MATEMATWUYKN BECHUK UDK 515.122.2
52 (2000)’ 83-97 OPUTIMHAJHA HAYUYHU Dal

research paper

RELATIONSHIPS BETWEEN USUAL AND
APPROXIMATE INVERSE SYSTEMS

Ivan Lonéar

Abstract. We shall prove that if X = {X,,pas, A} is an approximate inverse system of
compact non-metric spaces with surjective bonding mappings p,; such that each X, is a limit
of a usual 7-directed inverse system X(a) = {X(a,y), f(a,7)(a,5); La} of metric compact spaces,
then there exist: 1) a usual 7-directed inverse system Xp = {Xy, ch,D} whose inverse limit
Xp is homeomorphic to X = limX, 2) every X, is a limit of an approximate inverse system
{X(ava)s Y(ava)(byy)s A} of compact metric spaces X(a,4,), 3) if the mappings par and f(a,)(a.s)
are monotone, then g(a,v,)(s,4;,) @and Fy. are monotone.

1. Introduction

In this paper we shall use the notion of inverse systems X = {X,, pas, A} and
their limits in the usual sense [1, p. 135].

The cardinality of a set X will be denoted by card(X). The cofinality of a
cardinal number m will be denoted by cf(m). Couv(X) is the set of all normal
coverings of a topological space X. If U, ¥V € Cov(X) and V refines U, we write
VY < U. For two mappings f,g: Y — X which are U-near (for every y € Y there
exists a U € U with f(y),g(y) € U), we write (f,g9) <U. A basis of (open) normal
coverings of a space X is a collection C of normal coverings such that every normal
covering U € Cov(X) admits a refinement V € C. We denote by cw(X) (covering
weight) the minimal cardinal of a basis of normal coverings of X [9, p. 181].

LEMMA 1. [9, Example 2.2] If X is a compact Hausdorff space, then cw(X) =
w(X).

The notion of approzimate inverse system X = {Xg, pap, A} will be used in
the sense of S. Mardesi¢ [11].

DEFINITION 1. An approzimate inverse system is a collection X = {X,, pas, 4},
where (A, <) is a directed preordered set, X,, a € A, is a topological space and
Pab: Xp — Xq, a < b, are mappings such that p,, = id and the following condition
(A2) is satisfied:
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(A2) For each a € A and each normal cover U € Cov(X,) there is an index b > a
such that (PecPed, Pad) < U, whenever a < b < ¢ <d.

An approximate map p = {p, : @ € A}: X — X into an approximate system
X = {X,,Pa, A} is a collection of maps po: X — X,, a € A, such that the
following condition holds

(AS) For any a € A and any U € Cov(X,) thereis b > a such that (pacpe,p.) < U
for each ¢ > b. (See [10]).

Let X = {X,,pab, A} be an approximate system and let p = {p, : a €
A}: X — X be an approximate map. We say that p is a limit of X provided
it has the following universal property:

(UL) For any approximate map q = {g, : @ € A}: Y — X of a space Y there
exists a unique map g: ¥ — X such that p,g = q,.

Let X = {X,,pa», A} be an approximate system. A point z = (z,) € [[{ X, :
a € A} is called a thread of X provided it satisfies the following condition:

(L) (Va € A)(VU € Cou(X,))(3b > a)(Ve > b) pac(z.) € st(xg,U).

If X, is a T35 space, then the sets st(zo,U), U € Cov(X,), form a basis of
the topology at the point z,. Therefore, for an approximate system of Tychonoff
spaces condition (L) is equivalent to the following condition:

(L)* (Va € A) lim{psc(zc) : ¢ > a} = z,.

Let 7 be an infinite cardinal. We say that a partially ordered set A is 7-directed
if for each B C A with card(B) < 7 there is an a € A such that a > b for each
b € B. If A is Ny-directed, then we will say that A is o-directed. An inverse system

X = {Xq4,Pab, A} is said to be 7-directed if A is 7-directed. An inverse system
X = {X,, Pab, A} is said to be o-directed if A is o-directed.

The proof of the following theorem is similar to the proof of Theorem 1.1 of [4].

THEOREM 1. Let X = {X,, pap, A} be a o-directed approzimate inverse system
of compact spaces with surjective bonding mappings and limit X. LetY be a metric
compact space. For each surjective mapping f: X — Y there exists an a € A such
that for each b > a there exists a mapping gy: Xp — Y such that f = gypy-

THEOREM 2. Let X be a compact space. There exists a o-directed inverse
system X = {Xq, pab, A} of compact metric spaces X, and surjective bonding map-
pings pap such that X is homeomorphic to lim X.

Proof. It is well-known that there exists a usual inverse system Y =
{Ys,qap, X} of metric spaces Y, and surjective bonding mappings such that X
is homeomorphic to lim Y. By Theorem 9.5 of [12] there exists a o-directed inverse
system X = {X,, Pab, A} such that lim X is homeomorphic to lim Y and each X,
is the limit of a countable inverse subsystem of Y. This means that each X, is a
metric compact space. B

THEOREM 3. [8, p. 163, Theorem 2.] If X is a locally connected compact
space, then there exists an inverse system X = {X,, pap, A} such that each X, is a
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metric locally connected compact space, each pgp s a monotone surjection and X
1s homeomorphic to lim X. Conversely, the inverse limit of such system is always
a locally connected compact space.

REMARK 1. We may assume that X = {X,, pas, A} in Theorem 3 is o-directed
[12, Theorem 9.5].

THEOREM 4. [13, Corollary 2.9] If X is a hereditarily locally connected contin-
uum, then there exists a o-directed inverse system X = {X,, pap, A} such that each
X, is a metrizable hereditarily locally connected continuum, each pqp is a monotone
surjection and X is homeomorphic to lim X.

THEOREM 5. [3, Corollary 3] Let X = {X,, pas, A} be a o-directed inverse sys-
tem of hereditarily locally connected continua X,. Then X = lim X is hereditarily
locally connected.

The following theorem is Theorem 1.7 from [5].

THEOREM 6. Let X = {X,,PDap, A} be a o-directed inverse system of compact
metrizable spaces and surjective bonding mappings. Then X = lim X s metrizable
if and only if there exists an a € A such that py: X — Xy is a homeomorphism for
each b > a.

2. Approximate subsystems

In this Section we investigate the approximate subsystem of an approximate
system X = {X,, pap,A}. We start with the following definition.

DEFINITION 2. Let X = {X,, pa», A} be an approximate inverse system and
let B be a directed subset of A such that {Xj, pyc, B} is an approximate inverse
system. We say that {Xs, psc, B} is an approzimate subsystem of X = {X,, pap, A}
if there exists a mapping ¢: lim X — lim{ Xy, py., B} such that

Pvq = va b € Bv
where py: Um{Xs, ppc, B} — Xp and Pp: limX — X;, b € B, are natural projec-
tions.

We say that an approximate system X = {X,, pap, A} is irreducible if for each
B C A with card(B) < card(A) it follows that B is not cofinal in A.

LEMMA 2. Let X = {Xg,pa, A} be an approzimate inverse system. There
exists a cofinal subset B of A such X = {Xg, Pap, B} is trreducible.

Proof. Consider the family B of all cofinal subsets of B of A. The set {card(B) :
B € B} has the minimal element b since each card(B) is some initial ordinal number.
Let B € B be such that card(B) = b. It is clear that {X,, pes, B} is irreducible. m

In the sequel we will assume that X = {X,, pes, A} is irreducible.

LEMMA 3. Let X = {X,, pap, A} be an approzimate inverse system of compact
spaces such that card(A) = Ng. Then there exists a countable well-ordered subset B
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of A such that the collection {X4, ppe, B} is an approrimate inverse sequence and
lim X is homeomorphic to im{Xy, py., B}.
Proof. Let v be any finite subset of A. There exists a 6(v) € A such that
6 < é(v) for each 6 € v. Since A is infinite, there exists a sequence {v, : n € N}
such that vy C ... C v, C--- and A = |J{vn : n € N}. Recursively, we define the
sets A1,...,A,,... by
A1 =1 U {6(1/1)},

and
An—l—l = An U Vn+1 U {(5(An U Vn_|_1)}.

It follows that there exists a sequence
A1 CAC...CA,C--

of finite sets A, such that A = [J{A, : n € N}. Let by = §(A;1) and b, > 6(4,),
bp—1 if n > 2. We obtain a sequence B = {b, : n € N} such that B is cofinal
in A. By virtue of [10, Theorem (1.19)] it follows that lim X is homeomorphic to
lim{Xb,pbc, B} ]

Now we consider irreducible approximate inverse systems X = {X,, pap, A}
with card(A) > 8.

LEMMA 4. Let A be a directed set. For each subset B of A there exists a
directed set Foo(B) such that card(Fuo(B)) = card(B).

Proof. For each B C A there exists a set F1(B) = B|J{6(v) : v € B}, where
v is a finite subset of B and 6(v) is defined as in the proof of Lemma 3. Put

Foy1= Fl(Fn(B)v

and
Foo(B) = [ J{Fn(B) : n € N}

It is clear that
Fi(B) C Fy(B) C ... C Fo(B) C -

The set Fuo(B) is directed since each finite subset v of Fi,(B) is contained in some
F,(B) and, consequently, §(v) is contained in F (B).

If B is finite, then card(F(B)) = No. If card(B) > Rg, then we have
card({6(v) : v € B}) < card(B)Rg. We infer that card(Fi(B)) < card(B)Ry.
Similarly, card(F,(B)) < card(B)Xq. This means that card(F (B)) < card(B)No.
Thus

card(F(B)) < card(B)Yg, if card(B) < card(A).

The proof is completed. m

LEMMA 5. Let {Xg4,pab, A} be an approzimate inverse system such that
cw(X,) < card(A4), a € A. For each subset B of A with card(B) < card(A),
there ezists a directed set Goo(B) 2 B such that the collection {X g, pap, Goo(B)} is
an approzimate system and card(Go (B)) = card(B).
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Proof. Let B, be a base of normal coverings of X,. Let U, € B,. By virtue
of (A2) there exists an a(U,) €A such that (ped,PacPed) < Uy, a < a(ldy) < ¢ < d.
For each subset B of A we define G,(B) by induction as follows:

a) Let G1(B) = Fo(B). From Lemma 4 it follows that card(Gy1(B)) =
card(F (B)) = card(B).

b) For each n > 1 we define G,,(B) as follows:

1) If n is odd then G, (B) = Fo (Gr_1(B)),

2) If n is even, then G,,(B) = G,—1(B) U {a(U4,) : U, € By, a € G,_1(B)}.
Since card(B,) < card(A) the set G, (B) has the cardinality < card(4). Now we
define Goo(B) = |J{Gn(B) : n € N}. Tt is obvious that card(Go(B)) < card(A).

The set G (B) is directed. Let a,b be a pair of elements of G, (B). There
exists an n € N such that a,b € G,(B). We may assume that n is odd. Then
a,b € Fso (Gp—1(B)). Thus there exists a ¢ € Fo (Gp—1(B)) such that ¢ > a,b. It
is clear that ¢ € Goo(B). The proof of directedness of G (B) is completed.

The collection { X4, pab, Goo(B)} is an approzimate system. It suffices to prove
that the condition (A2) is satisfied. Let @ be any member of Go(B). There exists
an n € N such that a € G,,(B). We have two cases.

1) If nis odd then G, (B) = Foo (Gr—1(B)). This means that a € Foo (Gr—1(B)).
By definition of Foo (Grn—1(B)) we infer that a(Us,) € Foo(Gn-1(B)). Thus (A2) is
satisfied.

2) If n is even, then Gn(B) = Gn_1(B) U {a(Uy) : U, € Cov(X,), a €
Gn_1(B)}. In this case a € Gpy1(B) C G (B). Arguing as in the case 1, we
infer that (A2) is satisfied. m

THEOREM 7. Let X = {X,, pab, A} be an approzimate inverse system of com-
pact spaces. If A\ < w(X,) <7 < card(4) for each a € A, then lim X is homeomor-
phic to a limit of a A-directed usual inverse system {Xq, gag, T}, where each X, is
a limit of an approzimate inverse subsystem {X, pag, ®}, card(®) = .

Proof. The proof consists of several steps.

Step 1. Let B = {B, : p € M} be a family of all subsets of A with card(B,) =
A Put A, = Goo(B,) (Lemma 5) and let A = {A, : p € M} be ordered by
inclusion C.

Step 2. If ® and ¥ are in A such that ® C U, then there exists a mapping
gow: Im{X,,pag, ¥} — lim{X,, pas, ®}.

Namely, if £ = (24, € ¥) € lim{ X, pag, ¥}, then by definition of the threads
of {X4,pap, ¥} the condition (L) is satisfied. If (L) is satisfied for z = (24, €
U) € lim{X,,pag, ¥}, then it is satisfied for (x,,7 € ®) since the required o’ in
(L) lies—by definition of the set ®—in the set ®. This means that (z,,y € ®) €
lim{X,,,pas, ®}. Now we define gaw () = (24,7 € ®).

Step 3. The collection {Xe¢,qow, A} is a usual inverse system. It suffices to
prove transitivity, i.e., if ® C ¥ C , then gewquo = geq- This easily follows from
the definition of ggy -
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Step 4. The space lim X is homeomorphic to im{ Xy, qsw, A}, where X¢ =
lim{X,,pas, ®}. We shall define a homeomorphism H: lim X — lim{Xv, ¢ow,A}.
Let x = (24 : @ € A) be any point of lim X. Each collection {z, :a € ® € A} is a
point g of Xg since Xg = lim{X,, pas, ®}. Moreover, from the definition of ¢sw
(Step 2) it follows that gay(zw) = 25, ¥ D ®. Thus, the collection {zg : € A}
is a point of lim{Xs,gsw,A}. Let H(z) = {zs,® € A}. Thus, H is a continuous
mapping of lim X to lim{ Xy, gsw,A}. In order to complete the proof it suffices to
prove that H is 1-1 and onto. Let us prove that H is 1-1. Let z = (z, : a € A)
and y = (Yo : @ € A) be a pair of points of lim X. This means that there exists
an a €A such that y, # z,. There exists a ® € A such that a € ®. Thus, the
collections {z, : a € ®} and {y, : a € ®} are different. From this we conclude
that zo # ys, Ta,ys € Xo = im{X,, pes, ®}. Hence H is 1-1. Let us prove that
H is onto. Let y = (yg : ® € A) be any point of lim{Xy,gsw,A}. Each yg is
a collection {z, : @ € ®} and if ¥ D P, then the collection {z, : a € P} is the
restriction of the collection {z, : a € U} on ®. Let z be the collection which is the
union of all collections {z, : a € ®}, ® € A. Hence z is a collection (z, : a € A)
which is a point of lim X and H(z) = y.

Step 5. Inverse system {Xs,qaw, A} is a A-directed inverse system. Let
{{X,,Pap, @} : kK < A} be a collection of approximate subsystems {X,, pag, @« }.
The set & = [J{®« : ¥ < A} has the cardinality < X since card(®,) < A. By virtue
of Steps 1-4 there exists an approximate subsystem {X,,pag, ®}, card(®) = A.
This means that {Xs,qew, A} is a A-directed inverse system. m

COROLLARY 1. Let X = {X,,pa, A} be an approrimate inverse system of
compact metric spaces. Then lim X is homeomorphic to the limit of a o-directed
usual inverse system {Xq,qap, A}, where each X, is a limit of an approrimate
inverse subsystem {X,, pag, ®}, card(®) = Ny.

LEMMA 6. Let X = {X,,pab, A} be an approximate system such that X,, a €
A, are compact locally connected spaces and p.p are monotone surjections. If Y =
{Xb, Pea, B} is an approzimate subsystem of X, then the mapping gap: limX —
imY (defined in Step 2 of the proof of Theorem 7) is a monotone surjection.

Proof. Let P,: limX — X,, a € A, be the natural projection. Similarly, let
Po: limY — X, a € B, be the natural projection. From the definition of ¢4 g (Step
2 of the proof of Theorem 7) it follows that p,qap = P, for each a € B. By virtue
of [10, Corollary 4.5] and [7, Corollary 5.6] it follows that P, and p, are monotone
surjections. Let us prove that gap is a surjection. Let y = (y, : a € B) € limY.
The sets P 1(y,), a € B, are non-empty since P, is surjective for each a € A. From
the compactness of lim X it follows that a limit superior Z = Ls{P, '(y,),a € B}
is a non-empty subset of lim X. We shall prove that for each z = (2, : a € A) € Z,
P.(z) = y,. Suppose that P,(z) # y.. There exists a pair U,V of open disjoint
subsets of X, such that y, € U and P,(z) € V. For sufficiently large b € B,
P.(P; () is in U because of (AS). This means that P, (V) N P (y,) = 0 for
sufficiently large b € B. This contradicts the assumption z € Ls{P;(y,),a € B}.
Hence g4 p is a surjection. In order to complete the proof it suffices to prove that



Relationships between usual and approximate inverse systems 89

qap is monotone. Take a point y € lim 'Y and suppose that ¢ 5 (y) is disconnected.
There exists a pair U,V of disjoint open sets in lim X such that ng(y) CUUV.
From the compactness of lim X it follows that g4 g is closed. This means that there
exists an open neighborhood W of y such that g3 5(y) C ¢4 5(W) CU U V. From
the definition of the basis in lim Y it follows that there exists an open set W, in
some X,, a €B such that y € p;1(W,) C W. Moreover, we may assume that W,
is connected since X, is locally connected. Then P, !(W,) is connected since P, is
monotone [7, Corollary 5.6]. Moreover, ¢, 5(y) € P, (W,) and P, (W,) CUUV
since P, = pygap- This is impossible since U and V are disjoint open sets and
P;71(W,) is connected. m

THEOREM 8. Let X = {X,,Pap, A} be an approzimate inverse system of com-
pact spaces. If A < w(X,) < card(A4) for each a € A and cf(card(A)) # A,
then X = lim X is homeomorphic to a limit of a A-directed usual inverse sys-
tem {Xa,qag, T}, where each X, is a limit of an approzimate inverse subsys-
tem {X,,pap, @}, card(®) = A. Moreover, if card(A) is a regular cardinal,
then X = lim X is homeomorphic to a limit of a A-directed usual inverse sys-
tem {Xa,qap, T}, where each Xo is a limit of an approzimate inverse subsystem
{X’hpaﬂ?q)}; card(@) =\

A directed preordered set (A, <) is said to be cofinite provided each a € A has
only finitely many predecessors. If a € A has exactly n predecessors, we shall write
p(a) =n + 1. Hence, a € A is the first element of (4, <) if and only if p(a) = 1.

LeEMMA 7. If (A, <) is cofinite, then it satisfies the following principle of
induction:

Let B C A be o set such that:

(i) B contains all the first elements of A,

(ii) if B contains all the predecessors of a € A, then a € B.
Then B = A.

LeEMMA 8. [15, Lemma 1] Let ¢ = (qo): Y — Y = {¥s,Vs,q,,, B} be an
approzimate map (approzimate resolution) of a space Y. Then there erists an
approzimate map (approzimate resolution) ¢ = (q.): Y — Y = {Y'C',V;,qcc:70}
of the space Y and an increasing surjection t: C — B satisfying the following
conditions:

(i) C 1is directed, unbounded, antisymmetric and cofinite set;
(ii) (Vee C)(Vbe B)(Ad > ) t(c) > b;
(iii) (Ve € C)Y! = Yye), Vi = Vi(e), €. = Qe(c) and @l = Qy(c)e(c), whenever ¢ < c'.

COROLLARY 2. Let X = {X,,pa, A} be an approzimate inverse system of
compact spaces. Then there exists a cofinite approrimate inverse system Y =
{Ye, peer, C} such that each Y, is some X,, each p.o is some pgp and lim X is
homeomorphic to limY .
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Proof. By virtue of Theorem (4.2) of [10] an approximate map p: X — X is
an approximate resolution if and only if it is a limit of X = {X,, pas, A}. Apply
Lemma 8. m

THEOREM 9. Let X = {X,, pab, A} be an approrimate inverse system of com-
pact non-metric spaces with surjective bonding mappings pay. If each X, is a limit
of a usual o-directed inverse system X(a) = {X(a,y)s f(a,7)(a,6) La} of metric com-
pact spaces, then:

1. there exists a usual o-directed inverse system Xp = { X4, Fye, D} whose inverse

limit Xp is homeomorphic to X =1lim X,

2. every Xg is a limit of an approximate inverse system {X(a,,,a),g(am)(bm),A}
of compact metric spaces X(a,va)

3. if the mappings pay and f(a,y)(a,5) are monotone, then g ,)(s,y,) ond Fae are
monotone.

Proof. The proof consists of several steps. In the Steps 0.—11. we shall define a
usual inverse system Xp = {Xg, Fye, D} whose inverse limit X p is homeomorphic
to X = lim X.

Step 0. From Corollary 2 it follows that we may assume that A is cofinite.
Step 1. For each X, there exists a o-directed inverse system

X(a) = {X(a,7) f(am)(a6), Ta} (1)
such that each X, ,) is a metric compact space, each f(4 )(a,5) is monotone and
surjective and X, is homeomorphic to lim X(a). Now we have the following diagram

Xa Pab Xb Pbe .Xc Pd

lfm.m lf(b.m lf(c.m

X(aa'Ya) X(ba'Yb) X(Ca'YC)
lf(fl-’Ya)("‘aﬁa.) lf(bww(b,é,,) lf(c,m(c,ﬁc)

X(a,8,) X(b,8,) X(e,6.)

! ! !

Step 2. Put B = {(a,7.) : a € A,7, € s} and put C to be the set of all
subsets ¢ of B of the form

c¢c={(a,v,) :a € A}, (3)
where every -, is the fixed element of T',.
Step 3. Let D be a subset of C containing all ¢ € C for which there exist the
mappings
Yara) o) Xom) = X, D20, (4)
such that
{X(a70) 9(@ra)b,m), A} (5)
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is an approximate inverse system and each diagram

Xo —— X,
f(a,ml lf(b.m (6)
Xama) & X(b.g)

9(a,va)(byrp)
commutes, where f(, ,): Xo — X(4,4,) is the canonical projection. It is clear that
the mapping g(4,,)(s,y,) 18 unique since f, .,) is a surjection.

Step 4. The set D is non-empty. Moreover, for each subset S, C Ty, a € A,
card(S,) < N, there exists a d € D such that d = {(a,7.) : a € A}, va > v
for every v € S,. Let a € A be some first element of A and let v, € [', such
that v, > v for every v € S,. The space X(q4,,) is a metric compact space and
there exist mappings f(a,y,)Pab: Xp — X(a,y,)s 0 > a. By virtue of Theorem 1 for
each b > a there exists a y; € T, such that for each v, > ~¢,7, where v € Sp,
there exists a monotone surjective mapping g(, t Xby) = X(a,y.) With
f(a,*ya)pab = g(a,va)(b,’)’b)f(b,%)? i.e., the diagram

Ya)(by76)

X, « Pad X,
f(a,ml lf(b.m (7)
Xaa) = Xou0)

9(a,va)(b,7p)

commutes. Suppose that (a,v}), (a,72), ..., (a,’yffl) are defined for each a € A
with p(a) < n—1 such that the each diagram (6) commutes. Let a € A be a member
of A with p(a) = n. This means that (a,7}), (a,72), ..., (a,7;"") are defined.
From the cofinitness of A it follows that the set of 77 which are defined in T, is finite.
Hence there exists v* > y*~!, ..., yl. We define 4] € T, considering the space
X(a,y») and the mappings f(q,4n)Pab: Xp — X(4,4n). Again, by Theorem 1 for each
b > a there exists a v € I'y such that for each v, > 77, ’yf_l, ..., 7 and there is
a MapPINg g(a,)(b,3)* X(bm) = X(ayz) WIth flanz)Pab = 9am) () 6,70 1€
the diagram

Pa
X, —= X

f(a,’v(?)l lfw.w,) (8)
Xy~ Xo
I(avZ)(bvy)

commutes. By induction on A (Lemma 7) the set D is defined. It remains to prove
that {X(a,v,)s 9(a,va)(b,7)s A} 1S an approximate inverse system. Let ¢/ be a normal
cover of X, .. Then V = f(;’l,ya)(lxl) is a normal cover of X,. By virtue of (A2)
there exists a b > a such that for each ¢ > d > b we have (Pad,PcaPea < V. By

virtue of the commutativity of the diagrams of the form (8) it follows that

79?))

(9(a,10)(d,70) 2 I(as7a) (o) Ilerre) (dva)) S V-
Thus, {X(a,7,)1 9(a,7.)(b,7)> A} is an approximate inverse system.



92 I. Loncar

Step 5. We define a partial order on D as follows. Let dy,d> be a pair of
members of D such that di = {(a,7.) : @ € A,v, € Ty} and d2 = {(a,6,) : a €
A, b6, €Ty}, We write do < d; if and only if 6, < 7, for each a € A. From Step 4.
it follows that (D, <) is 7-directed. Moreover, Xp is a usual inverse system.

Step 6. For each d € D the limit space X4 of the inverse system (5) is a
compact space. Moreover, there exists a mapping Fg: X — X4. The existence
of Fy follows from the commutativity of the diagram (6). The following diagram
illustrates the construction of d € D and the space X,.

Xa Pab Xb Pbe Xc Pd
fla,64) F(v,64) Fle6e)
X(a,64) X(b,61) X(e,5.)
fava)(a.84) F (b, (5,55) fleve)e.be)

X(a

B — — —
) Xb.m) Xere) X
9(a,va)(b.7p) 9(b,vp)(eve) 9(eve)

sYa

Step 7. If di,ds is a pair of members of D such that di = {(a,7.) : a €
Ay € To}, da = {(a,60) :a € A6, € Ty} and dy > dy, then for each a € A

commutes the diagram
9(a,6a)(b,bp)
SEra )

X(a,64) X(b,8,)
f(n.na»(a‘ﬁa,)l lf(b,m)(b,ﬁb) (10)
Xaya) ———— Xom)

9(a,va)(b,1p)
This follows from the surjectivity of the mappings f(; ,,) and from the commuta-
tivity of the diagrams of the form (6) for d; and da, i.e., from the commutativity
of the diagrams

X, « Pab X,
f(ﬂrmz)l J,f(bﬂb) (11)
Xaya) & X(o,a)

9(a,va)(b,7p)

and
Xa Pab Xb

f(a"&a)J, lf(b‘ﬁ,,) (12)

X(asa) ——— Xv,a,)
9(a,6a)(b,6p)

Step 8. From Step 7. it follows that for d;,ds € D with dy > d; there exists
a mapping Fy,4,: Xa, — Xq, (see [1, p. 138]) such that Fy, = Fy, 4, Fy,-
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PTOOf Of Step 8. Let dl,dg,dg € D and let di < dy < d3. Then Fd1d3 =
Fy,4,F4,45- This follows from Step 7. and the commutativity condition in each
inverse system X(a) = {X(a,4)s f(a,7)(a,6)» [} (see (1) of Step 1.).

Step 9. The collection {X4,F4e,D} is o usual inverse system of compact
spaces.

Apply Steps 1.-8.
Step 10. There is a mapping F: X — Xp which is 1-1.

By Step 6. and Step 8. for each d € D there is a mapping Fy: X — Xy
such that Fy, = Fy4,4,F4, for do > di. This means that there exists a mapping
F: X — Xp [1, p- 138]. Let us prove that F is 1-1. Take a pair z,y of distinct
points of X. There exists an a € A such that z, = p,(z) and y, = p.(y) are distinct
points of X,. Now, there exists an (a,7,) such that fi, .)(za) and f, 5.)(ya) are
distinct points of X(, ,,). From Step 4. it follows that there is a d € D such that
Fy(x) and Fy(y) are distinct points of X4. Thus, F' is 1-1.

Step 11. The mapping F is a homeomorphism onto Xp. Let y be a point
of Xp. Let us prove that there exists a point x € X such that F(z) = y. For
each d € D we have a point y; = Fy(y). Now, we have the points g(4 +,)Fu(¥)
in X(,,,) and the subsets ¥, = f(;’l,yn’)(g(a,%)Fd(y)) of X,. Let U be an open
neighborhood Y,. There exists an open neighborhood V' of g(, ,)Fa(y) such that
f(;}%)(V) C U. We infer that Ls{g(,,)(¥s) : b > a} C Y, since g(a,,,)Fa(y) =
im{g(a,a)(b,7)9(b,7s) Fa(y) : b > a} and the diagrams (6) commute. By virtue of [6,
Lemma 2.1] it follows that there exists a non-empty closed subset Cy of lim X such
that pp(Cq) C Ys. The family {Cy : d € D} has the finite intersection property.
This means that X' = N{Cy : d € D} is non-empty. For each x € X' we have
Fy(z) = F4(y), d € D. Thus, F(y) = . The proof is completed. m

By the similar method of proof we obtain the following theorem.

THEOREM 10. Let X = {X,,pap, A} be an approzimate inverse system of
compact non-metric spaces with surjective bonding mappings paey. If each X4 is a
limit of a usual T-directed inverse system X(a) = {X(a,1), f(a,y)(a,6)» Lo} of compact
spaces with w(X(4 ) < T, then:

1. there exists a usual T-directed inverse system Xp = {Xg4, Fae, D} whose inverse
limit Xp is homeomorphic to X =lim X,

2. every Xgq is a limit of an approzimate inverse system {X(a,y.)s 9(arva)(byys)> A}
of compact spaces X (q,,),

3. if the mappings pap and f(a y)(a,5) are monotone, then gia ,)(bq,) and Fge are
monotone.

COROLLARY 3. Let X = {X,,, Pnm, N} be an approzimate inverse sequence of
compact non-metric spaces with surjective bonding mappings ppm- If each X, is a
limit of a usual o-directed inverse system X(n) = {X(n 1), fin,7)(n,6), [n} of metric
compact spaces, then:
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1. there exists a usual o-directed inverse system Xp = { X4, Fye, D} whose inverse
limit Xp is homeomorphic to X =1lim X,
2. every X4 is a limit of an approrimate inverse sequence {X(nﬂn), I(nvm) (myym ) N}

of compact metric spaces X(n,%),

3. if the mappings prm and f(n~)(n,s) are monotone, then gin y,)(m ym) and Fae
are monotone.

Let P be a topological property of spaces.

THEOREM 11. Let X = {X,,pab, A} be an approzimate inverse system of
compact non-metric spaces with surjective bonding mappings pey and let P be a
topological property of spaces such that:

1. each X, is a limit of a wusual o-directed inverse system X(a) =
{X(am)s flay)(a,6)s Ta} of metric compact spaces with property P,

2. if Xg4 is a limit of an approvimate inverse system {X(a ) 9(a,va)(b)> A} Of
compact metric spaces X, ,) with property P, then X4 has P,

3. if Y is a limit of o-directed usual inverse system of compact spaces with prop-
erty P, then'Y has P.

Then X =1lim X has the property P.

3. Applications

LEMMA 9. Let X = { X, Pnm, N} be an approximate inverse sequence of locally
connected metric continua. If the bonding mappings are monotone and surjective,
then X =1lim X is locally connected.

Proof. There exists a usual inverse sequence Y = {Yj, ¢;;, M} such that ¥; =
Xnis @ij = Pninig1Prijinigs -+ Pnj_in; for each 4,7 € N and a homeomorphism
H: limX — limY [2, Proposition 8]. Each mapping ¢;; as a composition of the
monotone mappings is monotone. This means that Y is a usual inverse sequence of
locally connected continua with monotone bonding mappings ¢;;. Hence limY is
locally connected. We infer that X = lim X is locally connected since there exists
a homeomorphism H: limX - limY. m

LEMMA 10. Let X = {Xq, pab, A} be an approzimate inverse system of locally
connected continua such that card(A) = Ng. Then X =1lim X is locally connected.

Proof. By virtue of Lemma 3 there exists a countable well-ordered subset B of
A such that the collection { X, pyc, B} is an approximate inverse sequence and lim X
is homeomorphic to im{ X4, pyc, B}. From Lemma 9 it follows that lim{ Xy, ps., B}
is locally connected. Hence X = lim X is locally connected. m

LEMMA 11. Let X = {X,, pab, A} be an approzimate inverse system of locally
connected metric continua and monotone bonding mappings. Then X = lim X is
locally connected.

Proof. If card(A) = Nq then we apply Lemma 10. If card(A4) > R; then from
Corollary 1 it follows that X = lim X is homeomorphic to the limit of a o-directed



Relationships between usual and approximate inverse systems 95

usual inverse system {X,,q¢ag, A}, where each X, is a limit of an approximate
inverse subsystem {X,,pq3,®}, card(®) = No. From Lemma 10 it follows that
each X, is locally connected. By Theorem 3 we infer that the limit of {X,,gog, A}
is locally connected. Hence, X is locally connected since X is homeomorphic to
lim{X,,gap, A}.

THEOREM 12. Let X = {X,,pa, A} be an approzimate inverse system of
locally connected continua and monotone bonding mappings. Then X =1lim X is a
locally connected continuum.

Proof. By virtue of Theorem 3 and Remark 1 every X, is a limit of a usual o-
directed inverse system X (a) = {X(a,)> f(a,7)(a,6)s [a} Of metric locally connected
continua with monotone bonding mappings f(a y)(a,s)- From Theorem 9 it fol-
lows that there exist : 1) a usual o-directed inverse system Xp = {Xg, Fye, D}
whose inverse limit Xp is homeomorphic to X = lim X; 2) every X, is a limit of
an approximate inverse system {X(a,5,), 9(a,va)(5,7) A} Of compact metric spaces
X(a,y,) and 3) if the mappings pay and f4,,)(a,s) are monotone, then g ,)(5,v,)
and Fj. are monotone. Now, every X, as the limit of approximate inverse system
{X(a7a)s I(ava)(byvs)» A} 18 locally connected because of Lemma 11. Finally, X is
locally connected since X is homeomorphic to Xp = lim Xp and Xp is locally
connected (Theorem 3). m

We shall say that a non-empty compact space is perfect if it has no isolated
points.

A continuum is said to be totally regular [12, p. 47] if for each z # y in X
there is a positive integer n and perfect subsets A1, ..., A, of X such that z; € A,
for i =1,...,n implies that {x1,...,z,} separates  from y in X.

LEMMA 12. [12, Proposition 7.4] Each totally regular continuum is hereditarily
locally connected and rim-finite.

The following theorem is a part of [12, Theorem 7.15].

THEOREM 13. If X is a continuum then the following conditions are equiva-
lent:

1. X is totally regular,

2. X is homeomorphic to im{X,, fas,'} such that each X, is a totally reqular
continuum and each fqp 18 a monotone surjection.

THEOREM 14. [12, Theorem 7.7] Let X = {X,, pab, A} be an inverse system
of totally reqular continua X, and monotone surjective mappings pey. Then X =
lim X s totally reqular.

THEOREM 15. Let X be a non-metric totally reqular continuum. There exists
a o-directed inverse system X = {Xg,pab, A} such that each X, is totally regular,
each fup is a monotone surjection and X is homeomorphic to lim X.

Proof. Apply [12, Theorem 9.4], Theorem 14 and Lemma 3.5 of [14]. m
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Now we shall prove the following theorem.

THEOREM 16. Let X = {X,,pnm, N} be an approzimate inverse sequence
of totally reqular metric continua. If the bonding mappings are monotone and
surjective, then X =lim X is totally regular.

Proof. There exists a usual inverse sequence Y = {Y;,¢;;, M} such that ¥; =
Xnis @ij = Pninisg1Prijinigs -+ Pnj_in; for each 4,7 € N and a homeomorphism
H: limX — limY [2, Proposition 8]. Each mapping ¢;; as a composition of the
monotone mappings is monotone. This means that Y is a usual inverse sequence
of totally regular continua with monotone bonding mappings g;;. By virtue of
Theorem 14 lim Y is totally regular. We infer that X = lim X is totally regular
since there exists a homeomorphism H: limX —» limY. =

THEOREM 17. Let X = {X,,pes, A} be an approzimate inverse system of
totally regular continua such that card(A) = Rg. Then X = lim X is totally regular.

Proof. By virtue of Lemma 3 there exists a countable well-ordered subset
B of A such that the collection {X4,psc, B} is an approximate inverse sequence
and lim X is homeomorphic to lim{ Xy, pyc, B}. From Theorem 16 it follows that
lm{Xs, pye, B} is totally regular. Hence X = lim X is totally regular. m

THEOREM 18. Let X = {X,,pas, A} be an approzimate inverse system of
totally regular continua and monotone bonding mappings. If w(X,) < 7 < card(A)
for each a € A, then X =1im X is a totally regular continuum.

Proof. By virtue of Theorem 7 (for A = Rg) there exists a o-directed inverse
system {Xo,qag, T}, where each X, is a limit of an approximate inverse subsystem
{X,,Pap, @}, card(®) = No. From Theorem 17 it follows that every X, is totally
regular. Theorem 14 completes the proof. m

THEOREM 19. Let X = {X,,pe, A} be an approzimate inverse system of
totally regular metric continua and monotone bonding mappings. Then X =lim X
is totally regular continuum.

Proof. If card(A) = Ny then we apply Theorem 17. If card(A) > Xy then from
Theorem 18 it follows that X is totally regular. m

THEOREM 20. Let X = {X,,pe, A} be an approzimate inverse system of
totally regular non-metric continua with surjective monotone bonding mappings pap-
Then X = 1lim X is totally reqular.

Proof. By virtue of Theorem 15 every X, is a limit of a usual o-directed in-
verse system X (a) = {X(a,1), f(a,7)(a,6), Lo} Of metric totally regular continua with
monotone bonding mappings f(a,,)(a,s)- From Theorem 9 it follows that there ex-
ist: 1) a usual o-directed inverse system Xp = {Xg4, Fye, D} whose inverse limit
Xp is homeomorphic to X = lim X, 2) every X, is a limit of an approximate in-
verse system { X (4 .}, 9(a,7a)(b,7s)s A} Of compact metric spaces X(, -,y and 3) if the
mappings pep and f(4 )(a,5) are monotone, then g(, .)(s,y,) and Fge are monotone.
Now, every X, as the limit of approximate inverse system {X(4 .}, 9(a,v4)(5,7)> A}
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is totally regular because of Theorem 19. Finally, X is totally regular since X is
homeomorphic to Xp = lim Xp and Xp is totally regular (Theorem 14). m

THEOREM 21. Let X = {X,,pe, A} be an approzimate inverse system of

totally regular continua with surjective monotone bonding mappings pey. Then X =
lim X s totally reqular.

Proof. Apply Theorems 19 and 20. m
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