ASYMPTOTIC PLANARITY OF DRESHER MEAN VALUES

Momčilo Bjelica

Abstract. A family of Dresher mean values is asymptotically planar with respect to its two parameters. An asymptotic formula presenting this property holds if: (a) all variables converge to the same value; and, equivalently, because of means homogeneity, (b) for variables with same additive increment converging to infinity.

Suppose $\mathbf{x} = (x_1, x_2, \dots, x_n)$, $\mathbf{a} = (a, a, \dots, a)$, and $\mathbf{q} = (q_1, q_2, \dots, q_n)$ are sequences of nonnegative reals and a > 0. Without loss of generality let the weights q_i be normalized by $q_1 + q_2 + \dots + q_n = 1$. The geometric, the harmonic, and the quadratic mean values respectively are

$$G_q(\mathbf{x}) = \prod_{i=1}^n x_i^{q_i}, \quad A_q(\mathbf{x}) = \sum_{i=1}^n q_i x_i, \quad Q_q(\mathbf{x}) = \sqrt{\sum_{i=1}^n q_i x_i^2}.$$

Note that $\sigma_q^2(\mathbf{x}) = Q_q^2(\mathbf{x}) - A_q^2(\mathbf{x})$ is a weighted variance of \mathbf{x} , which satisfies $\sigma_q^2(\mathbf{x} + \mathbf{a}) = \sigma_q^2(\mathbf{x})$. Dresher mean values [2] are a two-parameter family of means that increase with each parameter

$$D_{s,t}(\mathbf{x}) = \begin{cases} \left(\sum_{i=1}^{n} q_i x_i^s \middle/ \sum_{j=1}^{n} q_j x_j^t \right)^{1/(s-t)}, & \text{if } s \neq t \\ \exp\left(\sum_{i=1}^{n} q_i x_i^t \log x_i \middle/ \sum_{j=1}^{n} q_j x_j^t \right), & \text{if } s = t. \end{cases}$$

THEOREM. Dresher mean values for both cases $s \neq t$ and s = t have the unique asymptotic formulas

$$D_{s,t}(\mathbf{x}) = A_q(\mathbf{x}) + \frac{s+t-1}{2a} (Q_q^2(\mathbf{x}) - A_q^2(\mathbf{x})) + o(Q_q^2(\mathbf{x} - \mathbf{a}))$$

= $A_q(\mathbf{x}) + (s+t-1)(Q_q(\mathbf{x}) - A_q(\mathbf{x})) + o(Q_q^2(\mathbf{x} - \mathbf{a}))$
= $G_q(\mathbf{x}) + (s+t)(A_q(\mathbf{x}) - G_q(\mathbf{x})) + o(Q_q^2(\mathbf{x} - \mathbf{a})), \quad \mathbf{x} \to \mathbf{a},$

AMS Subject Classification: 26E60.

Keywords and phrases: Dresher mean values, asymptotic behavior.

M. Bjelica

and if $a \to \infty$, then

$$D_{s,t}(\mathbf{x} + \mathbf{a}) = a + A_q(\mathbf{x}) + \frac{s + t - 1}{2a} (Q_q^2(\mathbf{x}) - A_q^2(\mathbf{x})) + o(1/a)$$

= $A_q(\mathbf{x} + \mathbf{a}) + (s + t - 1)(Q_q(\mathbf{x} + \mathbf{a}) - A_q(\mathbf{x} + \mathbf{a})) + o(1/a)$
= $G_q(\mathbf{x} + \mathbf{a}) + (s + t)(A_q(\mathbf{x} + \mathbf{a}) - G_q(\mathbf{x} + \mathbf{a})) + o(1/a).$

Asymptotic planarity implies Hoehn and Niven property for Dresher mean values $D_{s,t}(\mathbf{x} + \mathbf{a}) - a \rightarrow A_q(\mathbf{x}), \quad a \rightarrow \infty.$

Proof. Suppose $s \neq t$ and $\mathbf{h} = \mathbf{x} - \mathbf{a}$. Then

$$\begin{aligned} x_i^s &= a^s \left(1 + \frac{h_i}{a} \right)^s = a^s \left(1 + \frac{s}{a} h_i + \frac{s(s-1)}{2a^2} h_i^2 + o \right), \quad h_i \to 0, \\ \sum_{i=1}^n q_i x_i^s &= a^s \left(1 + \frac{s}{a} A_q(\mathbf{h}) + \frac{s(s-1)}{2a^2} Q_q^2(\mathbf{h}) + o \right), \end{aligned}$$

where $o = o\left(h_i^2\right)$ and $o = o\left(Q_q^2(\mathbf{h})\right)$, respectively. Therefore

$$\begin{split} \log D_{s,t}(\mathbf{x}) &= \frac{1}{s-t} \left[\log \sum_{i=1}^{n} q_{i} x_{i}^{s} - \log \sum_{j=1}^{n} q_{j} x_{j}^{t} \right] \\ &= \frac{1}{s-t} \left[\log a^{s} + \log \left(1 + \frac{s}{a} A_{q}(\mathbf{h}) + \frac{s(s-1)}{2a^{2}} Q_{q}^{2}(\mathbf{h}) + o \right) \right] \\ &- \log a^{t} - \log \left(1 + \frac{t}{a} A_{q}(\mathbf{h}) + \frac{t(t-1)}{2a^{2}} Q_{q}^{2}(\mathbf{h}) + o \right) \right] \\ &= \log a + \frac{1}{s-t} \left[\frac{s}{a} A_{q}(\mathbf{h}) + \frac{s(s-1)}{2a^{2}} Q_{q}^{2}(\mathbf{h}) - \frac{s^{2}}{2a^{2}} A_{q}^{2}(\mathbf{h}) \right. \\ &- \frac{t}{a} A_{q}(\mathbf{h}) - \frac{t(t-1)}{2a^{2}} Q_{q}^{2}(\mathbf{h}) + \frac{t^{2}}{2a^{2}} A_{q}^{2}(\mathbf{h}) + o \right] \\ &= \log a + \frac{1}{a} A_{q}(\mathbf{h}) - \frac{1}{2a^{2}} A_{q}^{2}(\mathbf{h}) + \frac{s+t-1}{2a^{2}} \left(Q_{q}^{2}(\mathbf{h}) - A_{q}^{2}(\mathbf{h}) \right) + o \\ &= \log \left[a \left(1 + \frac{1}{a} A_{q}(\mathbf{h}) \right) \left(1 + \frac{s+t-1}{2a^{2}} \left(Q_{q}^{2}(\mathbf{h}) - A_{q}^{2}(\mathbf{h}) \right) \right) \right] + o. \end{split}$$

Since the obtained expression is well defined and continuous at s = t, for both cases $s \neq t$ and s = t we have

$$\begin{split} D_{s,t}(\mathbf{x}) &= a \exp\left(\frac{1}{a}A_q(\mathbf{h}) - \frac{1}{2a^2}A_q^2(\mathbf{h}) + \frac{s+t-1}{2a^2}\left(Q_q^2(\mathbf{h}) - A_q^2(\mathbf{h})\right) + o\right) \\ &= a \left(1 + \frac{1}{a}A_q(\mathbf{h}) - \frac{1}{2a^2}A_q^2(\mathbf{h}) + \frac{s+t-1}{2a^2}\left(Q_q^2(\mathbf{h}) - A_q^2(\mathbf{h})\right) \\ &\quad + \frac{1}{2a^2}A_q^2(\mathbf{h}) + o\right) \\ &= a + A_q(\mathbf{h}) + \frac{s+t-1}{2a}\left(Q_q^2(\mathbf{h}) - A_q^2(\mathbf{h})\right) + o\left(Q_q^2(\mathbf{h}) - A_q^2(\mathbf{h})\right). \end{split}$$

62

This gives the first line of the first formula. The third line follows from asymptotic linearity of power mean values [1], particularly

$$(Q_q(\mathbf{x}) - A_q(\mathbf{x})) / (A_q(\mathbf{x}) - G_q(\mathbf{x})) \to 1, \quad \mathbf{x} \to \mathbf{a}.$$
 (1)

In the second formula the first line follows from the above proof with $a \to \infty$, $o = o(1/a^2)$, and o = o(1/a) in the last unspecified appearance of o. Hoehn and Niven property [2], which is a consequence of asymptotic linearity property [1], states

$$M_q(\mathbf{x} + \mathbf{a}) - A_q(\mathbf{x} + \mathbf{a}) \to 0, \quad a \to \infty,$$

where M is any power mean value. Therefore

$$Q_q(\mathbf{x} + \mathbf{a}) + A_q(\mathbf{x} + \mathbf{a})/2a \to 1, \quad a \to \infty,$$

what implies the second line. The third line follows from the asymptotic linearity formula at infinity, i.e. (1) for the argument $\mathbf{x} + \mathbf{a}$ and $a \to \infty$. (The second formula also follows from the first one and from homogeneity of involved mean values.)

CONJECTURE. Let \mathbf{x} be a sequence of reals and a > 0. The unified asymptotic formula for Dresher mean values holds for convergent variables, as well as for an additive infinitely increasing parameter

$$D_{s,t}(\mathbf{a} + \mathbf{x}) = a + A_q(\mathbf{x}) + \frac{s + t - 1}{2a} \sigma_q^2(\mathbf{x}) + o(\frac{\sigma_q^2(\mathbf{x})}{2a})$$

= $A_q(\mathbf{a} + \mathbf{x}) + (s + t - 1)(Q_q(\mathbf{a} + \mathbf{x}) - A_q(\mathbf{a} + \mathbf{x})) + o(\frac{\sigma_q^2(\mathbf{x})}{2a})$
= $G_q(\mathbf{a} + \mathbf{x}) + (s + t)(A_q(\mathbf{a} + \mathbf{x}) - G_q(\mathbf{a} + \mathbf{x})) + o(\frac{\sigma_q^2(\mathbf{x})}{2a}),$

where either $\mathbf{x} \to \mathbf{0}$ or $a \to \infty$. Infinitesimals $\sigma_q^2(\mathbf{x})/2a$, $Q_q(\mathbf{a} + \mathbf{x}) - A_q(\mathbf{a} + \mathbf{x})$, and $A_q(\mathbf{a} + \mathbf{x}) - G_q(\mathbf{a} + \mathbf{x})$ are equivalent.

ACKNOWLEDGEMENT. The author thanks to the referee for suggestion to consider $\log D_{s,t}$ in both cases, with aim to simplify algebra and obtain a unified development.

REFERENCES

- [1] M. Bjelica, Asymptotic linearity of mean values, Mat. Vesnik 51, 1–2 (1999), 15–19.
- [2] J. L. Brenner, B. C. Carlson, Homogeneous mean values: weights and asymptotics, J. Math. Anal. Appl. 123 (1987), 265–280.

(received 31.12.2002, in revised form 26.04.2005)

University of Novi Sad, "Mihajlo Pupin", Zrenjanin 23000, Serbia & Montenegro *E-mail*: bjelica@tf.zr.ac.yu