_{(a,\gamma)(a,\delta)}, \Gamma_a\}$ of metric totally regular continua with monotone bonding mappings $f_{(a,\gamma)(a,\delta)}$. From Theorem 9 it follows that there exist: 1) a usual σ -directed inverse system $\mathbf{X}_D = \{X_d, F_{de}, D\}$ whose inverse limit X_D is homeomorphic to $X = \lim \mathbf{X}$, 2) every X_d is a limit of an approximate inverse system $\{X_{(a,\gamma_a)}, g_{(a,\gamma_a)(b,\gamma_b)}, A\}$ of compact metric spaces $X_{(a,\gamma_a)}$ and 3) if the mappings p_{ab} and $f_{(a,\gamma)(a,\delta)}$ are monotone, then $g_{(a,\gamma_a)(b,\gamma_b)}$ and F_{de} are monotone. Now, every X_d as the limit of approximate inverse system $\{X_{(a,\gamma_a)}, g_{(a,\gamma_a)(b,\gamma_b)}, A\}$

is totally regular because of Theorem 19. Finally, X is totally regular since X is homeomorphic to $X_D = \lim \mathbf{X}_D$ and X_D is totally regular (Theorem 14).

Theorem 21. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an approximate inverse system of totally regular continua with surjective monotone bonding mappings p_{ab} . Then $X = \lim \mathbf{X}$ is totally regular.

Proof. Apply Theorems 19 and 20. ■

REFERENCES

- [1] Engelking R., General Topology, PWN, Warszawa, 1977.
- [2] Charalambous, M. G., Approximate inverse systems of uniform spaces and an application of inverse systems, Comment. Math. Univ. Carolinae, 32, 33 (1991), 551-565.
- [3] Gordh, G. R., Jr. and Mardešić, S., Characterizing local connectedness in inverse limits, Pacific J. Math. 58 (1975), 411-417.
- [4] Lončar, I., A note on hereditarily locally connected continua, Zbornik radova Fakulteta organizacije i informatike Varaždin 1 (1998), 29-40.
- [5] Lončar, I., Inverse limit of continuous images of arcs, Zbornik radova Fakulteta organizacije i informatike Varaždin 2(23) (1997), 47-60.
- [6] Lončar, I., A note on approximate limits, Zbornik radova Fakulteta organizacije i informatike Varaždin, 19 (1995), 1-21.
- [7] Lončar, I., Set convergence and local connectedness of approximate limits, Acta Math. Hungar. 77 (3) (1997), 193-213.
- [8] Mardešić, S., Locally connected, ordered and chainable continua, Rad JAZU Zagreb 33(4) (1960), 147-166.
- [9] Mardešić, S. and Uglešić, N., Approximate inverse systems which admit meshes, Topology and its Applications 59 (1994), 179-188.
- [10] Mardešić, S. and Watanabe, T., Approximate resolutions of spaces and mappings, Glasnik Mat. 24(3) (1989), 587-637.
- [11] Mardešić, S., On approximate inverse systems and resolutions, Fund. Math. 142 (1993), 241-255.
- [12] Nikiel, J., Tuncali, H. M. and Tymchatyn, E. D., Continuous images of arcs and inverse limit methods, Mem. Amer. Math. Soc. 1993, 104, 496, 1-80.
- [13] Nikiel, J., The Hahn-Mazurkiewicz theorem for hereditarily locally connected continua, Topology and Appl. 32 (1989), 307-323.
- [14] Nikiel, J., A general theorem on inverse systems and their limits, Bull. Polish Acad. Sci., Mathematics, 32 (1989), 127-136.
- [15] Uglešić, N., Stability of gauged approximate resolutions, Rad Hrvatske akad. znan. umj. mat. [470] 12 (1995), 69-85.
- [16] Whyburn, G.T., Analytic Topology, Amer. Math. Soc. 28 (1971).
- [17] Wilder, R.L., Topology of Manifolds, Amer. Math. Soc. 32 (1979).

(received 08.05.2000, in revised form 23.12.2000)

Faculty of Organization and Informatics Varaždin, Croatia

E-mail: ivan.loncar1@vz.tel.hr